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ROOT PROBLEM FOR CONVENIENT MAPS

Marcio C. Fenille — Oziride M. Neto

Abstract. In this paper we study when the minimal number of roots of

the so-called convenient maps from two-dimensional CW complexes into
closed surfaces is zero. We present several necessary and sufficient condi-

tions for such a map to be root free. Among these conditions we have the

existence of specific liftings for the homomorphism induced by the map on
the fundamental groups, existence of the so-called mutation of a specific ho-

momorphism also induced by the map, and existence of particular solutions

of specific systems of equations on free groups over specific subgroups.

1. Introduction

Let f :K → Y be a continuous map from a finite 2-dimensional CW complex
into a closed surface. The root problem for such a map is concerned, roughly,
with the study of its minimal number of roots, denoted by µ(f), which is defined
to be the minimal cardinality of g−1(a) among all maps g homotopic to f , where
a ∈ Y is an arbitrary point. By [6], the number µ(f) is independent of the point
a ∈ Y and it is finite. When µ(f) = 0, that is, f is homotopic to a map which
is not onto, we say that f is root free.

The Nielsen root theory provides a number, called the Nielsen root num-
ber, denoted by N(f), which is a lower bound for µ(f) (see [2] for details).
D. L. Gonçalves and P. Wong [7] proved that, under the conditions assumed
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here, N(f) = 0 implies f is root free, what does not occur in general (when
Y is not a surface, for example). In many cases, it is not easy to compute the
number N(f).

In this paper, we prove necessary and sufficient conditions for the mentioned
map f :K → Y to be root free. The sufficient part of these conditions restrict the
problem to a specific type of maps, the so-called convenient maps (Definition 2.2).

In Section 2, we study the first of such conditions which is about the triviality
of the homomorphism f#2 :π2(K) → π2(Y ), induced by f on the second homo-
topy groups, and the existence of a lifting for f#:π1(K) → π1(Y ) through the
homomorphism l#:π1(Y 1) → π1(Y ) induced by the natural inclusion l:Y 1 → Y

of the 1-skeleton Y 1 of the surface Y into Y . (Here we are considering sur-
faces with their minimal cellular decomposition). In Section 3 we present some
consequences of the main result of Section 2, the Theorem 2.6.

In Section 4, we define a new concept mutation of a homomorphism. This
is used to provide conditions for the existence of liftings of a homomorphism
through an epimorphism from a free group into an arbitrary group. Such condi-
tions will be used later, in Section 5, to provide conditions for maps to be root
free.

A similar concept symbolic mutation is presented in Section 6. In fact, we
prove that symbolic mutation is a kind of generalization of the concept of muta-
tion. In Section 7, we use this new concept to show alternative ways to use the
main results (theorems) of previous sections. Namely, we present results linking
the annihilation of the roots of a map f with the existence of particular solutions
of a system of equations on a free group.

We finish the paper presenting in Section 8 several examples to illustrate the
applicability of the main results.

Throughout the text, we use the capital letter K to denote a finite and con-
nected two-dimensional CW complex. We simplify two-dimensional CW complex
by 2-complex. The capital letter Y is used to denote closed surfaces. We also
simplify f is a continuous map by f is a map. The homotopy homomorphisms
induced by f are denoted as f# and homology homomorphisms as f∗.

2. Convenient maps

Let K and L be finite and connected 2-complexes and let Π = π1(K) and
Ξ = π1(L). Let f :K → L be a map from K into L and let α = f#: Π → Ξ be
its induced homomorphism on fundamental groups. Since Ξ acts on the group
π2(L) making it into a Ξ-module, a change of ring procedure defines an action
of Π on the group π2(L) making it a Π-module. The procedure is the following:
For each π ∈ Π and each γ ∈ π2(M), we define the action π · γ = α(π) · γ. To
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avoid confusion, when π2(L) is viewed as a Π-module through this procedure,
we denote it by απ2(L).

Note that if α is the trivial homomorphism, then the action of Π on π2(L)
is also trivial, that is, π · γ = γ. This occur, in particular, if either K or L (or
both) is simply connected.

Since απ2(L) is a Π-module, we have the second cohomology module of Π
with coefficients in απ2(L), denoted by H2(Π; απ2(L)).

Let [K,L]α be the set of the based homotopy classes of based maps from K

into L inducing the homomorphism α: Π → Ξ on fundamental groups.
The following result is Corollary 4.13 of [1, p. 95].

Theorem 2.1. Homotopy classes [f ] ∈ [K,L]α are uniquely determined by
their induced module homomorphisms f#2 :π2(K) → απ2(L) if and only if the
cohomology module H2(Π; απ2(L)) is trivial.

The condition H2(Π; απ2(L)) = 0 is an essential assumption in most of the
results proved in this paper. Because of this, we introduce the following defini-
tion:

Definition 2.2. A map f :K → L inducing α: Π → Ξ on fundamental
groups is called a convenient map if H2(Π; απ2(L)) = 0.

Remark 2.3. In a sense, the class of convenient maps is really convenient,
since, by Theorem 2.1, two such maps are homotopic if and only if the homo-
morphisms induced on π1 and π2 are equal.

Remark 2.4. We have the following results:

(a) If π2(L) = 0, then every map f :K → L is convenient.
(b) If Y is a closed surface, S2 6= Y 6= RP2, then π2(Y ) = 0 and every map

f :K → Y is convenient.
(c) If π2(K) = 0, then K is aspherical (see [1]) and so it is a K(Π, 1)-

complex. Hence H2(Π; απ2(L)) ≈ H2(K; απ2(L)). Thus, a map f :K →
L is convenient if and only if H2(K; απ2(L)) = 0.

(d) If Π = π1(K) is a free group, say of rank p, then the bouquet ∨pS1 is
a K(Π, 1)-complex and we have

H2(Π; απ2(L)) ≈ H2(∨pS1; απ2(L)) = 0.

Hence, every map f :K → L is convenient.
(e) If K = K1 is a 1-complex, then Π = π1(K) is a free group and every

map f :K → L is convenient.
(f) A map f :K → S2 is convenient if and only if H2(Π; Z) = 0.
(g) For a map f :K→RP2 to be convenient it is sufficient that H2(Π; Z̃)=0

for every local coefficient system defined by Π → Aut(Z), which we
denote Z̃.



330 M. C. Fenille — O. M. Neto

(h) A constant map κ:K → Y is always convenient if S2 6= Y 6= RP2 and,
if Y = S2 or Y = RP2, then it is convenient if and only if H2(Π; Z) = 0.

The first five items of the above remark are easy. In order to justify the sixth
and seventh items, we present a simple argument: If Y is either the 2-sphere or
the 2-dimensional projective space, then π2(Y ) ≈ Z. Given a map f :K → Y

inducing α = f#: Π → π1(Y ) on fundamental groups, we have:

• If Y = S2, then α is the trivial homomorphism and, in this case, the
action of Π on π2(Y ) ≈ Z is trivial.

• If Y = RP2, then π1(Y ) ≈ Z2 = {−1, 1} and, in this case, for each
π ∈ Π and γ ∈ π2(Y ), we have exactly two possibilities: either π · γ = γ

or π · γ = −γ.

This shows that the action of Π on π2(Y ) ≈ Z defines a local coefficient
system α̃: Π → Aut(Z) ≈ Aut(π2(Y )) for K, as well as for any K(Π, 1)-complex.
According to the two items above, we have:

• If Y = S2, the system α̃: Π → Aut(Z) is trivial, i.e. α̃(π) = 1, π ∈ Π.
• If Y = RP2, the system α̃: Π → Aut(Z) may be surjective or not.

This is enough to justify items (f) and (g) of Remark 2.4. The first part
of item (h) is an immediate consequence of item (b) and the second part of it
is a consequence of items (f) and (g), since a constant map induces the trivial
homomorphism on fundamental groups.

Before we present the main theorem of this section, we present an important
lemma which will be used in its proof.

Lemma 2.5. Every homomorphism α: Π → Ξ is obtained as an induced ho-
momorphism on fundamental groups by a cellular map f :K → L.

Proof. Let ϕ:K → KP and ψ:LQ → L homotopy equivalences (which
exists by Theorem 1.9 of [1, p. 61]), where KP and LQ are the model 2-complexes
of group presentations P = 〈x1, . . . , xn | r1, . . . , rm〉 and Q = 〈y1, . . . , yu |
s1, . . . , sv〉, respectively. Then, the 1-skeletons of KP an LQ are, respectively,
the bouquets

K1
P = ∨nS1 = e0K ∪ e1x1

∪ . . . ∪ e1xn
and L1

Q = ∨uS1 = e0L ∪ e1y1 ∪ . . . ∪ e
1
yu
.

Denote x = {x1, . . . , xn} and y = {y1, . . . , yu} and let F (x) and F (y) be
the free groups of rank n and u, generated by x and y, respectively. Let N(r)
be the normal subgroup of F (x) generated by the words r1, . . . , rm, and let
N(s) be the normal subgroup of F (y) generated by the words s1, . . . , sv. Let
ΩΠ:F (x) → Π = F (x)/N(r) and ΩΞ:F (y) → Ξ = F (y)/N(s) be the quotient
homomorphisms.
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For each 1 ≤ j ≤ n, choose wj ∈ F (y) such that ΩΞ(wj) = (α ◦ ΩΠ)(xj).
Let α1:F (x) → F (y) be the unique homomorphism such that α1(xj) = wj . It
is easy to see that α ◦ΩΠ = ΩΞ ◦α1, that is, the square in the following diagram
is commutative.

0 // N(r) // F (x)
ΩΠ //

α1

��

// Π

α

��

// 0

0 // N(s) // F (y)
ΩΞ

// Ξ // 0

Let f1:K1
P → L1

Q be the map which is defined so that its image on each e1xj

is the loop which travels L1
Q exactly as the homomorphism α1 spells α1(xj) as

a word in F (y). It is obvious that there is a natural identification

α1 = f1
#:F (x) ≡ π1(K1

P) −→ π1(L1
Q) ≡ F (y).

Now, each relator ri is a word in F (x) (may be a word with a unique letter
or even the empty word) such that (α ◦ ΩΠ)(ri) = 0 in Ξ, since ΩΠ(ri) = 0.
Moreover, the model 2-complex KP has m cells of dimension two, say e21, . . . , e

2
m,

indexed so that the 2-cell e2i is attached in K1
P according to the relation word ri.

Let l:L1
Q ↪→ LQ be the natural inclusion. Then (l ◦ f1)#(ri) = (ΩΞ ◦ α1)(ri) =

(α ◦ ΩΠ)(ri) = 0 for each 1 ≤ i ≤ m. Hence, the composed map l ◦ f1 extends
to each 2-cell e2i , defining a cellular map f ′:KP → LQ which satisfies, for each
1 ≤ j ≤ n, (f ′# ◦ ΩΞ)(xj) = (l ◦ f1)#(xj) = (ΩL ◦ α1)(xj) = (α ◦ ΩΠ)(xj). This
proves that f ′# = α.

To finalize, define f = ψ ◦ f ′ ◦ ϕ:K → L. Since ϕ and ψ are homotopy
equivalences, it follows that f# = f ′# = α. �

Now, we present the main theorem of this section. For this, Y is a closed
surface with minimal celular decomposition and Y 1 is its 1-skeleton. In addition,
we write l:Y 1 → Y to be the natural inclusion.

Theorem 2.6. A convenient map f :K → Y is root free if and only if the
homomorphism f#2 :π2(K) → π2(Y ) is trivial and there is a homomorphism φ

making commutative the diagram below:

π1(Y 1)

l#

��

π1(K)
f#

//

φ
::uuuuuuuuu
π1(Y )

The “only if” part is true even if f is not a convenient map.

Proof. Suppose that f is root free. Then, let ϕ be a map homotopic to
f and a ∈ Y be a point such that ϕ−1(a) = ∅. Up to composition of ϕ with
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a self-homeomorphism of Y homotopic to the identity map, we can consider
that a ∈ Y \ Y 1. Thus, Y 1 is a strong deformation retract of Y \ {a}. Let
r:Y \ {a} → Y 1 be a retraction. Define ϕ:K → Y 1 to be the composition
ϕ = r ◦ ϕ. Then, l ◦ ϕ:K → Y is a map homotopic to f . Now it is enough to
define φ = ϕ# to obtain f# = l# ◦ φ. Moreover, since π2(Y 1) = 0, it is obvious
that f#2 is the trivial homomorphism.

In order to prove the “if” parte, suppose that f#2 is trivial and φ:π1(K) →
π1(Y 1) is a homomorphism verifying f# = l# ◦ φ. By Lemma 2.5, there is
a cellular map ϕ:K → Y 1 such that φ = ϕ#:π1(K) → π1(Y 1). Let ϕ:K → Y

be the composition ϕ = l ◦ ϕ. Then ϕ# = l# ◦ φ = f# and f#2 = 0 = ϕ#2 .
Let f cel:K → Y be a cellular approximation of f and consider as the base point
in Y its (unique) 0-cell and as a base point in K any of the its 0-cells. Since ϕ
and f cel are both cellular maps, they are based maps. Moreover, ϕ# = f cel

# and
ϕ#2 = f cel

#2
= 0. Now, from assumption, H2(Π; απ2(M)) = 0. From Theorem 2.1

it follows that f cel is (based) homotopic to ϕ. Consequently, f is homotopic to
ϕ (through a not necessarily based homotopy). Since ϕ is not surjective, f is
root free. �

When the homomorphism φ in Theorem 2.6 exists, we say that it is a lifting
of f# through l#. Optionally, we say that f# has a lifting through l#.

It is obvious that if f is a convenient map and the homomorphism f# is
trivial, then the lifting φ exists, indeed, it is enough to define φ to be also the
trivial homomorphism. Thus, in this case, the map f is root free if and only if
the homomorphism f#2 is also trivial.

The “if” part of Theorem 2.6 is not true, in general, if the map f is not
a convenient map. We present now an example to illustrate this fact: Let T be
the torus S1×S1. Since T is a K(π1(T), 1)-space, we have H2(π1(T); απ2(S2)) ≈
H2(T; Z) ≈ Z for every map T → S2 inducing α (the trivial homomorphism)
on fundamental groups. Therefore, there are not convenient maps from T into
the 2-sphere S2. However, it is clear that there is a map f : T → S2 of degree 1,
and such map is not root free. Now, it is obvious that f# and f#2 are trivial
homomorphisms. In particular, there is a homomorphism φ:π1(K) → π1(T1)
satisfying l# ◦ φ = f#. In order to obtain another example, let p2:S2 → RP2 be
the universal covering and let f : T → RP2 be the composition f = p2 ◦ f . This
map is not convenient and is not root free, in fact µ(f ) = 2. However, f# and
f#2

are trivial.

3. Some consequences of Theorem 2.6

Proposition 3.1. Let G be a finite group such that Hom(G; Z2) is nontriv-
ial. For each nontrivial homomorphism α:G → Z2 there is a finite 2-complex
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K, with π1(K) ≈ G, and there is a map fα:K → RP2, which is not root free,
inducing α on fundamental groups.

Proof. From assumption, G has a group presentation P = 〈x | r〉, where
x and r are finite. Let K = KP be the model 2-complex of the group presen-
tation P (see [1] for details on model 2-complex). Then G ≈ π1(K) and, up to
isomorphism, each homomorphism α ∈ Hom(G; Z2) can be considered as a homo-
morphism from π1(K) into π1(RP2). By Lemma 2.5, each such homomorphism
α is realized as the induced homomorphism on fundamental groups by a cellular
map fα:K → RP2. Then, since π1(RP1) ≈ Z and π1(G) is a finite group, it is
easy to see that there is a lifting φα:π1(K) → π1(RP1) of (fα)# through l# if
and only if (fα)# is trivial. Now, since Hom(G; Z2) 6= 0, by assumption, for each
nontrivial homomorphism α ∈ Hom(G; Z2), each map fα:K → RP2 is not root
free, by Theorem 2.6. �

To illustrate the applicability of this proposition, consider the pseudo-pro-
jective plane P2

2d of degree 2d which is obtained by attaching a 2-cell in the
1-sphere by a map S1 → S1 of degree 2d. (Note that RP2 = P2

2). It is
well known that π1(P2

2d) ≈ Z2d and so Hom(π1(P2
2d); Z2) ≈ Z2. Let α: Z2d ≈

π1(P2
2d) → π1(RP2) ≈ Z2 be the unique nontrivial homomorphism belonging to

Hom(π1(P2
2d); Z2). By the previous proposition, there is a map f : P2

2d → RP2

such that f# = α and f is not root free.

Proposition 3.2. Let K be a 2-complex with free fundamental group. A map
f :K → Y is root free if and only if the homomorphism f#2 is trivial.

Proof. Let f :K → Y be a map. By Remark 2.4, f is convenient. For
each generator xj of the free group π1(K), choose a word wj in the free group
π1(Y 1) such that l#(wj) = f#(xj). Then, there is a (unique) homomorphism
φ:π1(K) → π1(Y 1) such that φ(xj) = wj . It is clear that φ is a lifting of f#
through l#. By Theorem 2.6, f is root free if and only if f#2 is trivial. �

Another proof for this proposition can be constructed using a Theorem of
Wall (see [1, p. 120]), which states that every finite and connected 2-complex
with free fundamental group is homotopy equivalent to a finite bouquet of 1- and
2-dimensional spheres.

Proposition 3.4. Let K be a 2-complex with finite fundamental group and
let f :K → Y be a convenient map. Then f is root free if and only if f# and
f#2 are trivial. Additionally, if a constant map κ:K → Y is convenient (see
Remark 2.4(h)), then f is root free if and only it is homotopic to a constant
map.

Proof. Since π1(Y 1) is a free group and π1(K) is a finite group, the unique
homomorphism from π1(K) into π1(Y 1) is the trivial homomorphism. Thus,
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f#:π1(K) → π1(Y ) has a lifting through l#:π1(Y 1) → π1(Y ) if and only if f#
is trivial. It follows from Theorem 2.6 that f is root free if and only if f# and
f#2 are both trivial. It proves the first part of the proposition. The second part
is a consequence of the first part and Remark 2.3. �

Note that the “only if” parts of Proposition 3.4 is true even if f is not
convenient. An as a particular case of the second part of this proposition, we
have the following corollary.

Corollary 3.5. Let K be a 2-complex with finite fundamental group and let
Y be a closed surface, S2 6= Y 6= RP2. Then every map f :K → Y is homotopic
to a constant map.

Proof. Note that π2(Y ) = 0, so every map f :K → Y is convenient (see
Remark 2.4) and Y is a finite K(π1(Y ), 1)-complex. It is well known that if
G is a group which contains a torsion subgroup, then every K(G, 1)-complex is
infinite (see Proposition II.3 of [8]). Therefore, the fundamental group π1(Y ) is
torsion free. So Hom(π1(K);π1(Y )) = 0 and the result follows from the previous
proposition, Remark 2.3 and item (h) of Remark 2.4. �

Now, we will consider cases in which the fundamental group of K is abelian.
We say that a subgroup H of a group G is cyclic (in G) if H is either trivial

or can be generated by a single element.
Let A be an abelian group with torsion subgroup T . Then A ≈ F⊕T , where

F is the free abelian group A/T . A group homomorphism h:A → B induces
two group homomorphisms

hF :F → B and hT : T → B

in a natural way: For each x ∈ F we define hF (x) = (h ◦ Λ)(x, 0) and, for each
y ∈ T we define hT (y) = (α ◦ Λ)(0, y), where Λ:F ⊕ T ≈ A.

Lemma 3.6. Let A be an abelian group and suppose that A = F ⊕ T , where
F is a free abelian group and T is an abelian torsion group. Let h:A → B be
a group homomorphism and let ξ:F → B be an epimorphism from a (nonabelian)
free group F onto B. There is a lifting φ:A → F of h through ξ if and only if
hF (F) in cyclic and hT (T ) is trivial.

Proof. Since F is free, it is obvious that hT has a lifting φT : T → F through
ξ if and only if hT is trivial and, in this case, also φT is trivial.

Now, if there exists a lifting φF :F → F of hF through ξ, then the image
φF (F) is an abelian free subgroup of F , by Nielsen–Schreler Theorem (see [9]).
Then, it is easy to check that φF (F) is cyclic (see Chapter III of [3]). Therefore,
since hF = ξ ◦ φF , the subgrupo hF (F) of B is also cyclic.
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Conversely, suppose that hF (F) is cyclic and let ϑ ∈ hF (F) be its genera-
tor. Let p be the rank of F and let F ′ be the free abelian group generated by
u1, . . . , up. There is an isomorphism η:F ′ → F , such that (η ◦ h)(u1) = ϑ and
(η ◦ h)(ui) = 0 for each 1 < i ≤ p. Since ξ is an epimorphism, we can select
a word w ∈ F such that ξ(w) = ϑ. Let φ′:F ′ → F be the (unique) homomor-
phism from F ′ into F satisfying φ′(u1) = w and φ′(ui) = 1 for each 1 < i ≤ p.
Now, define φF :F → F to be the composition φF = φ′◦η−1, where η−1:F → F ′

denotes the inverse isomorphism of η. It is obvious that φF is a lifting of hF

through ξ. �

Proposition 3.7. Let f :K → Y be a convenient map and suppose that
π1(K) = F ⊕T is an abelian group, where T is its torsion subgroup. We have:

(a) If S2 6= Y 6= RP2, then f is root free if and only if fF# (F) is cyclic.
(b) If Y = S2, then f is root free if and only if f#2 is trivial.
(c) If Y = RP2, then f is root free if and only if f#2 and fT# are trivial.

Proof. We will prove each assertion separately.
(a) We have π2(Y ) = 0 and π1(Y ) torsion free. Hence, the homomorphisms

f#2 :π2(K) → π2(Y ) and fT# : T → π1(Y ) are both trivial. By Theorem 2.6, f is
root free if and only if fF# :F → π1(Y ) has a lifting through l#:π1(Y 1) → π1(Y ).
But by Lemma 3.6, this occurs if and only if fF# (F) is cyclic.

(b) Since f#:π1(K) → π1(S2) is trivial and so has a lifting through l#, it
follows by Theorem 2.6 that f is root free if and only if f#2 is trivial.

(c) Certainly fF# (F) is cyclic and so fF# has a lifting through l#, by Lem-
ma 3.6. Again by this lemma, there is a lifting φ of f# trough l# if and only if
fT# is trivial. The result follows from Theorem 2.6. �

From this proposition we can extract a particular result for the case in which
the domain of the map is the torus T.

Corollary 3.8. A convenient map f : T → Y from the torus into a closed
surface is root free if and only if f# is not injective.

Proof. If f# is injective, then it is clear that f#π1(T) is not cyclic and, by
Proposition 3.7, f is not root free. Now, note that f#2 :π2(T) → π2(Y ) is trivial
and suppose that f# is not injective. Then, since π1(T) ≈ Z ⊕ Z, it is obvious
that f#π1(T) = fF# (F) is cyclic. By the previous proposition, f is root free. �

Proposition 3.9. Let K be an aspherical 2-complex and let T1 be the torsion
subgroup of H1(K). If Hom(T1; Z2) = 0 then every convenient map from K into
RP2 is root free.

Proof. First, we remember that a (finite and connected) 2-complex K is
aspherical if and only if π2(K) = 0 (see [1] for details). Thus, for any map
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f :K → RP2, the homomorphism f#2 is trivial. Now, let ρ:π1(K) → H1(K)
be the Hurewicz homomorphism (the abelianization homomorphism). Since
π1(RP2) is an abelian group, there is a unique homomorphism f~:H1(K) →
π1(RP2) such that f~ ◦ ρ = f#. By assumption, fT1

~ is trivial. Moreover, it is
clear that the imagem of fF1

~ is cyclic, where F1 is the abelian free subgroup of
H1(K) such that H1(K) ≈ F1 ⊕ T1. By Lemma 3.6, there is a homomorphism
φ′:H1(K) → π1(RP1) such that l# ◦ φ′ = f~. Define φ:π1(K) → π1(RP1) to be
the composition φ = φ′◦ρ. Then φ is a lifting of f# through l#. By Theorem 2.6,
f is root free. �

4. Mutation of homomorphisms and existence of liftings

In this section, we present a new concept which we call mutation of homo-
morphisms. We present its definition and some easy technical lemmas. We will
show the relationship between the existence of (P, θ)-mutations of a given group
homomorfismo τ :F (x) → G and the existence of liftings of a homomorphism
α: Π → Ξ, through a group homomorphism θ:G→ Ξ verifying the commutativ-
ity α ◦ Ω = θ ◦ τ , where Ω:F (x) → Π is the quotient homomorphism given by
the presentation group P. In the next section we will use this relationship to
study the root problem.

Let P = 〈x | r〉 be a group presentation with alphabet x = {x1, . . . , xn}
and set of relators r = {r1, . . . , rm}. Let Π be the group presented by P, that
is, Π = F (x)/N(r), and let Ω:F (x) → Π be the quotient homomorphism. Let
θ:G→ Ξ be a group homomorphism with kernel ker(θ).

Definition 4.1. Given a group homomorphism τ :F (x) → G, by a (P, θ)-
mutation of τ we mean a homomorphism Mτ :F (x) → G satisfying:

(a) For each w ∈ F (x) there is M(w) ∈ ker(θ) such that Mτ(w) =
M(w)τ(w);

(b) Mτ(ri) = eG, the identity element of G, for every relator ri ∈ r.

F (x)

Ω

��

τ
++

Mτ

33 G

θ

��

Π Ξ

If Mτ :F (x) → G is a (P, θ)-mutation of a homomorphism τ :F (x) → G,
then the function M:F (x) → G carrying w ∈ F (x) into M(w) ∈ ker(θ) is such
that M(1) = eG (the identity element of G) and M(ri) = τ(ri)−1 for each
1 ≤ i ≤ m.

On the other hand, suppose that M:F (x) → G is a function carrying w ∈
F (x) into M(w) ∈ ker(θ) and satisfying the following three conditions: (a)
M(1) = eG, (b) M(ri) = τ(ri)−1 for each 1 ≤ i ≤ m and (c) the function
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Mτ :F (x) → G given byMτ(w) = M(w)τ(w) is a group homomorphism. Then,
it is easy to prove that Mτ :F (x) → G is a (P, θ)-mutation of τ :F (x) → G.

This show that in order to construct a (P, θ)-mutation of a given group
homomorphism τ :F (x) → G, it is necessary and sufficient to define a function
M:F (x) → G, with M(w) ∈ ker(θ) for every w ∈ F (x), satisfying the three
conditions above. Such a function, when exists, will be called the (P, θ)-mutator
function of τ to Mτ .

Theorem 4.2. Let P = 〈x | r〉 be a group presentation for the group Π
and let θ:G → Ξ be a group homomorphism. Suppose that τ :F (x) → G and
α: Π → Ξ are group homomorphisms making commutative the diagram

F (x)

Ω

��

τ // G

θ

��

Π α
// Ξ

where the left vertical arrow is the natural quotient homomorphism. Then α has
a lifting φ: Π → G through θ if and only if τ has a (P, θ)-mutation. Moreover, the
liftings of α through θ are in one-to-one correspondence with the (P, θ)-mutations
of τ .

Proof. Suppose that exists a lifting φ: Π → G of τ through θ. Then, in the
diagram below, the square and the lower triangle are commutative.

F (x)

Ω

��

τ // G

θ

��

Π α
//

φ

77oooooooooooooo
Ξ

y

For each w ∈ F (x), we have (θ ◦ φ ◦ Ω)(w) = (α ◦ Ω)(w) = (θ ◦ τ)(w).
Thus, θ(φ ◦ Ω(w)) = θ(τ(w)), for every w ∈ F (x). It shows that τ and (φ ◦
Ω) differ only by elements in ker(θ), that is, for each w ∈ F (x), the element
(φ ◦ Ω)(w)τ(w)−1 belongs to ker(θ). Define the function M:F (x) → G to be
M(w) = (φ ◦ Ω)(w)τ(w)−1. Then M(w) ∈ ker(θ) for each w ∈ F (x) and we
have:

• M(1) = 1;
• M(ri) = (φ ◦ Ω)(ri)τ(ri)−1 = τ(ri)−1, for each ri, since Ω(ri) = eΠ.
• Mτ :F (x) → G given by Mτ(w) = M(w)τ(w) is a group homomor-

phism, since by the definition we have Mτ(w) = (φ ◦ Ω)(w).

It follows that Mτ is a (P, θ)-mutation of τ .
In order to prove the reciprocal, let Mτ :F (x) → G be a (P, θ)-mutation

of τ . Then Mτ(ri) = eG for each relator ri ∈ r. Hence, Mτ(w) = eG for
every w ∈ N(r), where N(r) is the normal subgroup of F (x) generated by the
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set of relators r. Now, since ker(Ω) = N(r), it follows that ker(Ω) ⊂ ker(Mτ).
Thus, there is a (unique) homomorphism φ: Π → G satisfying φ◦Ω = Mτ . Such
homomorphism is defined as follows: For each w ∈ Π, choose w ∈ F (x) such that
w = Ω(w). We define φ(w) = Mτ(w). It follows that, for each w = Ω(w) ∈ Π,
we have (θ ◦ φ)(w) = (θ ◦ Mτ)(w) = θ(M(w)τ(w)) = θ(M(w))θ(τ(w)) =
(θ◦τ)(w) = (α◦Ω)(w) = α(w). Therefore, φ: Π → G is a lifting of α through θ.�

5. Mutation for annihilation of roots

Let f :KP → Y be a convenient cellular map, where KP is the model 2-
complex of the group presentation P = 〈x | r〉 and Y is a closed surface (See
[1] for model 2-complex). Let Y 1 be the 1-skeleton of Y . Since f is cellular, its
restriction on K1

P provides a cellular map f1:K1
P → Y 1 making commutative

the left diagram below, where the vertical arrows are the natural inclusions:

K1
P

��

f1
// Y 1

l

��

KP
f

// Y

F (x)

Ω

��

f1
#

// π1(Y 1)

l#

��

π1(KP)
f#

// π1(Y )

The fundamental group π1(KP) is that presented by P. The right diagram
above is that induced on fundamental groups by the left diagram. Considering
the identification of F (x) with π1(K1

P), we have:

Theorem 5.1. A convenient cellular map f :KP → Y is root free if and
only if f#2 :π2(KP) → π2(Y ) is trivial and f1

#:π1(K1
P) → π1(Y 1) has a (P, l#)-

mutation. More precisely,

(a) If ϕ:KP → Y is a non-surjective cellular map homotopic to f , then
ϕ1

#:π1(K1
P) → π1(Y 1) is a (P, l#)-mutation of f1

#.
(b) If Mf1

#:π1(K1
P) → π1(Y 1) is a (P, l#)-mutation of f1

# and f#2 is triv-
ial, then there is a non-surjective cellular map ϕ:KP → Y homotopic
to f such that ϕ1

# = Mf1
#.

Proof. The first part is an immediate consequence of Theorems 2.6 and 4.2.
In order to prove (a) and (b), we include some details.

(a) Suppose that ϕ:KP → Y is a non-surjective cellular map homotopic to f .
We consider Y with its minimal cellular decomposition. Let a ∈ Y be a point
not belonging to the image of ϕ and belonging to the interior of the unique 2-cell
of Y , (such a point exists, since |KP | is compact and Y is Hausdorff and so
the image of ϕ is a proper closed subset of Y ). There is a strong deformation
retraction r:Y \ {a} → Y 1. Since a /∈ im(ϕ) and Y \ {a} is open in Y , the
map ϕ:KP → Y \ {a}, obtained from ϕ by restriction of its range, is again
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a continuous map. Let ψ:KP → Y 1 be the cellular map ψ = r ◦ ϕ. In the left
diagram below, where j and the vertical arrows are natural inclusions, the square
and the lower triangle are commutative. Moreover, r is a homotopy equivalence
inducing the identity homomorphism on fundamental groups.

K1
P

i

��

ϕ1
// Y 1

l

��

Y \ {a}

r

;;xxxxxxxxx

j

##GGGGGGGGG

KP ϕ
//

ϕ
;;vvvvvvvvv

Y

π1(K1
P)

Ω

��

ϕ1
#

// π1(Y 1)

l#

��

π1(KP)
ϕ#=f#

//

ψ#

;;xxxxxxxxxxxxxxxxxx
π1(Y )

It follows that ϕ# = j# ◦ ϕ# = l# ◦ r# ◦ ϕ# = l# ◦ ψ#. Hence, ψ# is a lifting
of ϕ# through l#. On the other hand, we have r ◦ ϕ ◦ i = ϕ1. Thus, ϕ1

# =
ψ# ◦ Ω. Therefore, the right diagram above is commutative. By the proof of
Theorem 4.2, ϕ1

# is a (P, l#)-mutation of f1
#. Note that the (P, l#)-mutator

function M:π1(K1
P) → π1(Y 1) which makes Mf1

# = ϕ1
# is capriciously given

by
M(w) = (ψ# ◦ Ω)(w)f1

#(w)−1 = ϕ1
#(w)f1

#(w)−1.

(b) Suppose that f#2 is trivial and Mf1
#:π1(K1

P) → π1(Y 1) is a (P, l#)-
mutation of f1

#. By Theorem 4.2, there is a lifting φ:π1(K1
P) → π1(Y 1) of f#

through l#. Moreover, we have Mf1
# = φ ◦ Ω. (See the diagram below). Let

ϕ1:K1
P → Y 1 be a cellular map such that (ϕ1)# = Mf1

#. (Such a map exists
by Lemma 2.5).

π1(K1
P)

Mf1
#

$$

Ω

��

f1
#

// π1(Y 1)

l#

��

π1(KP)

ϕ#

::

φ
66mmmmmmmmmmmmm

f#

// π1(Y )

Since Mf1
#(ri) = 1 for each relation word ri ∈ r, the cellular map ϕ1 extends to

a cellular map ϕ2:KP → Y 1. Let ϕ:KP → Y be the cellular map given by the
composition ϕ = l ◦ϕ2. It is clear that ϕ is non-surjective (in fact, im(ϕ) ⊂ Y 1)
and ϕ1 = ϕ1. Therefore, ϕ1

# = Mf1
#.

Now, we will prove that ϕ is homotopic to f . Since f#2 and ϕ#2 are trivial
homomorphisms (the first from assumption and the second by construction), due
to Theorem 2.1 it is enough to prove that f# = ϕ#. But this is a consequence
of the following identities, where we use the definition of φ as in Theorem 4.2:
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For each w = Ω(w) ∈ π1(KP), we have

ϕ#(w) = (l ◦ ϕ2)#(w) = (l# ◦ (ϕ2)# ◦ Ω)(w) = (l# ◦ (ϕ1)#)(w)

= (l# ◦Mf1
#)(w) = (l# ◦ φ ◦ Ω)(w) = (l# ◦ φ)(w) = f#(w).

This concludes the proof. �

Remark 5.2. The whole result of Theorem 5.1 is not true, in general, for
non convenient maps. However, the “only if” part is always true (due to Theo-
rem 2.6), that is, if f :KP → Y is an arbitrary cellular map and f is root free,
then the homomorphism f1

# has a (P, l#)-mutation. Also, item (a) is true even
if f is not convenient.

Theorem 5.3. Let KP be the model 2-complex of the group presentation
P = 〈x | r〉 and let f :KP → Y be a map. If f is root free, then f#2 :π2(KP) →
π2(Y ) is trivial and there exists a map ϕ:KP → Y homotopic to f such that
ϕ1

#(ri) = 1 for each relator ri ∈ r. The reciprocal is true if f is a convenient
map.

Proof. Suppose that f :KP → Y is root free. Then, there is a cellular map
ϕ:KP → Y homotopic to f such that im(ϕ) ⊂ Y 1. Let fcel:KP → Y be a cellular
approximation of f . By the item (a) of Theorem 5.1, the homomorphism ϕ1

# is
a (P, l#)-mutation of (f1

cel)#. Therefore, ϕ1
#(ri) = 1 for each ri ∈ r.

Now, suppose that f is a convenient map and suppose that f#2 is trivial and
ϕ:KP → Y is a cellular map homotopic to f such that ϕ1

#(ri) = 1 for each
ri ∈ r. Then, the map ϕ1:K1

P → Y 1 extends to a cellular map ϕ:KP → Y 1.
Thus, the upper triangles of both diagrams below are commutative.

K1
P

��

ϕ1
// Y 1

l

��

KP

ϕ

88ppppppppppppp
ϕ

// Y

π1(K1
P)

Ω

��

ϕ1
#

// π1(Y 1)

l#

��

π1(KP)

ϕ#

66mmmmmmmmmmmmm

ϕ#=f#

// π1(Y )

Now, for each w = Ω(w) ∈ π1(KP), we have (l#◦ϕ#)(w) = (l#◦ϕ#◦Ω)(w) =
(l# ◦ ϕ1

#)(w) = (ϕ# ◦ Ω)(w) = ϕ#(w) = f#(w). Then, the lower triangle of the
right diagram is also commutative. This means that ϕ# is a lifting of f# through
l#. By Theorem 2.6, f is root free. �

6. Symbolic mutation

Let {X}n = {X1, . . . ,Xn} be a list of n abstract symbols and let G be
a nontrivial group with identity element eG. Let W (G, {X}n) be the set of all
(reduced and of finite length) words of the form

g0X
δ1
λ1
g1X

δ2
λ2
g2 . . .X

δk

λk
gk,
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where each gs, for 0 ≤ s ≤ k, is an element of the group G, each δs is an integer
and each λs ∈ {1, . . . , n}. We require that every word in W (G, {X}n) contains
at least one symbol of the list {X}n and an element of the group G, which can be
the identity element. However, the identity element of G can be omitted when
we spell the words. Thus, each symbol Xj is itself an element of W (G, {X}n).
In addition, we also consider as an element of W (G, {X}n) the “empty” word,
which we denote by 1̇. Such element can be identified with eG, since this last
can be omitted. Hence, also eG can be see as an element of W (G, {X}n). The
others elements of G are not itself elements of W (G, {X}n).

On the set W (G, {X}n) we define the natural multiplication: the product
of two words is formed simply by writing one after the other and by reduc-
ing the word obtained, that is, given Λ = g0X

δ1
λ1
g1X

δ2
λ2
g2 . . .X

δk

λk
gk and Γ =

g̃0X
ε1
γ1 g̃1 . . .X

εt
γt g̃t two arbitrary elements in W (G, {X}n), we define the product

ΛΓ to be the word obtained by reducing the word

g0X
δ1
λ1
g1X

δ2
λ2
g2 . . .X

δk

λk
(gkg̃0)Xε1γ1 g̃1 . . .X

εt
γt
g̃t.

The semi-group W (G, {X}n), equipped with this product is a (non-abelian)
group with identity element 1̇ and natural inversion given by

[g0Xδ1λ1
g1X

δ2
λ2
g2 . . .X

δk

λk
gk]−1 = g−1

k X−δk

λk
. . . g−1

2 X−δ2λ2
g−1
1 X−δ1λ1

g−1
0 .

Definition 6.1. Let τ :F (x) → G be a group homomorphism, where x =
{x1, . . . , xn} is an alphabet with n letters. A symbolic mutation of τ with respect
to the list {X}n = {X1, . . . ,Xn} is a function (not necessarily a homomorphism)

X:F (x) →W (G, {X}n),

verifying the following conditions:

(a) X(1) = 1̇;
(b) X(xj) = Xj for each index 1 ≤ j ≤ n;
(c) X(w1w2) = X(w1)τ(w1)X(w2)τ(w1)−1 for every w1, w2 ∈ F (x).

Note that these three conditions define completely the function X exclusively
in terms of the homomorphism τ , since each w ∈ F (x) is a word of the form

w =
s∏

k=1

(xp1k

1 xp2k

2 . . . xpnk
n ).

The proof that the image of the function X is (in fact) in the groupW (G,{X}n)
is easy and will be omitted.

Lemma 6.2. Let Mτ :F (x) → G be a (P, θ)-mutation of the group homo-
morphism τ :F (x) → G. Then, the (P, θ)-mutator function M:F (x) → G can
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be seen as a symbolic mutation F (x) → W (G, {M}n) of τ with respect to the
list of symbols {M}n = {M(x1), . . . ,M(xn)}.

Proof. Since M(1) is the identity element of G, which is identified with
the empty word 1̇, it is sufficient to prove that

M(w1w2) = M(w1)τ(w1)M(w2)τ(w1)−1.

Now, since τ and Mτ are homomorphisms, we have

M(w1w2)τ(w1)τ(w2) = M(w1w2)τ(w1w2) = Mτ(w1w2)

= Mτ(w1)Mτ(w2) = M(w1)τ(w1)M(w2)τ(w2).

Multiplying both sides on the right by the element τ(w2)−1τ(w1)−1 of G, we
obtain the desired formula. �

By using the definition of symbolic mutation and induction argument, we
can prove the following result:

Proposition 6.3. Let X:F (x) →W (G, {X}n) be a symbolic mutation of τ .
For any integer p > 0, we have

X(w−p) = [X(w)τ(w)]−pτ(w)p for every w ∈ F (x)

and for w1, . . . , ws ∈ F (x) and nonnegative integers p1, . . . , ps, we have

X(wp11 . . . wps
s )

=
( s−1∏
i=1

[X(wi)τ(wi)]pi

)
[X(ws)τ(ws)]ps−1X(ws)τ(w

p1
1 . . . w

ps−1
s−1 w

ps−1
s )−1.

In particular, X(x−1
j ) = τ(xj)−1X−1

j τ(xj) and so X−1
j = τ(xj)X(x−1

j )τ(xj)−1.

These identities show that the structure of the group W (G, {X}n), which
exists independently on the homomorphism τ , is “compatible” with this homo-
morphism in the following way:

1̇ = XjX
−1
j = X(xj)τ(xj)X(x−1

j )τ(xj)−1 = X(xjx−1
j ) = X(1) = 1̇.

In the following results, KP is a model 2-complex of a group presentation P =
〈x | r〉, where x = {x1, . . . , xn} is the alphabet and r = {r1, . . . , rm} is the set of
relators. We consider the natural identification π1(K1

P) ≡ F (x). Furthermore, Y
is a closed surface and l#:π1(Y 1) → π1(Y ) denotes the homomorphism induced
on fundamental groups by the natural inclusion.
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Theorem 6.4. Let f :KP → Y be a cellular map and

X:F (x) →W (π1(Y 1), {X}n)

be a symbolic mutation of the obvious homomorphism f1
#:F (x) → π1(Y 1). If

f is root free, then the homomorphism f#2 is trivial and there is a function
A: {X}n → π1(Y 1) satisfying the following conditions:

(a) A(Xj) ∈ ker(l#) for every index 1 ≤ j ≤ n;
(b) A(X(ri))f1

#(ri) = 1 ( = identity element of π1(Y 1)) for every index
1 ≤ i ≤ m;

where A(X(w)) is the word obtained from X(w) by replacing each symbol Xj by
A(Xj). The reciprocal is true if f is a convenient map.

Proof. Suppose that f is root free. Then, by Theorem 5.1 and Remark 5.2,
f#2 is trivial and f1

# has a (P, l#)-mutation Mf1
#:F (x) → π1(Y 1), being

Mf1
#(w) = M(w)f1

#(w). Define the function A: {X}n → π1(Y 1) by A(Xj) =
M(xj), for each 1 ≤ j ≤ n. Then A(X(w)) is the word obtained from X(w) ∈
W (π1(Y 1), {X}n) by replacing each symbol Xj by the word M(xj) ∈ π1(Y 1).
By Lemma 6.2,

A(X(w)) = M(w) for every w ∈ F (x).

In particular, A(X(w)) ∈ ker(l#) for every w ∈ F (x) and, moreover,

A(X(ri))f1
#(ri) = M(ri)f1

#(ri) = Mf1
#(ri) = 1

(the identity element of π1(Y 1)) for every 1 ≤ i ≤ m.
Now, suppose that f is a convenient map and suppose that f#2 is trivial and

there exists a function A: {X}n → π1(Y 1) satisfying the conditions (a) and (b).
First, we will prove that A(X(w)) ∈ ker(l#) for every w ∈ F (x). For this, we

note that if A(X(w1)) and A(X(w2)) belong to ker(l#), then A(X(w1w2)) belongs
to ker(l#). In fact, if A(X(w1)) and A(X(w2)) belong to ker(l#), then

l#(A(X(w1w2))) = l#(A(X(w1))τ(w1)A(X(w2))τ(w1)−1) = 1π1(Y ),

where 1π1(Y ) is the identity element of π1(Y ). This proves that A(X(w1w2)) ∈
ker(l#).

Now, since for each 1 ≤ j ≤ n, A(X(xj)) = A(Xj) ∈ ker(l#), and each
w ∈ F (x) is a word of the form

w =
s∏

k=1

(xp1k

1 xp2k

2 . . . xpnk
n ),

by repeating the previous argument, we have that A(X(w)) ∈ ker(l#) for every
w ∈ F (x). Define the function M:F (x) → π1(Y 1) by M(w) = A(X(w)) ∈
π1(Y 1). Then M(w) ∈ ker(l#) for every w ∈ F (x) and, moreover,

• M(1) = A(X(1)) = 1;
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• M(ri) = A(X(ri)) = f1
#(ri)−1;

• Define Mf1
#:F (x) → π1(Y 1) by Mf1

# = M(w)f1
#(w). Then, certainly,

Mf1
#(1) = 1 and, given w1, w2 ∈ F (x), we have

Mf1
#(w1w2) = A(X(w1w2))f1

#(w1w2)

= A(X(w1)f1
#(w1)X(w2)f1

#(w2)−1)f1
#(w1w2)

= A(X(w1))f1
#(w1)A(X(w2))f1

#(w1)−1f1
#(w1)f1

#(w2)

= A(X(w1))f1
#(w1)A(X(w2))f1

#(w2)

= M(w1)f1
#(w1)M(w2)f1

#(w2) = Mf1
#(w1)Mf1

#(w2),

showing that Mf1
# is a group homomorphism.

This is enough to prove that Mf1
# is a (P, l#)-mutation of the homomorphism

f1
#. Therefore, by Theorem 5.1, f is root free. �

Theorem 6.5. Let f :KP → Y be a cellular map and let f1
#:π1(K1

P) →
π1(Y 1) be the obvious homomorphism. If f is root free, then f#2 is trivial and
the following m×n system of equations on the free group π1(Y 1), with unknowns
X1, . . . ,Xn, has a solution over ker(l#):

{SXf} :


X(r1)f

(1)
# (r1) = 1,

...

X(rm)f (1)
# (rm) = 1.

The reciprocal is true if f is a convenient map.

Proof. Suppose that f is root free. Then f#2 is trivial and, by Theorem 6.4,
there is a function A: {X}n → π1(Y 1) such that A(Xj) ∈ ker(l#) for every
1 ≤ j ≤ n and, furthermore, A(X(ri))f1

#(ri) = 1 for every 1 ≤ i ≤ m. Then,
the n-vector (A(X1), . . . ,A(Xn)) is a solution of the system {SXf}, with each
coordinate belonging to ker(l#).

On the other hand, suppose that (s1, . . . , sn) is a solution of the system
{SXf}, with each coordinate sj ∈ ker(l#). Define the function A: {X}n →
π1(Y 1) by A(Xj) = sj for each 1 ≤ j ≤ n. Then, it is clear that A(Xj) ∈ ker(l#)
for each 1 ≤ j ≤ n and, furthermore, A(X(ri))f1

#(ri) = 1 for each 1 ≤ i ≤ m.
Now, we apply Theorem 6.4 and the result follows. �

7. Making the results applicable

In this section, we develop results which are more suitable for applications.

Lemma 7.1. Let X:F (x) → W (G, {X}n) be a symbolic mutation of the
group homomorphism τ :F (x) → G. Then, for each word of the type xp11 . . . xpn

n
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in F (x), we have

X(xp11 . . . xpn
n )τ(xp11 . . . xpn

n ) =
n∏
j=1

[Xjτ(xj)]pj .

Proof. Suppose that p1, . . . , pn are all nonnegative. By Proposition 6.3,

X(xp11 . . . xpn
n ) =

( n−1∏
j=1

[X(xj)τ(xj)]pj

)
· [X(xn)τ(xn)]pn−1X(xn)τ(x

p1
1 . . . x

pn−1
n−1 x

pn−1
n )−1

=
( n−1∏
j=1

[Xjτ(xj)]pj

)
[Xnτ(xn)]pn−1Xnτ(x

p1
1 . . . x

pn−1
n−1 x

pn−1
n )−1.

Multiplying both sides on the right by τ(xp11 . . . xpn
n ) we obtain

X(xp11 . . . xpn
n )τ(xp11 . . . xpn

n ) =
n∏
i=1

[Xiτ(xi)]pi .

Now, by the formulas of Proposition 6.3, for any integer p > 0 and w ∈ F (x),
we have, X(w−p)τ(w−p) = [X(w)τ(w)]−pτ(w)pτ(w−p) = [X(w)τ(w)]−p.

The general case also follows similarly using formulas of Proposition 6.3. �

Next, we consider X1, . . . ,Xn as unknowns of equations on the free group
π1(Y 1).

Theorem 7.2. Let KP be the model 2-complex of a group presentation P =
〈x | r〉, with x = {x1, . . . , xn} and r = {r1, . . . , rm}, where the relators are in
the generic form

r1 =(xδ
(1)
11

1 . . . x
δ
(1)
1n
n ) . . . (xδ

(k1)
11

1 . . . x
δ
(k1)
1n
n );

rm =(xδ
(1)
m1

1 . . . x
δ(1)mn
n ) . . . (xδ

(km)
m1

1 . . . x
δ(km)

mn
n ).

Let f :KP → Y be a map into a closed surface. If f is root free, then the
homomorphism f#2 is trivial and the following m× n system, on the free group
π1(Y 1), with unknowns X1, . . . ,Xn, has a solution over ker(l#):

{SXf} :



k1∏
λ=1

n∏
j=1

[Xjf1
#(xj)]δ

(λ)
1j = 1,

...
km∏
λ=1

n∏
j=1

[Xjf1
#(xj)]δ

(λ)
mj = 1.

The reciprocal is true if f is a convenient map.

Proof. The prove is a consequence of Theorem 6.5 and Lemma 7.1. �
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By Theorem 7.2 we have that if P = 〈x1, . . . , xn | xp11 . . . xpn
n 〉 is a group

presentation with n generators and only one relator of the form above, then
a convenient cellular map f :KP → Y is root free if and only if f#2 is trivial and
the equation

∏n
j=1[Xjf

1
#(xj)]pj = 1, with unknowns X1, . . . ,Xn, has a solution

over ker(l#).

8. Examples and applications

In this section, we present some examples and applications of the main re-
sults, in special Theorem 7.2. The examples are presented in some subsections,
separated accordingly to the closed surface Y , the range of the map being stud-
ied.

8.1. Maps into the torus.

Example 8.1. Let KP be the model 2-complex of P = 〈x, y, z | x2y3z5〉.
Let τ :F (x, y, z) → F (a, b) be the group homomorphism between free groups
given by

τ(x) = ab, τ(y) = ab and τ(z) = (ba)−1.

Consider the 1-skeleton K1
P = S1

x ∨ S1
y ∨ S1

z = e0 ∪ e1x ∪ e1y ∪ e1z. Let T be the
torus and consider its 1-skeleton T1 = S1

a ∨ S1
b = c0 ∪ c1a ∪ c1b . Let f1:K1

P → T1

be the cellular map which carries e1s into T1 exactly as τ carries s into F (a, b),
for s = x, y, z. Then f1

# = τ , up to the identifications F (x, y, z) ≡ π1(K1
P) and

F (a, b) ≡ π1(T1). Let l: T1 → T be the natural inclusion and let l#:F (a, b) →
π1(T) ≈ Z⊕Z be the homomorphism induced by l on fundamental groups. (Note
that l# is the abelianization homomorphism). We have:

(l# ◦ τ)(x2y3z5) = l#((ab)2(ab)3(ba)−5) = 0.

Hence, l ◦ f1:K1
P → T extends to a cellular map f :KP → T. Since π2(T) = 0,

such map is convenient (see Remark 2.4). By Theorem 7.2, f is root free if and
only if the equation

[X1ab]2[X2ab]3[X3(ba)−1]5 = 1

has a solution over ker(l#). Now, it is easy to check that ([b, a], [b, a],1) is such
a solution, where, as usual, [b, a] = bab−1a−1. Therefore, f is root free.

Let Mτ :F (x, y, z) → F (a, b) ≡ π1(T1) be the homomorphism defined by

Mτ(x) = [b, a]τ(x) = [b, a]ab = ba,

Mτ(y) = [b, a]τ(y) = [b, a]ab = ba,

Mτ(z) = 1τ(z) = (ab)−1.

By previous results, we have the following conclusions:

• Mτ is a (P, l#)-mutation of the homomorphism τ = f1
#.
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• There is only one homomorphism φ:π1(KP) → π1(T1) such that φ◦Ω =
Mτ .

• The homomorphism φ is a lifting of f# through l#.

Example 8.2. Let P = 〈x1, x2, x3, x4 | [x1, x2], [x1, x3], [x3, x4]〉 be a group
presentation and let KP be the model 2-complex of P. This complex is the
2-complex K of Example 2.5 of [4], obtained by attaching two torus T1 and T2

through of the longitudinal closed 1-cell and, next, by attaching the longitudinal
closed 1-cell of a torus T3 into the meridional closed 1-cell of the torus T2. Let
f̃ :KP → T be the map of Example 2.5 of [4], which restricted to each torus
Ti ⊂ KP , for i = 1, 2, 3, is a cellular homomorphism. Let pn: T → T be the
longitudinal n-fold covering. Let f :KP → T be the composition f = pn ◦ f̃ .
Then the restricted map

f1:K1
P = S1

x1
∨ S1

x2
∨ S1

x3
∨ S1

x4
−→ S1

a ∨ S1
b = T1

is such that f1
#(x1) = f1

#(x4) = an and f1
#(x2) = f1

#(x3) = b. Now, by The-
orem 2.7 of [4], we have µ(f) = 2n − 1, which means that f is not root free.
Since f is a convenient map (see Remark 2.4), Theorem 7.2 implies that the
following system on F (a, b) has no solution over the kernel of the abelianization
l#:F (a, b) → Z⊕ Z: 

X1a
nX2ba

−nX−1
1 b−1X−1

2 = 1,

X1a
nX3ba

−nX−1
1 b−1X−1

3 = 1,

X3bX4a
nb−1X−1

3 a−nX−1
4 = 1.

Indeed, since f̃ |Ti
is a homeomorphism for each i = 1, 2, 3, each map f |Ti

=
pn ◦ f̃ |Ti is not root free (in fact, µ(f |T1) = n). Then, none of the equations of
the system above has a solution over ker(l#).

8.2. Maps into the Klein bottle. The Klein bottle is usually meant as
the square with identification of reciprocal sides one of them twisted, being so
given by relation aca−1c. However, by performing a cut on the diagonal of the
square, which we indexed with the letter b, and pasting properly two of the sides
of the square (exactly the sides corresponding to the letter c), we see that the
Klein bottle can be given by relation a2b2.

Example 8.3. Let KP be the model 2-complex of P = 〈x, y, z | x3y2z7〉.
Let τ :F (x, y, z) → F (a, b) be the group homomorphism between free groups
given by

τ(x) = a10, τ(y) = b and τ(z) = a−4.

Consider the 1-skeleton K1
P = S1

x ∨ S1
y ∨ S1

z = e0 ∪ e1x ∪ e1y ∪ e1z. Let K be
the Klein bottle and consider its 1-skeleton K1 = S1

a ∨ S1
b = c0 ∪ c1a ∪ c1b . Let

f1:K1
P → K1 be the map which carries e1s into K1 exactly as τ carries s into
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F (a, b), for s = x, y, z. Then, up to the identifications F (x, y, z) ≡ π1(K1
P) and

F (a, b) ≡ π1(K1), we have f1
# = τ . Let l: K1 → K be the natural inclusion

and let l#:F (a, b) → π1(K) be the homomorphism induced by l on fundamental
groups. Note that π1(K) has a presentation 〈a, b | a2b2〉 and l#:F (a, b) → π1(K)
is the quotient homomorphism accordingly to this group presentation. We have:

(l# ◦ τ)(x3y2z7) = l#(a30b2a−28) = l#(a28(a2b2)a−28) = 0.

Hence, l ◦ f1:K1
P → K extends to a cellular map f :KP → K. Since π2(K) = 0,

the map f is convenient (see Remark 2.4). Then, by Theorem 7.2, f is root free
if and only if the equation

[X1a
10]3[X2b]2[X3a

−4]7 = 1

has a solution over ker(l#). Now, it is easy to check that (b−10a−10,1, b4a4) is
such a solution. Therefore, f :KP → K is root free.

8.3. Maps into the projective plane. The fact that the 1-skeleton RP1

of the projective plane RP2 is homeomorphic to the sphere S1, which has funda-
mental group isomorphic to the infinite cyclic group Z, can be used with great
advantage to study the solubility of the system {SXf} of Theorem 7.2.

We start by studying the case in which the (model) 2-complex has a single
cell of dimension two.

Let KP be a model 2-complex having a single 2-cell. Then, the group pre-
sentation P is of the form P = 〈x1, . . . , xn | r1〉. Let f :KP → RP2 be a cellular
map and let l: RP1 → RP2 be the natural inclusion. (RP1 ∼= S1 is the 1-skeleton
of RP2). We will study the solubility of the equation below, with unknowns
X1, . . . ,Xn, over the subgroup ker(l#) of π1(RP1):

(8.1) X(r1)f1
#(r1) = 1.

Let f1:K1
P → RP1 be the obvious map obtained by restriction of f and let

f1
#:π1(K1

P) ≈ F (x1, . . . , xn) → F (a) ≈ π1(RP1) be the homomorphism induced
by f1 on fundamental groups. Let Ω:F (x1, . . . , xn) → π1(KP) be the natural
quotient homomorphism, which identifies naturally with that induced by the
inclusion K1

P ↪→ KP . Then, we have the commutativity l# ◦ f1
# = f# ◦ Ω. In

particular, l#(f1
#(r1)) = 0, that is, f1

#(r1) ∈ ker(l#), where, of course, ker(l#)
is the subgroup of F (a) generated by a2. It follows that f1

#(r1) = a2d for some
integer d.

On the other hand, for each 1 ≤ j ≤ n, there is an integer pj such that
f1
#(xj) = apj . Suppose that the relator r1 has the following generic form:

r1 = (xδ
(1)
1

1 . . . x
δ(1)n
n ) . . . (xδ

(k1)
1

1 . . . x
δ(k1)

n
n ).
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Then, since F (a) is an abelian group (the infinite cyclic group), we obtain

a2d = f1
#(r1) = (ap1)δ1 . . . (apn)δn ,

where, for each 1 ≤ j ≤ n, we define δj to be the integer δj =
∑k1
λ=1 δ

(λ)
j .

Again since F (a) is an abelian group, we have

X(r1)f1
#(r1) =

k1∏
λ=1

n∏
j=1

[Xjapj ]δ
(λ)
j =

n∏
j=1

[Xjapj ]δj .

Thus, equation (8.1) is equivalent to

[X1a
p1 ]δ

1
. . . [Xnapn ]δn = 1.

Now, to show that this equation has a solution over ker(l#) is equivalent to
show that there are integer q1, . . . , qn such that

[a2q1ap1 ]δ
1
. . . [a2qnapn ]δn = 1.

What, in turn, is equivalent to show that there are integers q1, . . . , qn such
that

(8.2) δ1(2q1 + p1) + . . .+ δn(2qn + pn) = 0.

But we know that (ap1)δ1 . . . (apn)δn = a2d and, therefore, δ1p1+ . . .+δnpn = 2d.
It follows that to find a solution for equation (8.2) is equivalent to find a solution
for

(8.3) δ1q1 + . . .+ δnqn = −d.

Up to this point, we can conclude at least the following:

(1) If δ1, . . . , δn are relatively prime, then (8.3) has infinite many solutions.
Therefore, equation (8.1) has infinite many solutions over ker(l#).

(2) If KP is an orientable closed surface (with minimal cellular decomposi-
tion), then the alphabet is {x1, y1, . . . , xg, yg} and the (unique) relator
is of the form r1 = [x1, y2] . . . [xg, yg], where [ · , · ] denotes the commu-
tator and g is the genus of the surface. Thus, δ1 = . . . = δ2g = 0.
Therefore, in accordance with (8.3), (8.1) has a solution over ker(l#) if
and only if d = 0, that is, f1

#(r1) = 1. If this is the case, any 2g-upple
of elements in ker(l#) is a solution over ker(l#) of (8.1).

(3) If KP is a nonorientable closed surface (with minimal cellular decom-
position), then the alphabet is {x1, , . . . , xg} and the (unique) relator
is of the form r1 = x2

1 . . . x
2
g, where g is the genus of the surface. Thus,

δ1 = . . . = δg = 2. Therefore, in accordance with (8.3), (8.1) has
a solution over ker(l#) if and only if d is even.
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Proposition 8.4. Let f :X → RP2 be a cellular map, where X is an ori-
entable (respectively, nonorientable) closed surface with canonical presentation
P = 〈x | r1〉. If f is root free, then f#2 is trivial and f1

#(r1) = 1 (respectively,
f1
#(r1) ≡ 0 mod 4). The reciprocal is true if f is a convenient map.

Proof. It follows from Theorem 7.2 and items (2) and (3) above. Note that
we identified F (a) ≈ π1(RP1) with Z by identifying ak ∈ F (a) with k ∈ Z. �

Using item (3) above, we can construct examples of maps f :Ng → RP2, from
the nonorientable closed surface of genus g > 1 into the projective plane, which
are not root free.

Exemple 8.5. The nonorientable closed surface of genus g, which we de-
note by Ng, is the model 2-complex of the (minimal) group presentation P =
〈x1, . . . , xg | x2

1 . . . x
2
g〉. Let τ :F (x, y) → F (a) be the homomorphism between

free groups given by

τ(xj) = a2 for 1 ≤ j ≤ g − 1 and τ(xg) = a.

Let l: RP1 → RP2 be the natural inclusion. Then, up to identifications, the
homomorphism induced by l on fundamental groups is the obvious quotient
homomorphism l#:F (a) → Z2, where we consider the cyclic group Z2 being
presented by 〈a | a2〉. Then ker(l#) is the normal subgroup of F (a) generated
by a2. It follows that l#(τ(x2

1 . . . x
2
g)) = l#(a2(2g−1)) = 0. Therefore, there is

a cellular map f :Ng → RP2 such that, up to identifications, f1
# = τ . Now,

we have f1
#(x2

1 . . . x
2
g) = a2(2g−1) and, obviously, 2(2g − 1) 6≡ 0 mod 4. By the

previous proposition, f is not root free.

Now we generalize the construction above for the case in which the (model)
2-complex has more than one cell of dimension two.

Let KP be the model 2-complex of the group presentation P = 〈x | r〉, with
x = {x1, . . . , xn} and r = {r1, . . . , rm}, where the relation words are in the
generic form

r1 =(xδ
(1)
11

1 . . . x
δ
(1)
1n
n ) . . . (xδ

(k1)
11

1 . . . x
δ
(k1)
1n
n );

...

rm =(xδ
(1)
m1

1 . . . x
δ(1)mn
n ) . . . (xδ

(km)
m1

1 . . . x
δ(km)

mn
n ).

Let f :KP → RP2 be a cellular map and let f1:KP → RP1 be its obvious
restriction. Then:

• For each 1 ≤ j ≤ n, there is an integer pj such that f1
#(xj) = apj ;

• For each 1 ≤ i ≤ m, there is an integer di such that f1
#(ri) = a2di .
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• For each 1 ≤ i ≤ m, we have δi1p1 + . . . + δinpn = 2di, where each
integer δij =

∑ki

λ=1 δ
(λ)
ij is the sum of the powers of the letter xj in the

relator ri.

With the same argument of the previous construction, we prove that in order
f to be root free is necessary (but not sufficient, in general) that there exists
integers q1, . . . , qn satisfying the following system of diophantine equations: δ11 . . . δ1n

...
. . .

...
δm1 . . . δmn


 q1...
qn

 = −

 d1
...
dm

 .
If f is a convenient map, this condition is also sufficient if, in addition, we

ask f#2 to be the trivial homomorphism. If we denote ∆P = (δij)m×n and
~d = (d1, . . . , dm)T, where the superscript T indicates transposition of matrices,
we have:

Proposition 8.6. Let f :KP → RP2 be a cellular map. If f is root free,
then f#2 is trivial and the diophantine linear system ∆PY = ~d has an integer
solution. The reciprocal is true if f is a convenient map.

In [5] we proved a similar result for the case of maps from 2-complexes into
the 2-sphere. It is interesting to compare these two results.

The next example shows a not convenient map, which is root free, such that
the associated system ∆PY = ~d has an integer solution.

Example 8.7. Let ω: T → S2 be the cellular map from the torus into the
2-sphere which collapses the whole 1-skeleton T1 of T onto the 0-cell of S2.
Let p2:S2 → RP2 be the universal covering map. Define the (cellular) map
f : T → RP2 to be the composition f = p2 ◦ ω. Then f is not convenient and
is not root free (in fact µ(f) = 2). However, the diophantine linear system
∆PY = ~d, in this case, is simply the equation 0Y = 0, which has trivial solution.

Proposition 8.6 can be used to construct more sophisticated examples of
maps from 2-complex into the projective plane which is not root free.

Example 8.8. Let KP be the model 2-complex of the group presentation
P = 〈x, y | x2y2, xy3〉. Let τ :F (x, y) → F (a) be the group homomorphism
between free groups given by τ(x) = a and τ(y) = a. Let l: RP1 → RP2 be the
natural inclusion and l#:F (a) ≡ π1(RP1) → π1(RP2) ≡ Z2 as in Example 8.5.
Then,

l#(τ(x2y2)) = l#(a4) = 0 and l#(τ(xy3)) = l#(a4) = 0.

Hence, there is a cellular map f :KP → RP2 such that f1
# = τ . By Proposi-

tion 8.6, if f is root free then the diophantine linear system[
2 2
1 3

] [
q1

q2

]
= −

[
2
2

]
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should have an integer solution. But it is easy to check that this system has no
integer solution. Therefore, f is not root free.
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