
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 36, 2010, 101–117

MONOTONE ITERATIVE METHOD FOR INFINITE SYSTEMS
OF PARABOLIC FUNCTIONAL-DIFFERENTIAL EQUATIONS

WITH NONLOCAL INITIAL CONDITIONS

Anna Pude lko

Abstract. The nonlocal initial value problem for an infinite system of

parabolic semilinear functional-differential equations is studied. General

operators of parabolic type of second order with variable coefficients are
considered and the system is weakly coupled. We prove a theorem on exis-

tence of a classical solution in the class of continuous bounded functions and

in the class of continuous functions satisfying a certain growth condition.
Partial uniqueness result is obtained as well.

1. Introduction

In this paper we prove theorems on the existence and uniqueness of a clas-
sical solutions to infinite semilinear nonlocal initial-value parabolic functional-
differential problems in the class of continuous, bounded functions and in the
class of functions satisfying a certain growth condition. The author continue
studying of infinite systems of functional-differential equations of parabolic type
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102 A. Pude lko

(cf. [10], [11]). The result obtained in this paper is a generalization of that re-
ported in [10], namely it extends the previously results in direction of nonlocal
initial condition.

Conditions of this type are considered for example when the precise measure-
ment of the quantity u(x, 0) is imposible and the measurement of the quantity

(1.1) u(0, x) +
r∑

j=1

hj(x)gj(x, u|Zj
)

can be more precise. Situation like this takes place for instance while measuring
a small amount of diffusing gas with not enough precise instrument. When in
such situation the difussion is observed in time intervals the nonlocal conditions
of the form

gj(x, u|Zj ) =
1

T2j − T2j−1

∫ T2j

T2j−1

u(x, τ) dτ,

are considered. As another example can serve the investigating of emission spec-
tra of stars that makes it possible to calculate their temperature. Thus, the prob-
lem of calculating the temperature of star redudes to studying of light impulses
of star that reach the observer in the Earth. Since optical density of medium in
outer space changes in time, the average velocity of light between star and the
observer in the Earth changes in time as well. And in consequence the observer in
the Earth can receive the light impulses u(x, t0), h1(x)u(x, t1), . . . , hr(x)u(x, tr)
emitted in diffrent moments of time t0, . . . , tr simultaneously. This leads to the
condition in the form (1.1) with functions gj(x, u|Zj ) = u(x, tj).

Existence and uniqueness of differential-functional parabolic systems with
these kind of nonlocal conditions in bounded domain were investigated by By-
szewski among others in [3], [4].

To obtain the solution of considered problem monotone iterative method
(cf. [8]) are used. Monotone iterative technique coupled with the method of
sub- and supersolutions, provides an effective mechanism ensuring constructive
existence results for nonlinear problems. The lower and upper functions serve
as bounds for solutions which are improved by a monotone iterative process. In
this process we construct two sequences which approximate the desired solution
uniformly and monotonically. We use some results on differential inequalities to
show that sequences obtained by monotone iteration consist of sub- and super-
solutions, as well as to get their uniform convergence of these sequences.

The first classical initial-boundary value problem for infinite systems of weak-
ly coupled differential-functional equations of parabolic type was dealt with using
the same monotone iterative technique in [2].

This paper is organized as follows. In the next section we formulate the
problem under consideration. In Section 3 necessary notations and definitions are
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introduced. We also formulate some general assumptions. Section 4 contains the
theorem on the existence and partial result on uniqueness of bounded solutions.
In the last section we state and prove result analogous to that from Section 4
but for unbounded continuous solutions satisfying a certain growth condition.

2. Problem statement

Let S be an infinite set of indices. Let T > 0 and Ω = {(t, x) : t ∈ (0, T ], x ∈
Rm}. Moreover, let tk, k = 1, . . . , 2r be real numbers such that 0 < t1 < . . . <

t2r ≤ T and let Zk := [t2k−1, t2k]× Rm, where k = 1, . . . , r.
Let B(S) be the space of bounded mappings

ξ:S 3 i → ξi ∈ R such that sup{|ξi| : i ∈ S} < ∞

endowed with the supremum norm

‖ξ‖B(S) := sup{|ξi| : i ∈ S}.

For every nonempty set X ⊂ Rm we denote by CS(X) the space of mappings

w:X 3 x → w(x) ∈ B(S), where w(x):S 3 i → wi(x) ∈ R,

and the functions wi are continuous in X. For w we use the notation w =
{wi}i∈S , as well.

Let f = {f i}i∈S , ϕ = {ϕi}i∈S , gj = {gi
j}i∈S and hj = {hi

j}i∈S , j = 1, . . . , r

be given functions such that

f i: Ω×B(S)× CS(Ω) → R, ϕi: Rm → R,

gi
j : Rm × CS(Zj) → R, hi

j : Rm → R.

Let u = {ui}i∈S , where each ui is an unknown of the variables (t, x) =
(t, x1, . . . , xm), and set

F i :=
∂

∂t
−Ai, Ai :=

m∑
j,k=1

ai
jk(t, x)

∂2

∂xj∂xk
+

m∑
j=1

bi
j(t, x)

∂

∂xj
+ ci(t, x).

The purpose of the paper is to find, using the monotone iterative method,
a function u = {ui}i∈S such that ui ∈ C1,2(Ω) and is Hölder continuous with
respect to x uniformly in t and satisfies the following infinite system of weakly
coupled (1) semilinear parabolic nonlocal initial-value problem

F i[ui](t, x) = f i(t, x, u(t, x), u) for (t, x) ∈ Ω, i ∈ S,(2.1)

u(0, x) +
r∑

j=1

hj(x)gj(x, u|Zj
) = ϕ(x) for x ∈ Rm,(2.2)

(1) That is every equation contains all unknown functions and derivatives of only one
unknown function
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where functions f = {f i}i∈S , ϕ = {ϕi}i∈S , hj = {hi
j}i∈S and gj = {gi

j}i∈S ,
j = 1, . . . , r satisfy some assumptions. The function u (as above) is said to be
the solution of the system (2.1)–(2.2).

3. Notations, definitions and assumptions

For any ξ, ξ̃ ∈ B(S) we write ξ ≤ ξ̃ if ξi ≤ ξ̃i for all i ∈ S.
Let CBS(X) denote the space of functions w = {wi}i∈S , such that w ∈

CS(X) and each wi is bounded on X. This space, endowed with the supremum
norm

‖w‖0 := sup{|wi(x)| : x ∈ X, i ∈ S},

is a Banach space.
In space CBS(Ω) we define a functional ‖ · ‖0,t by the formula

‖w‖0,t := sup{|wi(t̃, x)| : (t̃, x) ∈ Ω, t̃ ≤ t, i ∈ S}

for w ∈ {wi}i∈S ∈ CBS(Ω), t ∈ [0, T ].
In the space CS(Ω) the following partial order is introduced: for z, z̃ ∈ CS(Ω),

and t ∈ [0, T ] the inequality z ≤t z̃ means that z(τ, x) ≤ z̃(τ, x) for all x ∈ Rm,
τ ∈ [0, t].

We notice that the notation f(t, x, u(t, x), u) means that the functions f i

are the functional of the function u. We consider the functional dependence of
Volterra-type, i.e.

(V) for any (t, x) ∈ Ω, u, ũ ∈ CS(Ω), i ∈ S the following implication holds

u ≤t ũ ⇒ f i(t, x, u(t, x), u) ≤ f i(t, x, ũ(t, x), ũ).

This means that the values of the reaction functions f i(t, x, u(t, x), u), i ∈ S

depend only on the past of history of the process. Therefore, such functionals
can describe delays and deviations or be integrals “over past”. Many interesting
models of this type applied in natural science can be found in [13].

Now, we recall the definitions of subsolutions and supersolutions.
Functions v = {vi}i∈S , w = {wi}i∈S such that vi, wi ∈ C1,2(Ω) and are

Hölder continuous with respect to x uniformly in t for all i ∈ S and satisfy the
system of parabolic semilinear functional-differential inequalities together with
nonlocal initial inequalities

F i[vi](t, x) ≤ f i(t, x, v(t, x), v), for (t, x) ∈ Ω, i ∈ S,

v(0, x) +
r∑

j=1

hj(x)gj(x, v|Zj
) ≤ ϕ(x) for x ∈ Rm,

F i[wi](t, x) ≥ f i(t, x, w(t, x), w), for (t, x) ∈ Ω, i ∈ S,
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w(0, x) +
r∑

j=1

hj(x)gj(x,w|Zj ) ≥ ϕ(x) for x ∈ Rm

are called, respectively, a subsolution and a supersolution for problem (2.1)–(2.2)
in Ω.

Throughout the paper we will assume:

(P) the operators F i, i ∈ S are uniformly parabolic in Ω, i.e. there is µ > 0
such that

m∑
j,k=1

ai
jk(t, x)ξjξk ≥ µ

m∑
j=1

ξ2
j

for all (t, x) ∈ Ω, ξ = (ξ1, . . . , ξm) ∈ Rm and i ∈ S.
(Ht) the coefficients ai

jk(t, x), bi
j(t, x), ci(t, x), i ∈ S, j, k = 1, . . . , m are

bounded, continuous functions in Ω such that ai
jk(t, x) = ai

kj(t, x)
and satisfy the following uniform Hölder conditions with exponent α

(0 < α ≤ 1) in Ω: there exists H > 0 such that

|ai
jk(t, x)− ai

jk(t′, x′)| ≤ H(|x− x′|α + |t− t′|α/2),

|bi
j(t, x)− bi

j(t, x
′)| ≤ H|x− x′|α,

|ci(t, x)− ci(t, x′)| ≤ H|x− x′|α

for all (t, x), (t, x′) ∈ Ω j, k = 1, . . . , m, and i ∈ S, where | · | denotes
the Euclidean norm in Rm.

Now, let us recall a theorem on the existence of fundamental solution and its
estimate, whose proof can be found in [6] or [7].

Lemma 3.1. If assumptions (P) and (H) hold then there exist fundamental
solutions Γi(t, x; τ, ξ) of the equations F i[ui](t, x) = 0, i ∈ S, and the following
inequalities

|Γi(t, x; τ, ξ)| ≤ c(t− τ)−m/2 exp
(
− µ∗|x− ξ|2

4(t− τ)

)
, i ∈ S

hold for some µ∗ < µ where µ∗ depends on µ and H whereas c depends on µ, α,
T and the character of continuity ai

jk(t, x) in t.

Let us notice that from the proof of this lemma and the above assumptions
on the coefficients of the operators F i, i ∈ S it follows that the constants c and
µ∗ are independent of i.

By S we will denote in Section 4 the set of all bounded classical solutions
of problem (2.1)–(2.2) and in Section 5, S will denote the set of all classical
solutions of this problem that satisfy the growth condition of the form

|ui(t, x)| ≤ D exp (φ(t)|x|2).
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For each two functions u, ũ ∈ S we define an equivalence relation ∼ by
formula

r∑
j=1

hj(x)gj(x, u|Zj
) =

r∑
j=1

hj(x)gj(x, ũ|Zj
) for x ∈ Rm, i ∈ S.

By Nu(Ω) we denote an equivalence class of element u ∈ S.
Before ending this section we introduce the following notation.
For every sufficiently smooth function β, let γ = P[β] be the unique solution

of the initial value problem

(3.1)

F i[γi](t, x) = f i(t, x, β(t, x), β), for (t, x) ∈ Ω, i ∈ S,

γ(0, x) = ϕ(x)−
r∑

j=1

hj(x)gj(x, β|Zj ) for x ∈ Rm.

4. Bounded solutions

In this section we construct two sequences of successive approximations as so-
lutions of some linear infinite systems of functional-differential equations. These
sequences converge to a common limit. We prove that this limit is a desired
solution of the equation (2.1) with nonlocal initial condition (2.2).

First, let us formulate the following assumptions.

Assumptions 4.1. All components f i(t, x, s, p) of f = {f i}i∈S are

(Cf ) continuous in Ω×B(S)× CBS(Ω);
(Bf ) uniformly bounded in Ω×B(S)× CBS(Ω);
(If ) weakly increasing with respect to s and p;
(Lf ) Lipchitz continuous with respect to s and p: there exists L1 > 0 and

L2 > 0 such that

|f i(t, x, s, p)− f i(t, x, s̃, p̃)| ≤ L1‖s− s̃‖B(S) + L2‖p− p̃‖0,t

for (t, x) ∈ Ω, s, s̃ ∈ B(S), p, p̃ ∈ CBS(Ω).

Moreover, for all u ∈ CBS(Ω) the functions f̃ i(t, x) := f i(t, x, u(t, x), u),
where (t, x) ∈ Ω, i ∈ S are

(Hf ) locally Hölder continuous with respect to x uniformly in t and the Hölder
constants are independent of the function u.

Assumptions 4.2. All components hi
j(x) of hj = {hi

j}i∈S, j = 1, . . . , r are

(Ch) continuous in Rm;
(Bh) uniformly bounded in Rm;
(0h) hi

j(x) ≤ 0 for x ∈ Rm.
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And all components gi
j(x, p) of gj = {gi

j}i∈S, j = 1, . . . , r are

(Cg) continuous in Rm × CBS(Zj);
(Bg) uniformly bounded in Rm × CBS(Zj);
(Lg) Lipchitz continuous with respect to x and p: there exists Lg > 0 such

that
|gi

j(x, p)− gi
j(x̃, p̃)| ≤ Lg(|x− x̃|+ ‖p− p̃‖0)

for x, x̃ ∈ Ω, p, p̃ ∈ CBS(Zj), j = 1, . . . , r, i ∈ S;
(Ig) weakly increasing with respect to p:

[p, p̃ ∈ CBS(Zj), p ≤ p̃ in Ω] ⇒ [gi
j(x, p) ≤ gi

j(x, p̃), x ∈ Rm]

j = 1, . . . , r, i ∈ S.

Remark 4.3. Let the functions f i = f i(t, x, s, p), i ∈ S, satisfy condition
(If ) from Assumptions 4.1, gi

j = gi
j(x, p), i ∈ S, j = 1, . . . , r, satisfy condition

(Ig) and (0h) from Assumptions 4.2. Then the operator P is weakly increasing.

Proof. Let β1, β2 ∈ CBS(Ω) be such that β1 ≤ β2 for (t, x) ∈ Ω. Let γ1,
γ2 be the unique solutions of the initial value problem (3.1) with β = β1 and
β = β2, respectively. Conditions (If ) from Assumptions 4.2 implies

(4.1) F i[γi
1 − γi

2](t, x) = f i(t, x, β1(t, x), β1)− f i(t, x, β2(t, x), β2) ≤ 0

for (t, x) ∈ Ω, i ∈ S.
By conditions (Ig) and (0h) from Assumptions 4.2 the following inequality

holds

(4.2) (γ1 − γ2)(0, x) = −
r∑

j=1

hj(x)[gj(x, β1|Zj
)− gj(x, β2|Zj

)] ≤ 0

for x ∈ Rm.
Consequently, using Collorary 1 from [10], we obtain by (4.1) and (4.2)

γ1(t, x) ≤ γ2(t, x) for (t, x) ∈ Ω. �

Assumptions 4.4. There exists at least one pair v0 = v0(t, x), w0 = w0(t, x)
in CBS(Ω) of a subsolution and a supersolution of problem (2.1)–(2.2) in Ω which
are Hölder continuous in x uniformly with respect to t, v0(t, x) ≤ w0(t, x) for
(t, x) ∈ Ω and v0(0, x) = w0(0, x) for x ∈ Rm.

Now, we state and prove the theorem on the existence of solution of problem
(2.1)–(2.2) obtained by a simple iterative method, i.e. starting from the subso-
lution v0 and the supersolution w0 we define vn := P[vn−1], wn := P[wn−1],
n = 1, 2, . . . . Thus, at each step we have an infinite system of linear functional-
differential equations. The sequence of successive approximations converges to
the desired solution with power speed.
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Theorem 4.5. Let the conditions (P) and (Ht) hold. Suppose that every
component ϕi of the initial data ϕ = {ϕi}i∈S is a bounded continuous function
on Rm. Moreover, let Assumptions 4.1, 4.2 and 4.4 hold. Consider the following
recursive infinite systems of linear equations:

F i[vi
n](t, x) = f i(t, x, vn−1(t, x), vn−1),(4.3)

F i[wi
n](t, x) = f i(t, x, wn−1(t, x), wn−1),(4.4)

for (t, x) ∈ Ω, i ∈ S, n = 1, 2, . . . with the nonlocal initial conditions of the form

vn(0, x) = −
r∑

j=1

hj(x)gj(x, vn−1|Zj
) + ϕ(x),(4.5)

wn(0, x) = −
r∑

j=1

hj(x)gj(x,wn−1|Zj
) + ϕ(x),(4.6)

for x ∈ Rm, i ∈ S, respectively. Then

(a) there exist unique classical bounded solutions vn and wn, in Ω, for n =
1, 2, . . . , of systems (4.3), (4.4) with the nonlocal initial conditions (4.5),
(4.6), respectively;

(b) vn and wn, n = 0, 1, . . . are subsolutions and supersolutions for problem
(2.1)–(2.2) in Ω;

(c) we have

(4.7) v0(t, x) ≤ . . . ≤ vn(t, x) ≤ vn+1(t, x) ≤ . . .

≤ wn+1(t, x) ≤ wn(t, x) ≤ . . . ≤ w0(t, x)

for (t, x) ∈ Ω, n = 1, 2, . . . ;
(d) limn→∞[wi

n(t, x)− vi
n(t, x)] = 0 uniformly in Ω, i ∈ S;

(e) u(t, x) = limn→∞ vn(t, x), where the limit is meant in the uniform sense,
is a classical bounded solution of problem (2.1)–(2.2) in Ω. Moreover,
u(t, x) is Hölder continuous with respect to x uniformly in t;

(f) in the class of all functions belonging to Nu(Ω) the function u is the
unique solution of problem (2.1)–(2.2) in Ω.

Before the proof of Theorem 4.5 let us stress that similarly as in papers
[3], [4] we obtain only the partial uniqueness result, namely there do not exist
two different solutions of problem (2.1)–(2.2) satisfying the same nonlocal part of
initial condition, i.e. equivalence classes of quotient space S/∼ are single-element.
Unfortunately, we still have not the uniqueness result in space S/∼.

Proof. (a) Starting from v0 and w0 we define v1, w1 as solutions of (4.3),
(4.4) with the nonlocal initial conditions (4.5), (4.6), respectively, i.e. v1 =
P[v0], w1 = P[w0]. Observe that the systems in question have the following
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property: the i-th equation depends on the i-th unknown function only, there-
fore since v0, w0 satisfy Assumption 4.4, the classical theorems on the existence
and uniqueness of solution of linear parabolic Cauchy problems (cf. [6] or [7]) as-
sert that there exist unique solutions v1, w1 ∈ CBS(Ω) of the above problems and
v1 and w1 are Hölder continuous with respect to x uniformly in t (cf. [6]). Next,
we define by induction {vn}, {wn} as solutions of (4.3), (4.4) with the nonlocal
initial conditions (4.5), (4.6), respectively, i.e. vn = P[vn−1], wn = P[wn−1], The
preceding reasoning shows that vn, wn exist and are uniquely defined. More-
over, for each i ∈ S, n = 1, 2, . . . , vi

n, wi
n are bounded, belong to C1,2(Ω) and

are Hölder continuous in x uniformly in t.
(b) Using the mathematical induction we show that the functions vn are

subsolutions. v0 is a subsolution by Assumption 4.4. Suppose for a fixed n ∈
N that vn is a subsolution of (2.1)–(2.2) in Ω, i.e. vn satisfies the following
inequalities

F i[vi
n](t, x) ≤ f i(t, x, vn(t, x), vn) for (t, x) ∈ Ω, i ∈ S,

vn(0, x) ≤ ϕ(x)−
r∑

j=1

hj(x)gj(x, vn|Zj
) for x ∈ Rm.

From the definition of the operator P it follows that

F i[vi
n+1](t, x) = f i(t, x, vn(t, x), vn) for (t, x) ∈ Ω, i ∈ S,

vn+1(0, x) = ϕ(x)−
r∑

j=1

hj(x)gj(x, vn|Zj
) for x ∈ Rm.

The function vi
n − vi

n+1 satisfies the assumptions of Corollary 1 from [10], thus
its thesis yields

[vn − vn+1](t, x) ≤ 0 for (t, x) ∈ Ω,

i.e.
vn(t, x) ≤ P[vn](t, x) for (t, x) ∈ Ω.

Now, condition (If ) from Assumptions 4.1 and definition of the operator P im-
plies

F i[vi
n+1](t, x)− f i(t, x, vn+1(t, x), vn+1)

= f i(t, x, vn(t, x), vn)− f i(t, x,P[vn](t, x),P[vn]) ≤ 0

for all i ∈ S, (t, x) ∈ Ω. We conclude that vn+1 is a subsolution as well. The
proof that the wn are supersolutions is similar.

(c) The monotonicity of the sequences {vn}, {wn} is a consequence of the
fact that vn, wn are subsolutions and supersolutions, respectively and definition
of P. To finish the proof of thesis (c) it is enough to show the inequality

(4.8) vn(t, x) ≤ wn(t, x) for (t, x) ∈ Ω, n = 0, 1, . . .
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By Assumption 4.4 the inequality (4.8) holds for n = 0. Now, assume that for
a fixed n ∈ N

(4.9) vn−1(t, x) ≤ wn−1(t, x) for (t, x) ∈ Ω.

Since vn and wn are subsolutions and supersolutions, respectively, the following
inequalities hold

F i[vi
n](t, x)− f i(t, x, vn(t, x), vn) ≤ 0 ≤ F i[wi

n](t, x)− f i(t, x, wn(t, x), wn)

for (t, x) ∈ Ω, i ∈ S. Moreover, from (4.5), (4.6), (4.9) and conditions (Ig), (0h)
from Assumptions 4.2 we obtain

vi
n(0, x)− wi

n(0, x) = −
r∑

j=1

hj(x)[gj(x, vn−1|Zj )− gj(x,wn−1|Zj )] ≤ 0,

for x ∈ Ω, i ∈ S. Thus, by Proposition 2 from [10],

vn(t, x) ≤ wn(t, x) for (t, x) ∈ Ω.

Therefore, by the mathematical induction, (4.8) is true.
(d) Let

(4.10) mi
n(t, x) := wi

n(t, x)− vi
n(t, x).

Using the mathematical induction we show that

(4.11) mi
n(t, x) ≤ N0

[(L1 + L2)t]n

n!
, n = 0, 1, . . . , for (t, x) ∈ Ω, i ∈ S,

where N0 = ‖w0 − v0‖0. The inequality for mi
0 is obvious. Suppose that the

inequality (4.11) holds for fixed n ∈ N ∪ {0}. The condition (Lf ), yields

F i[mi
n+1](t, x) = f i(t, x, wn(t, x), wn)− f i(t, x, vn(t, x), vn)

≤ L1‖mn(t, x)‖B(S) + L2‖mn‖0,t.

By the definitions of ‖ · ‖0,t and ‖ · ‖B(S) and the induction assumption both
‖mn(t, x)‖B(S) and ‖mn‖0,t are estimated by N0[(L1 + L2)t]n/n!. Thus, finally,

F i[mi
n+1](t, x) ≤ N0

(L1 + L2)n+1tn

n!
in Ω.

Moreover, from (4.10), from (4.7) and from the induction assumption

0 ≤ mi
n+1(0, x) ≤ mi

n(0, x) ≤ 0 for x ∈ Rm, i ∈ S.

Therefore,

mi
n+1(0, x) = 0 for x ∈ Rm, i ∈ S.



Parabolic Systems with Nonlocal Initial Conditions 111

In order to apply the theorem on differential inequalities, consider the comparison
system

F i[M i
n+1](t, x) = N0

(L1 + L2)n+1tn

n!
for (t, x) ∈ Ω, i ∈ S

with the initial condition M i
n+1(0, x) ≥ 0 for x ∈ Rm, i ∈ S. The functions

M i
n+1(t, x) = N0[(L1 + L2)t]n+1/(n + 1)! are solutions of the comparison prob-

lem. Thus

(4.12)
F i[mi

n+1](t, x) ≤ F i[M i
n+1](t, x) for (t, x) ∈ Ω, i ∈ S,

mi
n+1(0, x) ≤ M i

n+1(0, x) for x ∈ Rm, i ∈ S.

The inequalities (4.12) imply, by Corollary 1 from [10],

mi
n+1(t, x) ≤ M i

n+1(t, x) = N0
[(L1 + L2)t]n+1

(n + 1)!
for (t, x) ∈ Ω, i ∈ S,

and, consequently, by the mathematical induction, (4.11) holds. As a direct
consequence of (4.11) we obtain thesis (d).

(e) First, notice that, from (4.7) and from thesis (d), there exists a continuous
function u = {ui}i∈S such that

(4.13)
lim

n→∞
[wi

n(t, x)− ui(t, x)] = 0 in Ω, i ∈ S;

lim
n→∞

[vi
n(t, x)− ui(t, x)] = 0 in Ω, i ∈ S;

uniformly in Ω for all i ∈ S. Moreover, by thesis (a), by (4.13) and by (Lg)
from Assumptions 4.2 the function u = {ui}i∈S satisfies the nonlocal initial
condition (2.2). Now, we prove that u satisfies (2.1). It is enough to show
that u fulfills (2.1) in any compact set contained in Ω. Consider the cylinder
DR := {(t, x) :

∑m
j=1 x2

j ≤ R2, 0 ≤ t ≤ T}, where R > 0. Let ΓR := {(t, x) :∑m
j=1 x2

j = R2, 0 ≤ t ≤ T} and S0
R stands for the base of DR, i.e. the set

{(t, x) :
∑m

j=1 x2
j ≤ R2, t = 0}. Thus, we only need to prove it in DR for

any R > 0. Due to assumption (If ) from Assumptions 4.1 and the inequalities
(4.7) it follows that f i(t, x, vn−1(t, x), vn−1) are uniformly bounded in DR (with
respect to n). Therefore the solution vn(t, x) of the linear system

F i[vi
n](t, x) = f i(t, x, vn−1(t, x), vn−1), i ∈ S

with suitable initial condition is Hölder continuous with exponent α with respect
to x uniformly in t, with a constant independent of n (cf. [6]). Consequently,
u(t, x) also satisfies the Hölder condition with respect to x uniformly in t. Now,
consider the system:

(4.14) F i[zi](t, x) = f i(t, x, u(t, x), u), for (t, x) ∈ DR, i ∈ S
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with the conditions

z(t, x) = u(t, x) on ΓR,(4.15)

z(0, x) = ϕ(x)−
r∑

j=1

hj(x)gj(x, u|Zj ) on S0
R.(4.16)

From conditions (Hf ) and (Lf ) from Assumptions 4.1 and the fact that u(t, x)
is Hölder continuous with respect to x, the right hand sides of this system are
continuous in DR and locally Hölder continuous with respect to x. Thus, on
the base of the classical existence and uniqueness theorems for linear parabolic
initial-boundary valued problems (cf. [7]) there exists a unique classical solution
z(t, x) of the problem (4.14)–(4.16) in DR. On the other hand, by condition (Lf )
from Assumptions 4.1 and by (4.13)

lim
n→∞

f i(t, x, vn−1(t, x), vn−1) = f i(t, x, u(t, x), u) uniformly in DR.

Moreover, the boundary values vn(t, x) converge uniformly to u(t, x) on ΓR and
due to the condition (Lf ) from Assumptions 4.2 the initial values converge uni-
formly in S0

R. Consequently, the functional-differential version of the theorem
on the continuous dependence of the solution on the right hand sides and initial-
boundary values (which is a consequence of Theorem 2.1 from [12] and of a similar
argument as in the proof of Theorem 2.1 from [5]) gives

(4.17) lim
n→∞

vi
n(t, x) = zi(t, x) uniformly in DR.

Thus, by (4.17) and (4.13),

zi(t, x) = ui(t, x) in DR, for all i ∈ S, for arbitrary R > 0,

which means z(t, x) = u(t, x) for all (t, x) ∈ Ω, i.e. u(t, x) is a classical bounded
solution of problem (2.1)–(2.2).

(f) Let u be the solution of problem (2.1)–(2.2) from thesis (e) and let ũ be the
other continuous bounded solution of problem (2.1)–(2.2) such that ũ ∈ Nu(Ω).
Then

(4.18) F i[ui](t, x)− f i(t, x, u(t, x), u) = F i[ũi](t, x)− f i(t, x, ũ(t, x), ũ),

for (t, x) ∈ Ω, i ∈ S, and

(4.19) u(0, x) = ũ(0, x) for x ∈ Rm.

Applying Proposition 2 from [10] to (4.18) and (4.19) we obtain

u(t, x) = ũ(t, x) for (t, x) ∈ Ω.

The proof of Theorem 4.5 is complete. �
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Remark 4.6. Thus, the existence of solution of problem (2.1)–(2.2) is now
(according to Assumption 4.4) equivalent to existence of suitable subsolution
and supersolution. However, let us notice, that in case of existence theorems
for wide class of problems proved using monotone methods this assumption in
literature is typical (e.g. [2]–[4], [8], [12]). And question of existence subsolution
and supersolution is usually solved for particular problem by indicating them
(e.g. [9]).

5. Unbounded solutions

We denote by C+ the space of all positive, real-valued, continuous and non-
decreasing functions defined on the set [0, T ].

For w ∈ CS(Ω) we define the following weighted norms depending on φ ∈ C+

(see [1]):

‖w‖2,φ := sup
i∈S

sup
(t,x)∈Ω

|wi(t, x)|
[φ(t)]m/2 exp (φ(t)|x|2)

,

and

‖w‖2,φ,t := sup
i∈S

sup
x∈Rm, t≤t

|wi(t, x)|
[φ(t)]m/2 exp (φ(t)|x|2)

.

Let E2,φ
S be the space of all functions w ∈ CS(Ω) such that:

• there exists D ≥ 0 such that for all (t, x) ∈ Ω and all i ∈ S

|wi(t, x)| ≤ D exp (φ(t)|x|2)

for φ ∈ C+.

Obviously, the space E2,φ
S endowed with the norm ‖ · ‖2,φ is a Banach space.

Now, we state a result similar to Theorem 4.5, but concerning functions which
behave like |ui(t, x)| ≤ D exp (φ(t)|x|2). But first, let us formulate appropriate
assumptions.

Assumptions 5.1. All components f i(t, x, s, p) of f = {f i}i∈S are

(Cf ) continuous in Ω×B(S)× E2,φ
S ;

(Bf ) expotentially bounded with respect to t and x, i.e. there exists M0 ≥ 0
such that for all i ∈ S and all (t, x) ∈ Ω

|f i(t, x, 0, 0)| ≤ M0 exp (φ(t)|x|2);

(If ) weakly increasing with respect to s and p;
(Lf ) weighted Lipschitz continuous in the following sense: there exists L1 >

0, L2 > 0 such that

|f i(t, x, s, p)−f i(t, x, s̃, p̃)| ≤ L1‖s−s̃‖B(S)+L2‖p−p̃‖2,φ,t[φ(t)]m/2 exp (φ(t)|x|2)

for (t, x) ∈ Ω, s, s̃ ∈ B(S), p, p̃ ∈ CS(Ω).
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Moreover, for all u ∈ E2,φ
S the functions f̃ i(t, x) := f i(t, x, u(t, x), u), where

(t, x) ∈ Ω, i ∈ S are

(Hf ) locally Hölder continuous with respect to x uniformly in t and the Hölder
constants are independent of the function u.

Assumptions 5.2. All components hi
j(x) of hj = {hi

j}i∈S, j = 1, . . . , r

(Ch) are continuous in Rm;
(Eh) satisfy for some Kh > 0 the inequality |hi

j(t, x)| ≤ Kh exp (φ(0)|x|2) for
all x ∈ Rm;

(0h) hi
j(x) ≤ 0 for x ∈ Rm.

And all components gi
j(x, p) of gj = {gi

j}i∈S, j = 1, . . . , r

(Cg) are continuous in Rm × E2,φ
S ;

(Eg) satisfy for some Kg > 0 the inequality |gi
j(t, p)| ≤ Kg exp (φ(0)|x|2) for

all x ∈ Rm and u ∈ E2,φ
S ;

(Lg) Lipchitz continuous with respect to x and p: there exists Lg > 0 such
that

|gi
j(x, p)− gi

j(x̃, p̃)| ≤ Lg(|x− x̃|+ ‖p− p̃‖2,φ)

for x, x̃ ∈ Ω, p, p̃ ∈ E2,φ
S , j = 1, . . . , r, i ∈ S;

(Ig) weakly increasing with respect to p:

[p, p̃ ∈ E2,φ
S , p ≤ p̃ in Ω] ⇒ [gi

j(x, p) ≤ gi
j(x, p̃), x ∈ Rm]

for j = 1, . . . , r, i ∈ S.

Remark 5.3. Let the functions f i = f i(t, x, s, p), i ∈ S, satisfy condition
(If ) from Assumptions 5.1, gi

j = gi
j(x, p), i ∈ S, j = 1, . . . , r, satisfy condition

(Ig) and (0h) from Assumptions 5.2. Then the operator P is weakly increasing.

Proof. Proof of Remark 4.6 is analogous to proof of Remark 4.3. �

Assumptions 5.4. There exists at least one pair v0 = v0(t, x), w0 = w0(t, x)
in E2,φ

S of a subsolution and a supersolution of problem (2.1)–(2.2) in Ω which
are Hölder continuous in x uniformly with respect to t, v0(t, x) ≤ w0(t, x) for
(t, x) ∈ Ω and v0(0, x) = w0(0, x) for x ∈ Rm.

Theorem 5.5. Let the assumptions (P) and (Ht) hold. Let φ ∈ C+ be
a function satisfying the inequality

µ∗φ(τ)
µ∗ − 4φ(τ)(t− τ)

≤ φ(t) for 0 ≤ τ ≤ t ≤ T,

where µ∗ is the constant which appeared in Lemma 3.1. Let Assumptions 5.1, 5.2
and 5.4 hold. Moreover, let all the components of the initial data ϕ = {ϕi}i∈S
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be such that |ϕi(x)| ≤ K exp (φ(0)|x|2) for all x ∈ Rm. Consider the following
infinite system of linear equations

F i[vi
n](t, x) = f i(t, x, vn−1(t, x), vn−1),(5.1)

F i[wi
n](t, x) = f i(t, x, wn−1(t, x), wn−1),(5.2)

for (t, x) ∈ Ω, i ∈ S, n = 1, 2, . . . with the nonlocal initial conditions of the form

vn(0, x) = −
r∑

j=1

hj(x)gj(x, vn−1|Zj ) + ϕ(x),(5.3)

wn(0, x) = −
r∑

j=1

hj(x)gj(x,wn−1|Zj
) + ϕ(x),(5.4)

for x ∈ Rm, i ∈ S, respectively. Then

(a) there exist unique classical solutions vn ∈ E2,φ
S and wn ∈ E2,φ

S , n =
1, 2, . . . , of systems (5.1) and (5.2) with the nonlocal initial conditions
(5.3), (5.4), respectively, in Ω;

(b) vn and wn, n = 0, 1, . . . , are subsolutions and supersolutions for problem
(2.1)–(2.2) in Ω, respectively;

(c) we have

v0(t, x) ≤ . . . ≤ vn(t, x) ≤ vn+1(t, x) ≤ . . .

≤ wn+1(t, x) ≤ wn(t, x) ≤ . . . ≤ w0(t, x)

for (t, x) ∈ Ω, n = 1, 2, . . . ;
(d) u(t, x) = limn→∞ vn(t, x), where the limit is meant in the uniform sense,

is a classical solution of problem (2.1)–(2.2) in Ω satisfying the growth
condition |ui(t, x)| ≤ D exp (φ(t)|x|2) for (t, x) ∈ Ω. Moreover, u(t, x)
is Hölder continuous with respect to x uniform in t;

(e) in the class of all functions belonging to Nu(Ω) the function u is the
unique solution of problem (2.1)–(2.2) in Ω.

Proof. (a) As in the proof of Theorem 4.5, starting from v0 and w0, we
define by induction the sequences {vn}, {wn} as solutions of (5.1), (5.2) with the
nonlocal initial condition (5.3), (5.4), respectively, in Ω, i.e.

v1 = P[v0], vn = P[vn−1], w1 = P[v0], wn = P[vn−1]

for n = 1, 2, . . . . Here, the i-th equation depends on the i-th unknown function
only as well, and Assumption 5.4 holds, therefore the classical theorems on the
existence and uniqueness of solution for linear Cauchy problems assert that there
exist unique classical solutions vn, wn, in E2,φ

S of problems (5.1), (5.3) and (5.2),
(5.4), respectively (cf. [7]).
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The proofs of steps (b) and (c) are analogous to those in Theorem 4.5, with
Proposition 2 from [10] replaced by Proposition 3 from [10], Corollary 1 from
[10] replaced by Corollary 2 from [10] and on noticing that the inequalities (c)
guarantee that u satisfies the desired growth condition.

(d) First, we show that u(t, x) = limn→∞ vn(t, x) is continuous. To this end
we show using the mathematical induction that mi

n(t, x) := wi
n(t, x)−vi

n(t, x) ≥ 0
satisfies

(5.5) mi
n(t, x) ≤ N0

[(L1 + L2)t]n

n!
[φ(t)]m/2 exp (φ(t)|x|2),

n = 0, 1, . . . , for (t, x) ∈ Ω, i ∈ S.
The inequality for mi

0 is obvious. Suppose (5.5) holds for fixed n ∈ N ∪ {0}.
Similarly to the proof of Theorem 4.5, the (Lf ) condition yields

F i[mi
n+1](t, x) = f i(t, x, wn(t, x), wn)− f i(t, x, vn(t, x), vn)

≤ L1‖mn(t, x)‖B(S) + L2‖mn‖2,φ,t[φ(t)]m/2 exp (φ(t)|x|2)
≤ (L1 + L2)‖mn‖2,φ,t[φ(t)]m/2 exp (φ(t)|x|2).

By the definitions of ‖ · ‖2,φ,t and the induction assumption

‖mn‖2,φ,t ≤ N0
[(L1 + L2)t]n

n!
.

Thus, finally,

F i[mi
n+1](t, x) ≤ N0

(L1 + L2)n+1tn

n!
[φ(t)]m/2 exp (φ(t)|x|2) in Ω.

By the same argument as in the proof of Theorem 4.5, mi
n+1(0, x) = 0 for

x ∈ Rm, i ∈ S. In order to apply the theorem on differential inequalities, let us
consider the comparison system

F i[M i
n+1](t, x) = N0

(L1 + L2)n+1tn

n!
[φ(t)]m/2 exp (φ(t)|x|2)

for (t, x) ∈ Ω, i ∈ S, with the initial condition M i
n+1(0, x) = 0 for x ∈ Rm, i ∈ S.

The solution of this comparison system can be estimated (comp. [10]) as follows

M i
n+1(t, x) ≤ N0

tn+1

(n + 1)!
(L1 + L2)n+1[φ(t)]m/2 exp (φ(t)|x|2).

Therefore, owing to Proposition 3 from [10] we get

mi
n+1(t, x) ≤ M i

n+1(t, x) ≤ N0
[(L1 + L2)t]n+1

(n + 1)!
[φ(t)]m/2 exp (φ(t)|x|2),

for (t, x) ∈ Ω, i ∈ S, so, the induction step is proved. Thus,

‖mn‖2,φ = ‖m̃n‖0
n→∞−−−−→ 0, where m̃n = w̃n − ṽn,

ṽn = vn[φ(t)]−m/2 exp (−φ(t)|x|2), w̃n = wn[φ(t)]−m/2 exp (−φ(t)|x|2).
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Therefore, as in the proof of Theorem 4.5 we conclude that ũ := limn→∞ ṽn is
continuous and consequently so is u = ũ exp (φ(t)|x|2).

To end the proof it is enough to repeat proofs of step (e) and (f) of Theo-
rem 4.5. �

References
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