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EIGENVALUE CRITERIA
FOR EXISTENCE OF POSITIVE SOLUTIONS

OF SECOND-ORDER, MULTI-POINT,
p-LAPLACIAN BOUNDARY VALUE PROBLEMS

Bryan P. Rynne

Abstract. In this paper we consider the existence and uniqueness of pos-

itive solutions of the multi-point boundary value problem

−(φp(u′)′ + (a + g(x, u, u′))φp(u) = 0, a.e. on (−1, 1),(1)

u(±1) =

m±X

i=1

α±i u(η±i ),(2)

where p > 1, φp(s) := |s|p−2s, s ∈ R, m± ≥ 1 are integers, and

η±i ∈ (−1, 1), α±i > 0, i = 1, . . . , m±,

m±X

i=1

α±i < 1.

Also, a ∈ L1(−1, 1), and g: [−1, 1]× R2 → R is Carathéodory, with

(3) g(x, 0, 0) = 0, x ∈ [−1, 1].

Our criteria for existence of positive solutions of (1), (2) will be ex-
pressed in terms of the asymptotic behaviour of g(x, s, t), as s → ∞, and

the principal eigenvalues of the multi-point boundary value problem con-

sisting of the equation

(4) −φp(u′)′ + aφp(u) = λφp(u), on (−1, 1),
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where λ ∈ R, together with the boundary conditions (2). The spectral prop-

erties of this eigenvalue problem are not fully known for general functions
a ∈ L1(−1, 1). We will show here that, for any a ∈ L1(−1, 1), there exists

a unique principal eigenvalue λ0(a) of (2), (4), and we obtain some properties

of this eigenvalue.

We then consider a bifurcation-type problem and show that there ex-
ists a global continuum of positive solutions bifurcating from the principal

eigenvalue. Finally, we use this result to give criteria for the existence, and

uniqueness, of positive solutions of (1), (2).

1. Introduction

In this paper we consider the existence and uniqueness of positive solutions
of the multi-point boundary value problem

−(φp(u′)′ + (a+ g(x, u, u′))φp(u) = 0, a.e. on (−1, 1),(1.1)

u(±1) =
m±∑
i=1

α±i u(η
±
i ),(1.2)

where p > 1, φp(s) := |s|p−2s, s ∈ R, m± ≥ 1 are integers, and

(1.3) η±i ∈ (−1, 1), α±i > 0, i = 1, . . . ,m±,

m±∑
i=1

α±i < 1.

We suppose throughout the paper that a ∈ L1(−1, 1) and g: [−1, 1]×R2 → R is
a Carathéodory function (see Section 2.1 for the precise conditions), satisfying

(1.4) g(x, 0, 0) = 0, x ∈ [−1, 1]

(a further condition on the asymptotic behaviour of g(x, s, t) as s → ∞ will be
imposed in Section 5, in our main existence result).

Our criteria for existence of positive solutions of (1.1)–(1.2) will be expressed
in terms of the asymptotic behaviour of g(x, s, t), as s → ∞, and the principal
eigenvalues of the multi-point boundary value problem consisting of the equation

(1.5) −φp(u′)′ + aφp(u) = λφp(u), on (−1, 1),

where λ ∈ R, together with the boundary conditions (1.2). A number λ ∈ R
is said to be an eigenvalue of (1.2), (1.5), if there exists a non-trivial solution
u of this problem, which is then an eigenfunction corresponding to λ. We will
say that an eigenvalue is a principal eigenvalue if it has a positive eigenfunc-
tion. The spectral properties of this eigenvalue problem are not fully known
for general functions a ∈ L1(−1, 1) (see [13] for the constant coefficient case).
In Section 3 we will show that, for any a ∈ L1(−1, 1), there exists a unique
principal eigenvalue λ0(a) of (1.2), (1.5), and we obtain some properties of this
eigenvalue. In Section 4 we consider a bifurcation-type problem and show that



Positive Solutions of Multi-Point Problems 313

there exists a global continuum of positive solutions bifurcating from the prin-
cipal eigenvalue. Next, in Section 5, we use the global bifurcation result to give
eigenvalue criteria for the existence of positive solutions of (1.1)–(1.2). Finally,
under a further monotonicity condition on g we also obtain a uniqueness result.

The existence of positive solutions to multi-point problems similar to (1.1)–
(1.2) (with p = 2 and p 6= 2) have been considered in many recent papers, see
for example [2], [8], [14], [15] and the references therein. The methods used have
been a mixture of fixed point theorems and degree theory. Our results are closest
in spirit to those of [14], although we use different methods. In particular, [14]
considers the case p = 2 and obtains a principal eigenvalue of (1.2), (1.5) using
the Krein–Rutman theorem for positive operators, which requires that a ≥ 0
(in fact, [14] considers a general integral equation formulation of the problem).
We consider the general case p 6= 2 and we obtain a principal eigenvalue using
a bifurcation theory approach, which requires no conditions on the sign of a.
Criteria for the existence of positive solutions of (1.1)–(1.2) are then obtained
in [14] using degree theory, while bifurcation theory is again used here. However,
the existence criteria in [14] and here are both expressed in terms of the rela-
tionship between the behaviour of the function g, as u→ 0 and u→∞, and the
corresponding principal eigenvalues. Thus there is some similarity between these
existence criteria (indeed, eigenvalue criteria of this general form are well-known
in many other contexts).

2. Preliminary notation and results

2.1. Carathéodory functions and Nemitskii operators. For any inte-
ger n ≥ 0, let Cn[−1, 1] denote the usual Banach space of n-times continuously
differentiable functions on [−1, 1], with the usual sup-type norm, denoted by |·|n.
Let ‖ · ‖1 and ‖ · ‖1,1 denote the standard norms on L1(−1, 1) and the Sobolev
space W 1,1(−1, 1), respectively.

We suppose that the function g: [−1, 1] × R2 → R satisfies the following
standard Carathéodory conditions:

(a) g(x, s, t) is measurable in x for every fixed (s, t) ∈ R2, and continuous
in (s, t) for almost every x ∈ (−1, 1);

(b) for any bounded set B ⊂ R2, there exists hB ∈ L1(−1, 1) such that

(2.1) |g(x, s, t)| ≤ hB(x), (x, s, t) ∈ [0, 1]×B.

Under these hypotheses g induces a bounded (in the sense that bounded
sets are mapped to bounded sets), continuous Nemitskii operator g:C1[−1, 1] →
L1(−1, 1) defined by g(u)(x) := g(x, u(x), u′(x)), x ∈ [−1, 1], for u ∈ C1[−1, 1],
see [1, Section 1.2] (using the same notation for the function and the oper-
ator should not cause any confusion). In particular, for any a ∈ L1(−1, 1)
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the function (x, s, t) → a(x)φp(s) satisfies the above conditions, so the Nemyt-
skĭı operator u → aφp(u):C1[−1, 1] → L1(−1, 1) is bounded and continuous.
More specifically, the function φp: R → R also induces a continuous operator
φp:C0[−1, 1] → C0[−1, 1], with inverse φ−1

p = φp∗ , where p∗ := p/(p− 1) > 1.
Since we are searching for positive solutions of (4.1), in principle the function

g need not be defined for s < 0. However, in some of the following proofs it is
convenient to have the Nemytskĭı operator g defined on the whole of C1[−1, 1],
so we assume that the function g is defined on [0, 1]×R2 and satisfies the above
conditions. Hence, by (1.4), the Nemytskĭı operator g satisfies

(2.2) g(0) = 0.

2.2. The multi-point, p-Laplacian operator. A suitable space in which
to search for solutions of (1.1) or (1.5), on which the differential operator in these
equations makes sense and which incorporates the boundary conditions (1.2), is
the space

D(∆p) := {u ∈ C1[−1, 1] : φp(u′) ∈W 1,1[−1, 1] and u satisfies (1.2)},
‖u‖D(∆p) := |u|1 + ‖φp(u′)‖1, u ∈ D(∆p).

We now define ∆p:D(∆p) → L1(−1, 1) by

∆p(u) := φp(u′)′, u ∈ D(∆p).

By the definition of the spaces D(∆p), L1(−1, 1), the operator ∆p is well-defined
and continuous. Combining [13, Theorem 3.1] and [13, Remark 3.6], together
with our Carathéodory conditions on g, yields the following result. Here, an
operator is completely continuous if it is continuous and maps bounded sets into
relatively compact sets, while a sequence (hn) in L1(−1, 1) is equi-integrable if
there exists h in L1(−1, 1) such that |hn(x)| ≤ h(x) for all n ≥ 1 and almost
every x ∈ [−1, 1] (the condition (2.1) will yield equi-integrability of suitable
sequences below).

Theorem 2.1. The operator ∆p:D(∆p) → L1(−1, 1) is bijective, and the
inverse operator ∆−1

p :L1(−1, 1) → D(∆p) is continuous. In addition:

(a) if (hn) is an equi-integrable sequence in L1(−1, 1) which converges weak-
ly to h∞ then ∆−1

p (hn) → ∆−1
p (h∞) in C1[−1, 1];

(b) the operator u → ∆−1
p

(
g(u)φp(u)

)
:C1[−1, 1] → C1[−1, 1] is completely

continuous (under the above Carathéodory conditions on g).

Remark 2.2. As a special case of Theorem 2.1(b), which will be used several
times below, the operator u→ ∆−1

p (aφp(u)):C1[−1, 1] → C1[−1, 1] is completely
continuous.
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3. Principal eigenvalues of −∆p + aφp

We consider the eigenvalue problem

(3.1) −∆p(u) + aφp(u) = λφp(u), u ∈ D(∆p),

with a ∈ L1(−1, 1). We say that λ is an eigenvalue of −∆p + aφp if (3.1) has
a non-trivial solution u, which will be termed an eigenfunction of −∆p + aφp. If
λ is an eigenvalue of −∆p + aφp, with corresponding eigenfunction u, then tu is
also an eigenfunction for all non-zero t ∈ R, and we say that λ is simple if every
eigenfunction corresponding to λ is of this form (for linear problems, “simple”
eigenvalues usually have some further properties, but here we will use the term
in the above sense for all p > 1, even in the linear case p = 2). A function u

is positive if u 6≡ 0 and u ≥ 0 on [−1, 1], and u is strictly positive if u > 0 on
[−1, 1] (for brevity we will also apply this terminology to a solution (λ, u) of (3.1)
without specifically referring to the function u). An eigenvalue λ is a principal
eigenvalue of −∆p + aφp if it has a positive eigenfunction.

We first show that a positive eigenfunction is in fact strictly positive.

Lemma 3.1. If (λ, u) is a positive solution of (3.1) then u is strictly positive.

Proof. Suppose that u is not strictly positive. If u(x0) = 0 at some
x0 ∈ (−1, 1) then, by positivity, u′(x0) = 0, which implies that u = 0 (by
the uniqueness of the solution of the initial value problem for the differential
equation (3.1), for arbitrary initial conditions, see [3, Lemma 3.1]). However,
this contradicts the non-triviality of u. On the other hand, if u(e) = 0 at an end
point e ∈ {±1} then it follows from the boundary conditions (1.2) that u(x0) = 0
at some x0 ∈ (−1, 1) (since u is positive and α±i > 0, i = 1, . . . ,m±, by (1.3)).
Hence, the preceding discussion shows that this case also cannot hold, which
completes the proof. �

We now show the existence of a principal eigenvalue, and derive some of its
properties. We note that, by Theorem 2.1, the eigenvalue problem (3.1) can be
rewritten as the equivalent equation

(3.2) u+ ∆−1
p ((λ− a)φp(u)) = 0, u ∈ C1[−1, 1].

This formulation will be useful in the following proofs.

Theorem 3.2. For any a ∈ L1(−1, 1), −∆p + aφp has a unique principal
eigenvalue λ0(a), with a strictly positive eigenfunction u0(a). This eigenvalue
has the following properties:

(a) λ0(a) is simple;
(b) there exists d(a) > 0 such that if λ 6= λ0(a) is an eigenvalue of −∆p+aφp

then λ ≥ λ0(a) + d(a);
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(c) the function λ0( · ):L1(−1, 1) → R is continuous;
(d) if b ∈ L1(−1, 1) satisfies b ≥ a almost everywhere in (−1, 1), with strict

inequality on a set of positive measure, then λ0(b) > λ0(a).

Remark 3.3. Of course, the eigenvalue λ0(a) and the number d(a) also
depend on p, but for simplicity we will omit this in the notation.

Proof. To prove existence of a principal eigenvalue of −∆p + aφp we will
consider the auxiliary problem

(3.3) −∆p(u) + χ(|u|0)aφp(u)
)

= µφp(u), u ∈ D(∆p),

where χ: R → R is an increasing, C∞ function with χ(s) = 0, s ≤ 1 and χ(s) = 1,
s ≥ 2. The term χ(|u|0)aφp(u) in (2.1) is a continuous function of u ∈ D(∆p)
and is zero when |u|0 ≤ 1, so (2.1) can be regarded as a bifurcation (from u = 0)
problem. When |u|0 ≤ 1, equation (3.3) reduces to the (constant coefficient)
eigenvalue problem (3.1) with a = 0, which was considered in [13]. In particular,
[13, Theorem 5.1] shows that this problem has a unique principal eigenvalue,
which we denote by λ0(0), and this eigenvalue is simple. On the other hand,
when |u|0 ≥ 2, equation (3.3) reduces to the eigenvalue problem (3.1). Hence,
if we can find a positive solution (µ, u) of (3.3) with |u|0 ≥ 2 then µ will be
a principal eigenvalue of −∆p + aφp. We will do this by a global bifurcation
argument. We then prove that the principal eigenvalue has the results stated in
the theorem by a sequence of further lemmas.

Lemma 3.4. There exists a closed, connected set C+
0 ⊂ R × C1[−1, 1] of

solutions of (3.3) such that:

(a) (λ0(0), 0) ∈ C+
0 ;

(b) if (λ, u) ∈ C+
0 \ {(λ0(0), 0)} then u is strictly positive;

(c) C+
0 is unbounded in R× C1[−1, 1].

Proof. We first rewrite (3.3) in the equivalent form

(3.4) u+ ∆−1
p ((µ− χ(|u|0)a)φp(u)) = 0, u ∈ C1[−1, 1].

The proof is now a modification of the proof of [13, Theorem 6.2], which con-
sidered a bifurcation problem of the form u + ∆−1

p (λf(u)) = 0, with f : R → R
independent of x (the details of the proof of this theorem are given in [4, Sec-
tion 4], which considered a similar problem with a standard Dirichlet condition
at one end point). The proof of [13, Theorem 6.2] is based on the proof of Ra-
binowitz’ well-known global bifurcation theorem in [10]. We will simply sketch
the necessary modifications here.
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Given the properties of the eigenvalue λ0(0), the proof of [13, Theorem 6.2]
can be applied to equation (3.4) to yield a set C+

0 such that:

• C+
0 has the properties in the lemma, except (b) and (c), and satisfying

the usual Rabinowitz-type global alternatives;
• there is a neighbourhood V of (λ0(0), 0) in R × C1[−1, 1] such that if

(λ, u) ∈ V ∩ C+
0 \ {(λ0(0), 0)} then u is strictly positive.

Now suppose that (µn, un), n = 1, 2, . . . , is a sequence of positive solutions
of (3.4) with |un|0 ≥ 1 and (µn, un) → (µ∞, u∞) in R × C1[−1, 1]. Then, by
continuity, (µ∞, u∞) is a positive solution of (3.4), and hence of (3.3), so by
Lemma 3.1, u∞ is strictly positive. The usual Rabinowitz-type argument based
on preservation of nodal properties (in this case, positivity) now proves properties
(b) and (c) in the lemma. �

Some of the following proofs will use the p-Laplacian form of the Prüfer
transformation. This is a standard technique, although there are slight variations
in the precise definitions and functions used. For details, see for example, [3,
Section 2], [11, Section 3] and [12, Section 3]. Our uses of this technique will be
short, and standard, so for brevity we will not describe the details (or even the
notation) here, but will simply refer to appropriate points in these papers for
the results and arguments used.

Lemma 3.5. There exists a constant M0(‖a‖1) (depending only on ‖a‖1)
such that if (µ, u) ∈ C+

0 then |µ| ≤M0(‖a‖1).

Proof. Suppose that (µ, u) is a solution of (3.3) with µ > 0. Here, we will
use the form of Prüfer angle for u defined in the proof of [3, Lemma 2.5] and,
as in [3], we denote this angle by φ. Using the notation in [3], we set s = 1,
µ̃ = µ(p− 1)−1 and f = µ̃−1/p, and then, by [3, p. 381], the differential equation
for φ is

φ′ = µ̃1/p(1− µ̃−1χ(|u|0)a|S(φ)|),
where S is the p-Laplacian sine function used in [3] (note that, for a fixed u, the
term χ(|u|0) in equation (3.3) is simply a number, so the Prüfer technique can
be applied to this equation). Integrating this equation for φ from −1 to 1 shows
that if µ̃ > πp

p + 2‖a‖1 then

φ(1)− φ(−1) ≥ µ̃1/p > πp,

so u must have a zero in [−1, 1]. Hence, if (µ, u) ∈ C+
0 then

µ ≤ (p− 1)(πp
p + 2‖a‖1).

We now obtain a lower bound for µ. Suppose that (−µ̃, u) is a solution
of (3.3) with µ̃ > 0. It follows from (1.2) and (1.3) that u does not attain its
maximum at ±1 (for details, see the proof of [13, Lemma 5.2]) so, without loss of
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generality, we suppose that this maximum is attained at x0 ∈ (−1, 0] (a similar
proof holds when x0 ∈ [0, 1)). That is, u(x0) = |u|0. Integrating equation (3.3)
now yields,

(3.5) φp(u′)(x) ≥ −‖a‖1|u|p−1
0 + µ̃

∫ x

x0

φp(u), x ≥ x0,

and so, since µ̃ and u are positive,

(3.6) u′(x) ≥ −‖a‖1/(p−1)
1 |u|0, x ≥ x0.

We now suppose that ‖a‖−1/(p−1)
1 ≤ 1; if this is not true then in the rest of

the proof we simply replace the quantity ‖a‖−1/(p−1)
1 by 1. Setting x1 := x0 +

(1/2)‖a‖−1/(p−1)
1 ≤ 1/2, it follows from (3.6) that

(3.7) u(x) ≥ 1
2
|u|0, x0 ≤ x ≤ x1.

Now suppose that µ̃ satisfies

(3.8) µ̃
1
2
‖a‖−1/(p−1)

1

(
1
2
|u|0

)p−1

> (2 + ‖a‖1)|u|p−1
0 .

Then by (3.5) and (3.7),

φp(u′)(x1) > 2|u|p−1
0 ,

that is, u is increasing at x1. It now follows from (3.5) that the inequality (3.7)
in fact holds for x0 ≤ x ≤ 1, and also

(3.9) φp(u′)(x) > 2|u|p−1
0 , x ∈ [x1, 1].

Since x1 ≤ 1/2, it now follows from (3.7) and (3.9) that u(1) > (3/2)|u|0. This
contradiction shows that µ̃ cannot satisfy (3.8), and so yields the desired lower
bound for µ. This completes the proof of Lemma 3.5. �

Corollary 3.6. There exists a principal eigenvalue of −∆p + aφp.

Proof. It follows from Lemmas 3.4 and 3.5 that equation (3.3) has a strictly
positive solution (µ, u) with |u|0 > 2 (and |µ| ≤ M0), and so (µ, u) satis-
fies (3.1). �

We now prove the other properties of the principal eigenvalue. The unique-
ness part of the following lemma justifies the notation λ0(a) for the principal
eigenvalue, and given this we can clearly select a suitable strictly positive eigen-
function, which we denote by u0(a).



Positive Solutions of Multi-Point Problems 319

Lemma 3.7. For any a ∈ L1(−1, 1), the principal eigenvalue λ0(a) of −∆p+
aφp is unique, and satisfies the properties (a), (b), (d) of Theorem 3.2.

Proof. We first prove part (d). Let u, v denote (strictly) positive eigen-
functions corresponding to λ0(a), λ0(b), respectively. We first note that, by the
homogeneity of (3.1), in the following arguments we may rescale u and v by
positive constants without any loss of generality. We also note that if u and v

are linearly dependent then, from (3.1), λ0(b)−λ0(a) = b−a ≥ 0, so the result is
trivial in this case — hereafter we suppose that u and v are linearly independent.

We now prove the result by dealing successively with various specific cases.

(A) u < v on an interval (x, y), with u(x) = v(x), u(y) = v(y).

By [7, Lemma 3.3],

−
∫ y

x

{(λ0(a)− λ0(b)) + (b− a)}|v|p ≥ 0,

which implies the result in this case.

(B) u > v or u < v on (−1, 1), and u(e) = v(e), at an end point e ∈ {±1}.

Neither of these cases can occur, by (1.2) and (1.3) at e.

(C) u ≥ v, with u(x0) = v(x0) and u(y) > v(y), for some x0, y ∈ (−1, 1)
(this can be achieved by suitably scaling u and v, and by case (B) we
can choose x0 to be an interior point).

In this case, if there are points y1, y2 such that y1 < x0 < y2 and u(yi) >
v(yi), i = 1, 2, then scaling u downwards slightly yields case (A), and so the result
holds. Hence, we may suppose that u ≡ v on an interval [xr, 1], with xr < 1 (or
on an interval [−1, xl], for which a similar argument holds). Furthermore, by
considering (3.1) on [xr, 1], we see that λ0(b)− λ0(a) = b− a ≥ 0. Hence, from
now on we may suppose that λ0(b) = λ0(a).

(D) u ≤ v, with u(x1) = v(x1) at some x1 ∈ (−1, xr), and u(1) < v(1)
(a further rescaling of u and v, and appeal to cases (B) and (C), now
yields this).

To deal with this case we use the Prüfer transformation, as defined in [3,
Sections 2, 3] and [12, Section 3], and we let θu, θv, denote the Prüfer angles
associated with the solutions u, v. By the choice of x1, we have u′(x1) = v′(x1),
so we may choose the Prüfer angles such that θu(x1) = θv(x1), and then, by the
linear dependence of u, v near 1, and the positivity of u and v on [−1, 1], we also
have θu(1) = θv(1).

Next, we note that it follows from the assumption that b ≥ a, and the
differential equations for θu, θv, that θ′v ≤ θ′u (see [11, Lemma 4] and the proof
of [12, Theorem 3.2], and recalling that in this case λ0(b) = λ0(a)). Furthermore,
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since u(1) < v(1), we must have b > a on a set of positive measure in [x1, 1], so
θ′v < θ′u on a set of positive measure in [x1, 1], and hence

θu(1)− θu(x1) > θv(1)− θv(x1).

This contradiction shows that this case cannot occur.
Cases (A)–(D) have dealt with all possible scenarios — either showing that

the result is true for the specific case, or that the case cannot in fact occur.
Hence, we have completed the proof of part (d) of Theorem 3.2.

Next, we observe that a similar proof also proves part (a) of the theorem,
and shows that part (b) holds with d(a) = 0, so it remains to show that we can
choose d(a) > 0. Suppose the contrary. Then there exists a sequence of solutions
(λn, un) of (3.2) such that λn → λ0(a) and, for each n ≥ 1, |un|1 = 1 and un

changes sign. By Remark 2.2 we may suppose that un → u∞ in C1[−1, 1], where
u∞ is non-trivial and (λ0(a), u∞) satisfies (3.2), so that u∞ is an eigenfunction
corresponding to λ0(a). However, by its construction, u∞ cannot be strictly
positive, so it cannot be a multiple of u0(a), which contradicts the simplicity
of the principal eigenvalue λ0(a). This contradiction completes the proof of
Lemma 3.7. �

We now prove part (c) of Theorem 3.2.

Lemma 3.8. The function λ0( · ):L1(−1, 1) → R is continuous.

Proof. Suppose that there exists some a0 ∈ L1(−1, 1) at which λ0( · ) is not
continuous. Then there exists ε > 0 and a sequence (an) in L1(−1, 1) such that
‖an − a0‖1 → 0 and |λ0(an) − λ0(a0)| ≥ ε, n = 1, 2, . . . Combining the bounds
obtained in the proof of Lemma 3.5 with the convergence of the sequence (an)
yields a uniform bound for the sequence (|λ0(an)|), so we may suppose that
λ0(an) → λ∞, for some λ∞ ∈ R (by choosing a subsequence if necessary).

Now, for each n ≥ 1, let un be the positive eigenfunction corresponding
to λ0(an) with |un|0 = 1. Since (λ0(an), un) satisfies (3.2) and the operator
∆−1

p :C1[−1, 1] → C1[−1, 1] is completely continuous (see Theorem 2.1), we may
suppose that un → u∞ in C1[−1, 1], for some u∞ ∈ C1[−1, 1], and

u∞ + ∆−1
p (λ∞φp(u∞)− a0φp(u∞)) = 0.

These results imply that |λ∞−λ0(a0)| ≥ ε and λ∞ = λ0(a0) (by the uniqueness of
the principal eigenvalue). This contradiction completes the proof of the lemma.�

These results prove Theorem 3.2. �

Remark 3.9. The eigenvalue λ0 depends on the coefficients α± := (α1, . . . ,

αm±), η± := (η1, . . . , ηm±), and p, although we have suppressed this dependence
here since we regard these coefficients as fixed. However, in other settings it may
be useful to regard some, or all, of these coefficients as variable. The proof of
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Lemma 3.8 can be extended to show that λ0 depends continuously on α±, η±,
and p, so long as (1.3) holds and p ∈ (1,∞).

Now, defining the operator

Kλ,a := ∆−1
p ◦ ((λ− a)φp( · )):C1[−1, 1] → C1[−1, 1],

we can rewrite the eigenvalue problem (3.2) in the form

(3.10) u+Kλ,a(u) = 0, u ∈ C1[−1, 1].

In particular, (3.10) has a non-trivial solution u if and only if λ is an eigenvalue
of −∆p + aφp. Furthermore, the operator Kλ,a is completely continuous (by
Theorem 2.1), and homogeneous (in the sense that Kλ,a(tu) = tKλ,a(u), for any
t ∈ R and u ∈ C1[−1, 1]). Thus, if λ is not an eigenvalue of −∆p + aφp then the
Leray–Schauder degree deg(I +Kλ,a, Br, 0) is well defined for any r > 0, where
Br denotes the open ball in C1[−1, 1], centred at 0 with radius r.

Theorem 3.10. For any a ∈ L1(−1, 1) and any r > 0,

deg(I +Kλ,a, Br, 0) =

{
1 if λ < λ0(a),

−1 if λ0(a) < λ < λ0(a) + d(a),

where d(a) is as in Theorem 3.2(b).

Proof. We prove the result by a homotopy argument. Regarding a and p

as fixed, it follows from the proof of Theorem 3.2(b) and (c) that we can choose
δ ∈ (0, d(a)) such that, for each t ∈ [0, 1], if λ0(ta) < λ ≤ λ0(ta) + δ then λ is
not an eigenvalue of −∆p + taφp. Now, the homotopy

H(t, u) := Kλ0(ta)+δ,ta(u): [0, 1]× C1[−1, 1] → C1[−1, 1]

is completely continuous and, for each t ∈ [0, 1], the equation u + H(t, u) = 0
has no solution u 6= 0. Hence, by the homotopy invariance of the degree and
Theorem 3.8 of [4],

deg(I +Kλ0(a)+δ,a, Br, 0) = deg(I +Kλ0(0)+δ,0, Br, 0) = −1.

This proves the result when λ = λ0(a)+δ, and hence, by continuity of the degree,
when λ0(a) < λ < λ0(a) + d(a); the proof when λ < λ0(a) is similar. �

4. Global bifurcation results

In this section we consider the bifurcation problem

(4.1) −∆p(u) + (a+ g(u))φp(u) = λφp(u), (λ, u) ∈ R×D(∆p).

It follows from our standing assumptions on g: [0, 1]×R2 → R (viz. (1.4) and the
Carathéodory conditions described in Section 2.1) that the Nemytskĭı operator
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g:C1[−1, 1] → L1(−1, 1) is continuous and g(0) = 0. Hence u = 0 is a solution
of (4.1), for all λ ∈ R. Also, if (λ, u) is a non-trivial, positive solution of (4.1)
then, since a + g(u) ∈ L1(−1, 1), Lemma 3.1 shows that u is strictly positive.
We will show that there is an unbounded continuum of positive solutions of (4.1)
bifurcating from the principal eigenvalue λ0(a).

Let S ⊂ R×D(∆p) denote the set of non-trivial solutions of (4.1), and let S
denote its closure. Let C0 denote the component of S, in R×D(∆p), containing
the point (λ0(a), 0), and let

C±0 := {(λ0(a), 0)} ∪ {(λ, u) ∈ C0 : ±u is positive}.

Theorem 4.1. The set C+
0 is closed, connected and unbounded in R×D(∆p).

Proof. Equation (4.1) is equivalent to the problem

u = G(λ, u) := −∆−1
p ((λ− a− g(u))φp(u)), (λ, u) ∈ R× C1[−1, 1].

In [10], P. H. Rabinowitz deals with a similar problem, where the operatorG(λ, u)
has the form λLu + H(λ, u), with L linear and compact, and H is completely
continuous with lim‖u‖→0 ‖H(λ, u)‖/‖u‖ = 0, uniformly on compact λ intervals
(for suitable norms). With our hypotheses on g it follows from Theorem 2.1 that
G: R × C1[−1, 1] → C1[−1, 1] is completely continuous and lim|u|1→0 ‖g(u)‖1 =
0, but we have homogeneity of the mapping u → ∆−1

p ((λ − a)φp(u)), rather
than linearity. However, by some slight amendments of the proofs in [10], these
conditions are sufficient to prove the above result. We will sketch some of the
details of the amended proof.

Firstly, we observe that an analogue of the basic Lemma 1.24 in [10] holds
here, with a similar proof (essentially, this lemma states that if (λn, un), for n =
1, 2, . . . , is a sequence of positive solutions of (4.1) with (λn, un) → (λ∞, 0), then
λ∞ = λ0(a), and un must approach zero in the “direction” of the corresponding
positive eigenfunctions). Next, since any non-trivial, positive solution of (4.1)
is strictly positive, the argument in the proof of [10, Theorem 2.3] regarding
preservation of the nodal structure of solutions of (4.1) along continua can be
used here (the nodal structure here is simply positivity). This then shows that
the set C0 \ {(λ0(a), 0)} contains only positive solutions. All the results of the
theorem now follow immediately from this and the definition of the set C+

0 , except
the unboundedness of this set. To prove this we require the following result.

Proposition 4.2. If λ 6= λ0(a) and λ < λ0(a) + d(a) then u = 0 is an
isolated zero of the operator I−G(λ, · ), and the index ind(I−G(λ, · ), 0) of this
zero changes as λ crosses λ0(a).

Proof. Since ‖g(u)‖1 → 0 as |u|1 → 0 (for u ∈ C1[−1, 1]), a slight extension
of the proof of Theorem 3.2(b) shows that if r > 0 is sufficiently small and |u|1 ≤ r
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and t ∈ [0, 1], then λ is not an eigenvalue of −∆p + a + tg(u). Hence, the only
zero of I−G(λ, · ) in Br is u = 0, and a standard homotopy invariance argument
(cf. the proof of Theorem 3.10) shows that

ind(I −G(λ, · ), 0) = deg(I −G(λ, · ), Br, 0) = deg(I +Kλ,a, Br, 0).

The result now follows from Theorem 3.10. �

Using the index jump result of Proposition 4.2 we can now follow the proof
of [10, Theorem 1.3] to show that C0 is unbounded in R × D(∆p). It follows
immediately from this and a minor adaptation of the reflection argument in the
proof of [10, Theorem 1.27] that C+

0 is unbounded. �

Remark 4.3. We could also allow g to depend on λ in a suitable manner
(see [10, Theorem 2.3], for the case p = 2).

5. Eigenvalue criteria for existence of positive solutions

In this section we will consider the problem (1.1)–(1.2), which we can rewrite
in the form

(5.1) −∆p(u) + (a+ g(u))φp(u) = 0, u ∈ D(∆p).

In addition to our standing assumptions on g, in this section we also suppose
that for (x, s, t) ∈ [−1, 1]× [0,∞)× R,

(5.2) ψ(x)− E(x, s, t) ≤ g(x, s, t) ≤ Ψ(x) + E(x, s, t),

where ψ,Ψ ∈ L1(−1, 1) and E(x, s, t) = ζ(x)e(|s| + |t|), with ζ ∈ L1(−1, 1),
ζ ≥ 0 and the function e: [0,∞) → [0,∞) is bounded, with limr→∞ e(r) = 0.
Clearly, (5.2) implies (2.1).

Remark 5.1. In essence, the condition (5.2) describes the asymptotic be-
haviour of the function g(x, s, t) as s→∞, and hence the asymptotic behaviour
of the function f(x, s, t) := (a(x) + g(x, s, t))φp(s) in (5.1). The conditions on E
yield a precise “uniformity” condition for this asymptotic behaviour. In partic-
ular, if ψ = Ψ then f behaves like (a(x) + ψ(s))sp−1 as s→∞. In addition, by
(2.2), f behaves like a(x)sp−1 as s→ 0. Our criteria for the existence of positive
solutions of (5.1) will be based on the relationship between these asymptotic
behaviours.

Theorem 5.2. Suppose that g satisfies (5.2) and one of the inequalities

(5.3) λ0(a) < 0 < λ0(a+ ψ) or λ0(a+ Ψ) < 0 < λ0(a),

holds. Then (5.1) has at least one positive solution.

Proof. Let C+
0 be as in Theorem 4.1. Choose a sequence (λn, un) ∈ C+

0 ,
n ≥ 1, such that |λn| + |un|1 → ∞. By (5.2) there exists A ∈ L1(−1, 1) such
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that for all n ≥ 1, |g(un)(x)| ≤ A(x), for almost every x ∈ [0, 1], that is, the set
{g(un)} is equi-integrable (see [12, Section 4]). Hence, by Theorem 3.2,

λ0(−|a| −A) ≤ λn ≤ λ0(|a|+A),

and so, by taking a subsequence, we may suppose that λn → λ∞ and |un|1 →∞.
Also, defining vn := un/|un|1, for each n ≥ 1, we have

(5.4) vn + ∆−1
p

(
(λn − a− g(un))φp(vn)

)
= 0,

and so (after taking a subsequence if necessary) it follows that:

• the sequence (g(un)) is equi-integrable (by (5.2)) and converges weakly
in L1(−1, 1) (by [12, Lemma 2.1]);

• the sequence (vn) converges strongly in C1[−1, 1] to some non-trivial,
positive v∞ (by Theorem 2.1);

• there exists m∞ ∈ L1(−1, 1), with ψ ≤ m∞ ≤ Ψ, such that

g(un)φp(vn) ⇀m∞v∞

(by (5.2) and [12, Lemma 5.2]).

Hence, letting n→∞ in (5.4) yields

v∞ + ∆−1
p ((λ∞ −m∞)φp(v∞)) = 0,

and so, by Theorem 4.5,

(5.5) λ0(ψ) ≤ λ∞ = λ0(m∞) ≤ λ0(Ψ).

It follows from this, together with (λ0(a), 0) ∈ C+
0 , (5.3) and the connectedness

of C+
0 , that C+

0 intersects the set {0} × C1[−1, 1], which proves the result. �

Remark 5.3. If (1.4) and (5.2) hold then (5.5) gives an estimate of the
values of λ at which the continuum C+

0 “meets infinity”. In particular, if ψ = Ψ
then C+

0 “meets infinity” precisely at λ = λ0(ψ).

6. Uniqueness of positive solutions

Finally, we prove a simple uniqueness result for positive solutions of equa-
tion (5.1). We will now suppose that g is independent of t and satisfies the
monotonicity condition:

(6.1) 0 < s1 < s2 ⇒ g(x, s1) < g(x, s2), a.e. x ∈ [−1, 1].

This condition is standard, see for example, [9] or [16] (in fact, in [16] F. Wong
allows g to depend on t but for brevity we omit this here), but the usual proof
has to be modified to deal with the multi-point boundary conditions. Note that
we do not require (5.2) for the following uniqueness result (and in fact we do not
require (1.4)).
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Theorem 6.1. Suppose that g satisfies (6.1). Then equation (5.1) has at
most one positive solution.

Proof. If (5.1) has two distinct, positive solutions u, v, then by definition,

λ0(a+ g(u)) = λ0(a+ g(v)) = 0

(the functions g(u), g(v) ∈ L1(−1, 1)). Also, by the monotonicity condition
(6.1), if u < v on some interval I then g(u) < g(v) almost everywhere on I

(similarly if u > v).
We now observe that none of the following cases can occur:

(A) u ≤ v or u ≥ v on [−1, 1] (by Theorem 3.2(d));
(B) u < v or u > v on an interval (x, y), with u(x) = v(x), u(y) = v(y) (by

adapting the argument in case (A) in the proof of Lemma 3.7);
(C) u < v or u > v on (−1, 1) and u(e) = v(e) at some e ∈ {±1} (by (1.2)).

Combining these results shows that u − v must change sign so, without loss of
generality, we may suppose that there exists x0 ∈ (−1, 1) such that u(x0) = v(x0)
and u < v on (x0, 1]. Hence, the Prüfer angles of u and v satisfy θu(x0) ≥ θv(x0),
and θ′u > θ′v almost everywhere on (x0, 1] (since g(u) < g(v)).

Next, choosing γm such that

max
x∈[x0,1]

{γmv − u} = 0,

it follows from the choice of x0 and from (1.2) that this maximum is attained at
some point xm ∈ (x0, 1), and hence

θv(xm) = θγmv(xm) = θu(xm).

Combining these properties of the Prüfer angles θu, θv yields a contradiction,
which completes the proof of the theorem. �

If we do impose the condition (5.2) (and (1.4)) we obtain the following exis-
tence and uniqueness result.

Corollary 6.2. Suppose that g satisfies the conditions of Theorem 5.2 and
(6.1). Then equation (5.1) has exactly one positive solution.
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