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EIGHT POSITIVE PERIODIC SOLUTIONS
TO THREE SPECIES NON-AUTONOMOUS

LOTKA–VOLTERRA COOPERATIVE SYSTEMS
WITH HARVESTING TERMS

Yongkun Li — Kaihong Zhao

Abstract. By using Mawhin’s continuation theorem of coincidence de-

gree theory and linear inequality, we establish the existence of eight positive
periodic solutions for three species non-autonomous Lotka-Volterra coop-

erative systems with harvesting terms. An example is given to illustrate

the effectiveness of our results.

1. Introduction

The three species Lotka–Volterra cooperative model with harvesting terms
is described as follows (see [4], [5]):

ẋi(t) = xi(t)
(

ai − bixi(t) +
3∑

j=1,j 6=i

cijxj(t)
)
− hi, i = 1, 2, 3,

where xi(t) (i = 1, 2, 3) is the density function of the ith species; ai and bi

are all positive constants and denote the intrinsic growth rates, death rates,
respectively; cij > 0 stand for the cooperative rate between the ith species and
the jth species; hi, i = 1, 2, 3 is the ith species harvesting terms standing for the
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harvests. Since realistic models require taking into account the effect of changing
environment we will consider the following nonautonomous model

(1.1) ẋi(t) = xi(t)
(

ai(t)− bi(t)xi(t) +
3∑

j=1,j 6=i

cij(t)xj(t)
)
− hi(t), i = 1, 2, 3.

In addition, the effects of a periodically varying environment are important for
evolutionary theory as the selective forces on systems in a fluctuating environ-
ment differ from those in a stable environment. Therefore, the assumptions of
periodicity of the parameters are a way of incorporating the periodicity of the
environment (e.g. seasonal effects of weather, food supplies, mating habits, etc.),
which leads us to assume that ai(t), bi(t), cij(t) and hi(t) (i, j = 1, 2, 3) are all
positive continuous ω-periodic functions.

A very basic and important problem in the study of a population growth
model with a periodic environment is the global existence and stability of a pos-
itive periodic solution, which plays a similar role as a globally stable equilibrium
does in an autonomous model. Also, only a few results concerning the existence
of positive periodic solutions of system (1.1) can be found in the literature. This
motivates us to investigate the existence of a positive periodic or multiple positive
periodic solutions for system (1.1). In fact, it is more likely for some biological
species to take on multiple periodic change regulations and have multiple local
stable periodic phenomena. Therefore it is essential for us to investigate the ex-
istence of multiple positive periodic solutions for population models. Our main
purpose of this paper is by using Mawhin’s continuation theorem of coincidence
degree theory [2], to establish the existence of eight positive periodic solutions
for system (1.1). For the work concerning the multiple existence of periodic so-
lutions of periodic population models which was done using coincidence degree
theory, we refer to [1], [3], [6].

The organization of the rest of this paper is as follows. In Section 2, by
employing the continuation theorem of coincidence degree theory and linear in-
equality, we establish the existence of eight positive periodic solutions of system
(1.1). In Section 3, an example is given to illustrate the effectiveness of our
results.

2. Existence of eight positive periodic solutions

In this section, by using Mawhin’s continuation theorem and linear inequality,
we shall show the existence of positive periodic solutions of (1.1). To do so, we
need to make some preparations.

Let X and Z be real normed vector spaces. Let L: Dom L ⊂ X → Z be
a linear mapping and N :X×[0, 1] → Z be a continuous mapping. The mapping L

will be called a Fredholm mapping of index zero if dim Ker L = codim Im L < ∞
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and Im L is closed in Z. If L is a Fredholm mapping of index zero, then there
exist continuous projectors P :X → X and Q:Z → Z such that Im P = Ker L

and KerQ = Im L = Im (I − Q), and X = KerL ⊕ KerP , Z = Im L ⊕ Im Q.
It follows that L|Dom L∩Ker P : (I − P )X → Im L is invertible and its inverse is
denoted by KP . If Ω is a bounded open subset of X, the mapping N is called L-
compact on Ω×[0, 1], if QN(Ω×[0, 1]) is bounded and KP (I−Q)N : Ω×[0, 1] → X

is compact. Because Im Q is isomorphic to Ker L, there exists an isomorphism
J : Im Q → KerL.

The Mawhin’s continuous theorem [2, p. 40] reads as follows.

Lemma 2.1 ([2]). Let L be a Fredholm mapping of index zero and let N be
L-compact on Ω× [0, 1]. Assume that:

(a) for each λ ∈ (0, 1), every solution x of Lx = λN(x, λ) is such that
x /∈ ∂Ω ∩Dom L;

(b) QN(x, 0)x 6= 0 for each x ∈ ∂Ω ∩KerL;
(c) deg (JQN(x, 0),Ω ∩KerL, 0) 6= 0.

Then Lx = Nx has at least one solution in Ω ∩Dom L.

For the sake of convenience, we denote by

f l = min
t∈[0,ω]

f(t), fM = max
t∈[0,ω]

f(t), f =
1
ω

∫ ω

0

f(t) dt,

respectively, here f(t) is a continuous ω-periodic function. In this paper, matrix
A = (aij) > 0 means that each elements aij > 0.

For simplicity, we need to introduce some notations as follows.

l±i =
al

i ±
√

(al
i)2 − 4bM

i hM
i

2bM
i

, ql
i = min{bl

i, h
l
i}, i = 1, 2, 3;

D =

 ql
1 −cM

12 −cM
13

−cM
21 ql

2 −cM
23

−cM
31 −cM

32 ql
3

 , D−1

 aM
1

aM
2

aM
3

 :=

 H+
1

H+
2

H+
3

 .

Throughout this paper, we need the following assumptions.

(H1) al
i > 2bM

i and hM
i > bM

i , i = 1, 2, 3;
(H2) |D| > 0, ql

iq
l
j − cM

ij cM
ji ≥ 0 (i 6= j) and H+

i > al
i/bM

i , i, j = 1, 2, 3.

Lemma 2.2. Suppose that |A| > 0 and aiiajj − aijaji ≥ 0, i, j = 1, 2, 3, then
AX < B implies X < A−1B, where

A =

 a11 −a12 −a13

−a21 a22 −a23

−a31 −a32 a33

 , aij > 0 (i, j = 1, 2, 3),
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X = (x1, x2, x3)T ∈ R3 and B = (b1, b2, b3)T ∈ R3.

Proof. In fact, there exists a positive vector ε0 = (ε1, ε2, ε3)T ∈ R3 such
that AX −B + ε0 = 0, which implies that X −A−1B + A−1ε0 = 0. Since

A−1 =
1
|A|

 a22a33 − a23a32 a12a33 + a13a32 a12a23 + a13a22

a21a33 + a23a31 a11a33 − a13a31 a11a23 + a13a21

a21a32 + a22a31 a11a32 + a12a31 a11a22 − a12a21

 > 0,

A−1ε0 > 0. Thus, we obtain X < A−1B. �

Theorem 2.3. Assume that (H1) and (H2) hold. Then system (1.1) has at
least eight positive ω-periodic solutions.

Proof. By the substitution

(2.1) xi(t) = exp{ui(t)}, i = 1, 2, . . . , n,

system (1.1) can be reformulated as

(2.2) u̇i(t) = ai(t)− bi(t)eui(t) +
3∑

j=1,j 6=i

cij(t)euj(t) − hi(t)e−ui(t), i = 1, 2, 3.

Let X = Z = {u = (u1, u2, u3)T ∈ C(R, R3) : u(t + ω) = u(t)} and define

‖u‖ =
3∑

i=1

max
t∈[0,ω]

|ui(t)|, u ∈ X or Z.

Equipped with the above norm ‖ · ‖, X and Z are Banach spaces. Let

N(u, λ)

=

 a1(t)− b1(t)eu1(t) + λ(c12(t)eu2(t) + c13(t)eu3(t))− h1(t)e−u1(t)

a2(t)− b2(t)eu2(t) + λ(c21(t)eu1(t) + c23(t)eu3(t))− h2(t)e−u2(t)

a3(t)− b3(t)eu3(t) + λ(c31(t)eu1(t) + c32(t)eu2(t))− hn(t)e−u3(t)


3×1

,

for u ∈ X, Lu = u̇ = du(t)/dt. We put

Pu =
1
ω

∫ ω

0

u(t) dt, u ∈ X, Qz =
1
ω

∫ ω

0

z(t) dt, z ∈ Z.

Thus it follows that Ker L = R3, Im L = {z ∈ Z :
∫ ω

0
z(t) dt = 0} is closed in Z,

dim Ker L = 3 = codim Im L, and P , Q are continuous projectors such that

Im P = KerL, KerQ = Im L = Im (I −Q).

Hence, L is a Fredholm mapping of index zero. Furthermore, the generalized
inverse (to L) KP : Im L → KerP ∩Dom L is given by

KP (z) =
∫ t

0

z(s) ds− 1
ω

∫ ω

0

∫ t

0

z(s) ds dt.
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Then

QN(u, λ) =

 1
ω

∫ ω

0
F1(s, λ) ds

1
ω

∫ ω

0
F2(s, λ) ds

1
ω

∫ ω

0
F3(s, λ) ds


3×1

and

KP (I −Q)N(u, λ)

=


∫ t

0
F1(s, λ) ds− 1

ω

∫ ω

0

∫ t

0
F1(s, λ) ds dt +

(
1
2 −

t
ω

) ∫ ω

0
F1(s, λ) ds∫ t

0
F2(s, λ) ds− 1

ω

∫ ω

0

∫ t

0
F2(s, λ) ds dt +

(
1
2 −

t
ω

) ∫ ω

0
F2(s, λ) ds∫ t

0
F3(s, λ) ds− 1

ω

∫ ω

0

∫ t

0
F3(s, λ) ds dt +

(
1
2 −

t
ω

) ∫ ω

0
F3(s, λ) ds


3×1

,

where

Fi(s, λ) = ai(s)− bi(s)eui(s) + λ
3∑

j=1,j 6=i

cij(s)euj(s) − hi(s)e−ui(s), i = 1, 2, 3.

Obviously, QN and KP (I − Q)N are continuous. It is not difficult to show
that KP (I − Q)N(Ω) is compact for any open bounded set Ω ⊂ X by using
the Arzela–Ascoli theorem. Moreover, QN(Ω) is clearly bounded. Thus, N is
L-compact on Ω with any open bounded set Ω ⊂ X.

In order to use Lemma 2.1, we have to find at least eight appropriate open
bounded subsets in X. Considering the operator equation Lu = λN(u, λ), λ ∈
(0, 1), we have

(2.3) u̇i(t) = λ

(
ai(t)− bi(t)eui(t) + λ

3∑
j=1,j 6=i

cij(t)euj(t) − hi(t)e−uj(t)

)
,

for i = 1, 2, 3. Assume that u ∈ X is an ω-periodic solution of system (2.3) for
some λ ∈ (0, 1). Then there exist ξi, ηi ∈ [0, ω] such that

ui(ξi) = max
t∈[0,ω]

ui(t), ui(ηi) = min
t∈[0,ω]

ui(t), i = 1, 2, 3.

It is clear that

u̇i(ξi) = 0, u̇i(ηi) = 0, i = 1, 2, 3.

From this and (2.3), we have

(2.4) ai(ξi)− bi(ξi)eui(ξi) + λ
3∑

j=1,j 6=i

cij(ξi)euj(ξi) − hi(ξi)e−ui(ξi) = 0,

for i = 1, 2, 3, and

(2.5) ai(ηi)− bi(ηi)eui(ηi) + λ
3∑

j=1,j 6=i

cij(ηj)euj(ηj) − hi(ηi)e−ui(ηi) = 0,
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for i = 1, 2, 3. (2.4) and (2.5) give

(2.6)

 ql
1 −cM

12 −cM
13

−cM
21 ql

2 −cM
23

−cM
31 −cM

32 ql
3

  eu1(ξ1)

eu2(ξ2)

eu3(ξ3)

 <

 aM
1

aM
2

aM
3


and

(2.7)

 ql
1 −cM

12 −cM
13

−cM
21 ql

2 −cM
23

−cM
31 −cM

32 ql
3

  e−u1(η1)

e−u2(η2)

e−u3(η3)

 <

 aM
1

aM
2

aM
3

 ,

respectively. By assumption (H2) and Lemma 2.2, we obtain

(2.8)

 eu1(ξ1)

eu2(ξ2)

eu3(ξ3)

 <

 ql
1 −cM

12 −cM
13

−cM
21 ql

2 −cM
23

−cM
31 −cM

32 ql
3

−1  aM
1

aM
2

aM
3

 :=

 H+
1

H+
2

H+
3


and

(2.9)

 e−u1(η1)

e−u2(η2)

e−u3(η3)

 <

 ql
1 −cM

12 −cM
13

−cM
21 ql

2 −cM
23

−cM
31 −cM

32 ql
3

−1  aM
1

aM
2

aM
3

 :=

 H+
1

H+
2

H+
3

 ,

respectively, which imply that

(2.10)

 u1(ξ1)
u2(ξ2)
u3(ξ3)

 <

 lnH+
1

lnH+
2

lnH+
3

 and

 u1(η1)
u2(η2)
u3(η3)

 >

− lnH+
1

− lnH+
2

− lnH+
3

 ,

respectively. Moreover, according to (2.4), we have

bM
i eui(ξi) + hM

i e−ui(ξi) > al
i, i = 1, 2, 3,

or equivalently,

bM
i e2ui(ξi) − al

ie
ui(ξi) + hM

i > 0, i = 1, 2, 3,

which imply that

(2.11)

 u1(ξ1)
u2(ξ2)
u3(ξ3)

 >

 ln l+1
ln l+2
ln l+3

 or

 u1(ξ1)
u2(ξ2)
u3(ξ3)

 <

 ln l−1
ln l−2
ln l−3

 .

Similarly, by (2.5), we get

(2.12)

 u1(η1)
u2(η2)
u3(η3)

 >

 ln l+1
ln l+2
ln l+3

 or

 u1(η1)
u2(η2)
u3(η3)

 <

 ln l−1
ln l−2
ln l−3

 .

By assumptions (H1) and (H2), we have

(2.13) − lnH+
i < ln l−i < ln l+i < lnH+

i , i = 1, 2, 3.
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From (2.10)–(2.13) we obtain

− lnH+
i < ui(t) < ln l−i or ln l+i < ui(t) < lnH+

i , i = 1, 2, 3.

For convenience, we denote

Gi = (− lnH+
i , ln l−i ), Hi = (ln l+i , lnH+

i ), i = 1, 2, 3.

Clearly, l±i and H+
i , i = 1, 2, 3 are independent of λ. For each i = 1, 2, 3, we

choose an interval between two intervals Gi and Hi and denote it as ∆i, then
define the set

{u = (u1, u2, u3)T ∈ X : ui(t) ∈ ∆i, t ∈ R, i = 1, 2, 3}.

Obviously, the number of the above sets is eight. We denote these sets as Ωk,
k = 1, . . . , 8. Ωk, k = 1, . . . , 8 are bounded open subsets of X, Ωi ∩ Ωj = φ,
i 6= j. Thus Ωk (k = 1, . . . , 8) satisfies the requirement (a) in Lemma 2.1.

Now we show that (b) of Lemma 2.1 holds, i.e. we prove when u ∈ ∂Ωk ∩
KerL = ∂Ωk ∩R3, QN(u, 0) 6= (0, 0)T , k = 1, . . . , 8. If it is not true, then when
u ∈ ∂Ωk∩KerL = ∂Ωk∩R3, i = 1, . . . , 8, constant vector u = (u1, u2, u3)T with
u ∈ ∂Ωk, k = 1, . . . , 8, satisfies∫ ω

0

ai(t) dt−
∫ ω

0

bi(t)eui dt−
∫ ω

0

hi(t)e−ui dt = 0, i = 1, . . . , n.

In view of the mean value theorem of calculous, there exist 3 points ti (i = 1, 2, 3)
such that

ai(ti)− bi(ti)eui − hi(ti)e−ui = 0, i = 1, 2, 3.

Following the arguments of (2.6)–(2.12), we have

− lnH+
i < ui(ti) < ln l−i or ln l+i < ui(ti) < lnH+

i , i = 1, 2, 3.

Then u belongs to one of Ωk ∩ R3, k = 1, . . . , 8. This contradicts the fact that
u ∈ ∂Ωk ∩ R3, k = 1, . . . , 8. Thus condition (b) in Lemma 2.1 is satisfied.
Finally, we show that (c) in Lemma 2.1 holds. Note that the system of algebraic
equations:

ai(ti)− bi(ti)exi − hi(ti)e−xi = 0, i = 1, 2, . . . , n,

has eight distinct solutions since (H1) and (H2) hold,

(x∗1, x
∗
2, x

∗
3) = (ln x̂1, ln x̂2, ln x̂3),

where

x±i =
ai(ti)±

√
(ai(ti))2 − 4bi(ti)hi(ti)

2bi(ti)
, x̂i = x−i or x̂i = x+

i , i = 1, 2, 3.

It is easy to verify that

− lnH+
i < lnx−i < ln l−i < ln l+i < lnx+

i < lnH+
i , i = 1, 2, 3.
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Therefore, (x∗1, x
∗
2, x

∗
3) uniquely belongs to the corresponding Ωk. Since

KerL = Im Q, we can take J = I. A direct computation gives, for k = 1, . . . , 8,

deg {JQN(u, 0),Ωk ∩KerL, (0, 0)T } = sign
[ 3∏

i=1

(
− bi(ti)x∗i +

hi(ti)
x∗i

)]
.

Since ai(ti)− bi(ti)x∗i − hi(ti)/x∗i = 0, i = 1, 2, 3, then

deg {JQN(u, 0),Ωk ∩KerL, (0, 0)T } = sign
[ 3∏

i=1

(ai(ti)− 2bi(ti)x∗i )
]

= ±1,

for k = 1, . . . , 8.
So far, we have proved that Ωk (k = 1, . . . , 8) satisfies all the assumptions

in Lemma 2.1. Hence, system (2.2) has at least eight different ω-periodic solu-
tions. Thus by (2.1) system (1.1) has at least eight different positive ω-periodic
solutions. This completes the proof of Theorem 2.1. �

Remark 2.4. In [3], the authors investigated the existence of four positive
periodic solutions to a Lotka–Volterra cooperative system with harvesting terms
by a complicated proof process. However, the same results will be obtained very
simply by our method used in this paper.

3. An example

Now, let us consider the following three species cooperative system with
harvesting terms:

(3.1)



ẋ(t) = x(t)
(

3 + sin t− 4 + sin t

10
x(t) +

1
5
y(t) +

1
5
z(t)

)
− 9 + cos t

15
,

ẏ(t) = y(t)
(

3 + cos t− 5 + cos t

10
y(t) +

1
5
x(t) +

1
5
z(t)

)
− 3 + cos t

5
,

ż(t) = z(t)
(

3 + sin 2t− 7 + sin 2t
10

z(t) +
1
5
x(t) +

1
5
y(t)

)
− 8 + cos 2t

10
.

In this case,

a1(t) = 3 + sin t, b1(t) =
4 + sin t

10
, h1(t) =

9 + cos t

15
,

a2(t) = 3 + cos t, b2(t) =
5 + cos t

10
, h2(t) =

3 + cos t

5
,

a3(t) = 3 + sin 2t, b3(t) =
7 + sin 2t

10
, h3(t) =

8 + cos 2t

10
,

and

c12(t) = c21(t) = c13(t) = c31(t) = c23(t) = c32(t) =
1
5
.
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Since al
1

al
2

al
3

 =

 2
2
2

 ,

 bl
1

bl
2

bl
3

 =

 3
10
2
5
3
5

 ,

 hl
1

hl
2

hl
3

 =

 8
15
2
5
7
10

 ,

 ql
1

ql
2

ql
3

 =

 3
10
2
5
3
5

 ,

 hM
1

hM
2

hM
3

 =

 2
3
4
5
9
10

 >

 bM
1

bM
2

bM
3

 =

 1
2
3
5
4
5

 ,

D =

 3
10 − 1

5 − 1
5

− 1
5

2
5 − 1

5

− 1
5 − 1

5
3
5

 , |D| = 1
250

> 0,

then  al
1

al
2

al
3

 =

 2
2
2

 >

 2bM
1

2bM
2

2bM
3

 =

 1
6
5
8
5

 ,

 ql
1q

l
2

ql
1q

l
3

ql
2q

l
3

 =

 3
25
9
50
6
25

 >

 cM
12cM

21

cM
13cM

31

cM
23cM

32

 =

 1
25
1
25
1
25

 ,

D−1 =

 50 40 30
40 35 25
30 25 20

 ,

 H+
1

H+
2

H+
3

 = D−1

 aM
1

aM
2

aM
3

 =

 480
400
300

 >


al
1

bM
1
al
2

bM
2
al
3

bM
3

 =

 4
10
3
5
2

 .

Therefore, all conditions of Theorem 2.1 are satisfied. By Theorem 2.1, system
(3.1) has at least eight positive 2π-periodic solutions.
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