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EXISTENCE OF SOLUTIONS
FOR ANTI-PERIODIC BOUNDARY VALUE PROBLEMS

INVOLVING FRACTIONAL DIFFERENTIAL EQUATIONS
VIA LERAY–SCHAUDER DEGREE THEORY

Bashir Ahmad — Juan J. Nieto

Abstract. In this paper, some existence results for a differential equation
of fractional order with anti-periodic boundary conditions are presented.

The main tool of study is Leray–Schauder degree theory.

1. Introduction

Fractional derivatives provide an excellent tool for the description of mem-
ory and hereditary properties of various materials and processes. This is the
main advantage of fractional differential equations in comparison with classi-
cal integer-order models. Fractional differential equations arise in many engi-
neering and scientific disciplines as the mathematical modelling of systems and
processes in the fields of physics, chemistry, aerodynamics, electro dynamics of
complex medium, polymer rheology, etc. involves derivatives of fractional order.
In consequence, the subject of fractional differential equations is gaining much
importance and attention. For details and examples, see [2]–[4], [6]–[7], [9], [10],
[13], [18]–[23], [25], [28], [30], [36], [38] and the references therein. However, the
theory of boundary value problems for nonlinear fractional differential equations
is still in the initial stages and many aspects of this theory need to be explored.
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Anti-periodic problems have recently received considerable attention as anti-
periodic boundary conditions appear in numerous situations. Examples include
anti-periodic trigonometric polynomials in the study of interpolation problems
[14], anti-periodic wavelets [11], difference equations [8], [34], ordinary, partial
and abstract differential equations [16], [17], [24], [27], [33], [35], [37], and im-
pulsive differential equations [1], [15], [26], etc. For some more application of
anti-periodic boundary conditions in physics, see [12], [32] and the references
therein.

In this paper, we apply Leray–Schauder degree theory to prove some existence
results for the following anti-periodic fractional boundary value problem

(1.1)

{
cDqu(t) = f(t, u(t)) for t ∈ [0, T ], 1 < q ≤ 2,

u(0) = −u(T ), u′(0) = −u′(T ),

where cDq denotes the Caputo fractional derivative of order q, f : [0, T ]×R → R
and T is a fixed positive constant.

2. Preliminaries

First of all, we recall some basic definitions [29], [31] on fractional calculus.

Definition 2.1. For a function g: [0,∞) → R1, Caputo’s derivative of frac-
tional order q > 0 is defined as

cDqg(t) =
1

Γ(n− q)

∫ t

0

(t− s)n−q−1g(n)(s) ds, n− 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of the real number q.

Definition 2.2. The Riemann–Liouville fractional integral of order q is
defined as

Iqg(t) =
1

Γ(q)

∫ t

0

g(s)
(t− s)1−q

ds, q > 0,

provided the integral exists.

Definition 2.3. The Riemann–Liouville fractional derivative of order q for
a function g(t) is defined by

Dqg(t) =
1

Γ(n− q)

(
d

dt

)n ∫ t

0

g(s)
(t− s)q−n+1

ds, n = [q] + 1,

provided the right hand side is pointwise defined on (0,∞).

Lemma 2.4 ([38]). For q > 0, the general solution of the fractional differen-
tial equation cDqu(t) = 0 is given by

u(t) = b0 + b1t + b2t
2 + . . . + bn−1t

n−1,
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where bi ∈ R, i = 0, . . . , n− 1 (n = [q] + 1).

In view of Lemma 2.4, it follows that

(2.1) Iq cDqu(t) = u(t) + b0 + b1t + b2t
2 + . . . + bn−1t

n−1,

for some bi ∈ R, i = 0, . . . , n− 1 (n = [q] + 1).
For a given function σ, the most simple differential equation involving a frac-

tional order 1 < q ≤ 2 is

cDqu(t) = σ(t), t ∈ [0, T ].

Imposing the anti-periodic boundary conditions, we have the following new result
for the problem:

(2.2)

{
cDqu(t) = σ(t) for 0 < t < T, 1 < q ≤ 2,

u(0) = −u(T ), u′(0) = −u′(T ).

Lemma 2.5. For any σ ∈ C[0, T ], there exists exactly one solution u of the
problem (2.2). Moreover, a function u is a solution of the problem (2.2) if and
only if

u(t) =
∫ T

0

G(t, s)σ(s) ds,

where G(t, s) is the Green’s function given by

(2.3) G(t, s) =


− (T − s)q−1

2Γ(q)
+

(T − 2t)(T − s)q−2

4Γ(q − 1)
if 0 ≤ t < s ≤ T,

(t− s)q−1 − (T − s)q−1/2
Γ(q)

+
(T − 2t)(T − s)q−2

4Γ(q − 1)
if 0 ≤ s ≤ t ≤ T.

Proof. Using (2.1), we have that

u(t) = Iqσ(t)− b0 − b1t =
∫ t

0

(t− s)q−1

Γ(q)
σ(s) ds− b0 − b1t,

for arbitrary constants b0 and b1. In view of the relations cDq Iqu(t) = u(t) and
Iq Ipu(t) = Iq+pu(t) for q, p > 0, u ∈ C[0, T ], we obtain

u′(t) =
∫ t

0

(t− s)q−2

Γ(q − 1)
σ(s) ds− b1.

Applying the boundary conditions u(0) = −u(T ), u′(0) = −u′(T ), we find that

b0 =
1

2Γ(q)

∫ T

0

(T − s)q−1σ(s) ds− T

4Γ(q − 1)

∫ T

0

(T − s)q−2σ(s) ds,

b1 =
1

2Γ(q − 1)

∫ T

0

(T − s)q−2σ(s) ds.
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Thus, the unique solution of (2.2) is

u(t) =
∫ t

0

(t− s)q−1

Γ(q)
σ(s) ds− 1

2

∫ T

0

(T − s)q−1

Γ(q)
σ(s) ds

+
1
4
(T − 2t)

∫ T

0

(T − s)q−2

Γ(q − 1)
σ(s) ds =

∫ T

0

G(t, s)σ(s) ds,

where G(t, s) is given by (2.3). �

We remark that the Green’s function G(t, s) for q = 2 takes the form:

G(t, s) =


1
4
(−T − 2t + 2s) if 0 ≤ t < s ≤ T,

1
4
(−T + 2t− 2s) if 0 ≤ s ≤ t ≤ T,

which is the same as given in [35].
We will use the following fixed point theorem [5] to prove the existence of

solutions for the nonlinear problem (1.1).

Theorem 2.6. Let Ω be an open bounded subset of a Banach space E with
0 ∈ Ω and β: Ω → E be a compact operator. Then β has a fixed point in Ω
provided ‖βu− u‖2 ≥ ‖βu‖2 − ‖u‖2, u ∈ ∂Ω.

3. Existence results

Theorem 3.1. Assume that there exist constants 0 ≤ κ < 4Γ(q + 1)/(6 + q)
and M > 0 such that

|f(t, u)| ≤ κ

T q
|u|+ M for all t ∈ [0, T ], u ∈ C[0, T ].

Then the anti-periodic boundary value problem (1.1) has at least one solution.

Proof. In view of Lemma 2.5, u is a solution of the problem (1.1) if and
only if Γ:C[0, T ] → C[0, T ] satisfies the following condition

(3.1) u = Γ(u),

where Γ is given by

(Γu)(t) =
∫ t

0

(t− s)q−1

Γ(q)
f(s, u(s)) ds− 1

2

∫ T

0

(T − s)q−1

Γ(q)
f(s, u(s)) ds

+
1
4
(T − 2t)

∫ T

0

(T − s)q−2

Γ(q − 1)
f(s, u(s)) ds,

for t ∈ [0, T ]. Thus, we just need to prove the existence of at least one solution
u ∈ C[0, T ] satisfying (3.1). Let us define a suitable ball BR ⊂ C[0, T ] with
radius R > 0 as

BR =
{

u ∈ C[0, T ] : max
t∈[0,T ]

|u(t)| < R

}
,
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where R will be fixed later. Then, it is sufficient to show that Γ:BR → C[0, T ]
satisfies

(3.2) u 6= λΓu, for all u ∈ ∂BR and all λ ∈ [0, 1].

Let us set

H(λ, u) = λΓu, u ∈ C(R), λ ∈ [0, 1].

Then, by Arzela–Ascoli theorem, hλ(u) = u−H(λ, u) = u− λΓu is completely
continuous. If (3.2) is true, then the following Leray–Schauder degrees are well
defined and by the homotopy invariance of topological degree, it follows that

deg(hλ, BR, 0) = deg(I − λΓ, BR, 0) = deg(h1, BR, 0)

= deg(h0, BR, 0) = deg(I,BR, 0) = 1 6= 0,

for 0 ∈ Br, where I denotes the unit operator. By the nonzero property of
Leray–Schauder degree, h1(t) = u − λΓu = 0 for at least one u ∈ BR. In order
to prove (3.2), we assume that u = λΓu for some λ ∈ [0, 1] and for all t ∈ [0, T ]
so that

|u(t)| = |λΓu(t)|

≤
∫ t

0

(t− s)q−1

Γ(q)
|f(s, u(s))| ds +

1
2

∫ T

0

(T − s)q−1

Γ(q)
|f(s, u(s))| ds

+
1
4
|T − 2t|

∫ T

0

(T − s)q−2

Γ(q − 1)
|f(s, u(s))| ds

≤
(

κ

T q
‖u‖+ M

)[∫ t

0

(t− s)q−1

Γ(q)
ds +

1
2

∫ T

0

(T − s)q−1

Γ(q)
ds

+
1
4
|T − 2t|

∫ T

0

(T − s)q−2

Γ(q − 1)
ds

]
≤

(
κ

T q
‖u‖+ M

)[
tq

Γ(q + 1)
+

T q

2Γ(q + 1)
+
|T − 2t|T q−1

4Γ(q)

]
≤

(
κ

T q
‖u‖+ M

)[
3T q

2Γ(q + 1)
+

T q

4Γ(q)

]
=

(
κ

T q
‖u‖+ M

)
T q(6 + q)
4Γ(q + 1)

,

which, on taking norm and solving for ‖u‖, yields

‖u‖ ≤ MT q(6 + q)
4Γ(q + 1)− κ(6 + q)

.

Letting R = MT q(6 + q)/(4Γ(q + 1)− κ(6 + q) + 1), (3.2) holds. �
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Example 3.2. Consider the following anti-periodic boundary value problem

(3.3)


cDqu(t) =

1
(4π)

sin
(

2πu

T q

)
+

|u|
1 + |u|

for t ∈ [0, T ], 1 < q ≤ 2,

u(0) = −u(T ), u′(0) = −u′(T ).

Clearly

|f(t, u)| =
∣∣∣∣ 1
(4π)

sin
(

2πu

T q

)
+

|u|
1 + |u|

∣∣∣∣ ≤ 1
2T q

‖u‖+ 1,

with κ = 1/2 < 4Γ(q + 1)/(6 + q) for 1 < q ≤ 2 and M = 1. Thus, the
conclusion of Theorem 3.1 applies to the problem (3.3).

Now we modify the assumption on the nonlinear function f(t, u) in (1.1) and
develop the following existence results.

Theorem 3.3. If there exists a constant M1 such that

|f(t, u)| ≤ 4Γ(q + 1)M1

T q(6 + q)
, for all t ∈ [0, T ], u ∈ [−M1,M1],

Then the boundary value problem (1.1) has at least one solution.

Proof. Let us define Λ = {u ∈ C[0, T ] : maxt∈[0,T ] |u(t)| < M1} and Γ: Λ →
C[0, T ]. In view of Theorem 2.6, we just need to show that

(3.4) ‖Γu‖ ≤ ‖u‖, for all u ∈ ∂Λ.

For all t ∈ [0, T ], u ∈ ∂Λ, we have

|Γu(t)| ≤
∫ t

0

(t− s)q−1

Γ(q)
|f(s, u(s))| ds +

1
2

∫ T

0

(T − s)q−1

Γ(q)
|f(s, u(s))| ds

+
1
4
|T − 2t|

∫ T

0

(T − s)q−2

Γ(q − 1)
|f(s, u(s))| ds

≤ 4Γ(q + 1)M1

T q(6 + q)

[ ∫ t

0

(t− s)q−1

Γ(q)
ds

+
1
2

∫ T

0

(T − s)q−1

Γ(q)
ds +

1
4
|T − 2t|

∫ T

0

(T − s)q−2

Γ(q − 1)
ds

]
≤ 4Γ(q + 1)M1

T q(6 + q)

[
T q(6 + q)
4Γ(q + 1)

]
= M1

Since (3.4) holds, therefore, we obtain the result. �

Remark 3.4. In view of the assumption |f(t, u)| ≤ (κ/T q)|u| + M of The-
orem 3.3, we find that M1 = MT q(6 + q)/(4Γ(q + 1)− κ(6 + q)).
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Example 3.5. Let us consider the following nonlinear function in (1.1):

f(t, u) =
u3

3T q
sin

(
2πt

T q

)
.

Clearly

|f(t, u)| ≤ |u|3

3T q
<

4Γ(q + 1)M1

T q(6 + q)
M1

with M1 = 1. Thus, by Theorem 3.3, the nonlinear boundary value problem
(1.1) has at least one solution.

Theorem 3.6. Suppose that f is of class C1 in the second variable and there
exists a constant 0 ≤ M2 < 4Γ(q + 1)/(T q(6 + q)) such that |fu(t, u)| ≤ M2 for
all t ∈ [0, T ], u ∈ C[0, T ]. Then the boundary value problem (1.1) has at least
one solution.

Proof. For all t ∈ [0, T ], we find that

|Γu(t)| ≤
∫ t

0

(t− s)q−1

Γ(q)
|f(s, u(s))| ds +

1
2

∫ T

0

(T − s)q−1

Γ(q)
|f(s, u(s))| ds

+
1
4
|T − 2t|

∫ T

0

(T − s)q−2

Γ(q − 1)
|f(s, u(s))| ds

≤
∫ t

0

(t− s)q−1

Γ(q)
|(fu(s, u(s))u(s) + ν)| ds

+
1
2

∫ T

0

(T − s)q−1

Γ(q)
|(fu(s, u(s))u(s) + ν)| ds

+
1
4
|T − 2t|

∫ T

0

(T − s)q−2

Γ(q − 1)
|(fu(s, u(s))u(s) + ν)| ds

≤
∫ t

0

(t− s)q−1

Γ(q)
(M2‖u‖+ ν) ds +

1
2

∫ T

0

(T − s)q−1

Γ(q)
(M2‖u‖+ ν) ds

+
1
4
|T − 2t|

∫ T

0

(T − s)q−2

Γ(q − 1)
(M2‖u‖+ ν) ds

≤ M2T
q(6 + q)

4Γ(q + 1)
‖u‖+ ν1,

where ν1 = T q(6 + q)ν/(4Γ(q + 1)) (ν is a positive constant). For R > 0, we
define

BR =
{

u ∈ R1 : max
t∈[0,T ]

|u(t)| < R

}
,

so that

‖Γu‖ ≤ R

(
M2T

q(6 + q)
4Γ(q + 1)

+
ν1

R

)
≤ R,

for sufficiently large R. Therefore, by Schauder fixed point theorem, Γ has a fixed
point. �
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Example 3.7. Consider

(3.5)


cDqu(t) =

1
12T q

(
1− u2

1 + u2

)
sin

(
2πt

T q

)
for t ∈ [0, T ], 1 < q ≤ 2,

u(0) = −u(T ), u′(0) = −u′(T ).

Here

f(t, u) =
1

12T q

(
1− u2

1 + u2

)
sin

(
2πt

T q

)
.

Observe that

|fu(t, u)| ≤ 1
3T q

(
|u|

(1 + u2)2

)
<

4Γ(q + 1)
T q(6 + q)

.

Thus, the conclusion of Theorem 3.6 applies to the problem (3.5).
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