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ON THE EXISTENCE OF PERIODIC SOLUTIONS
FOR A CLASS OF NON-AUTONOMOUS
DIFFERENTIAL DELAY EQUATIONS

Rong Cheng — Junxiang Xu — Dongfeng Zhang

Abstract. This paper considers the existence of periodic solutions for a
class of non-autonomous differential delay equations

(∗) x′(t) = −
n−1X

i=1

f(t, x(t− iτ)),

where τ > 0 is a given constant. It is shown that under some conditions

on f and by using symplectic transformations, Floquet theory and some
results in critical point theory, the existence of single periodic solution of

the differential delay equation (∗) is obtained. These results generalize

previous results on the cases that the equations are autonomous.

1. Introduction and main results

In this paper, we study the existence of nontrivial 2π-periodic solutions for
a class of non-autonomous differential delay equations of the following form:

(1.1) x′(t) = −[f(t, x(t− τ)) + f(t, x(t− 2τ)) + . . . + f(t, x(t− (n− 1)τ))],
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where f(t, x) ∈ C(R× R, R) is odd with respect to x, τ > 0 is a given constant
and n is a positive integer.

Before introducing our assumptions on f and stating the main results, we
first recall some earlier work on (1.1) with f independent of t, that is the following
autonomous differential delay equation

(1.2) x′(t) = −[f(x(t− τ)) + f(x(t− 2τ)) + . . . + f(x(t− (n− 1)τ))].

The equation (1.2) with n = 2 and τ = 1 arises from a variety of practical
problems such as communication systems [9], population growth models [5], the
operation of a control system working with potentially explosive chemical reac-
tions [13], and economic studies of business cycles [2]. Thus many authors were
attracted to consider various questions on (1.2) and there has been a great deal
of research. To the best of our knowledge, the equation (1.2) was first consid-
ered by G. S. Jones in [13] on the existence of periodic solutions. Following the
Jones’s work, J. Kaplan, J. Yorke, R. D. Nussbaum, H. O. Walther, S. N. Chow,
etc., studied the existence of periodic solutions, bifurcations, stability of peri-
odic solutions, slowly oscillating, homoclinic solutions and a lot of remarkable
results have been contributed in 1970s and 1980s of the last century (see [4],
[10], [11], [14], [15], [23]–[27]). In 1990s of the last century, some authors [16],
[17] made use of the original ideas in [14] to study multiple periodic solutions
of (1.2). Specifically, they reduced the existence of periodic solutions of (1.2) to
the existence of periodic solutions of an associated ordinary differential system.
When f(x) ∈ C(R, R) is odd, xf(x) > 0 for x 6= 0 and f(x) satisfies suitable
conditions at 0 and ∞, they proved the existence of multiple periodic periodic
solutions of the equation (1.2). Later, G. Fei [7], [8] continued the work done
by X. He and J. Li in [16] and [17] at the beginning of this century. The author
relaxed some conditions on f(x) which were often employed in previous papers,
such as xf(x) > 0 for x 6= 0 and by applying the pseudo index theory con-
structed in [6], Galerkin approximation method and S1 index theory in [21], the
author obtained the multiple periodic solutions of the equation (1.2). In com-
mon, the tools employed in [7], [8], [16], [17] are variational methods. For some
other methods to study periodic solutions of (1.2), please see [12], [19]. Since the
functionals used in [7], [8] are not S1-invariant anymore for the non-autonomous
equation (1.1), the methods used in [7], [8] can not be applied to study periodic
solutions of (1.1). Some other methods are needed.

Motivated by the lack of results on the existence of periodic solutions for non-
autonomous differential delay equations, we study in this paper the existence
of periodic solutions of the non-autonomous equation (1.1). Now we give the
following assumptions:

(H1) f(t, x) ∈ C(R× R, R) is odd with respect to x and τ -periodic in t.
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(H2) f(t, x) ∈ C1(R× R, R) is odd with respect to x and τ -periodic in t.
(H3) The following limits hold uniformly in t ∈ [0, τ ],

lim
x→0

f(t, x)
x

= β0(t), lim
x→∞

f(t, x)
x

= β∞(t).

It is obvious that β0(t) and β∞(t) are two τ -periodic functions.
Since there is much difference between n being even and odd, in this paper

we always assume that n = 2N + 1 ∈ Z+ is odd and the constant τ = π/n. In
order to state our main results, we need to introduce a 4N × 4N matrix defined
below. For k ∈ Z+ and α ∈ R, we define

Tk(α) =
(
−αM −kA−1

2N

kA−1
2N −αM

)
,

where M and A2N are two 2N × 2N matrices defined as follows:

M =


2 −1 1 −1 . . . 1 −1
−1 2 −1 1 . . . −1 1
...

...
...

...
. . .

...
...

1 −1 1 −1 . . . 2 −1
−1 1 −1 1 . . . −1 2

 ,

A2N =


0 −1 . . . −1 −1
1 0 . . . −1 −1

1 1
. . .

...
...

...
...

. . . 0 −1
1 1 1 1 0

 .

It is easy to check that M is positive definite and symmetric and A2N

is skew symmetric. Moreover, A2N is a Hamiltonian matrix, i.e. it satisfies
JA2N + A>2NJ = 0, where J =

(
0 −I2N

I2N 0

)
is the standard symplectic matrix

and I2N is the identity matrix in R2N . Let M−( · ), M+( · ) and M0( · ) denote
the negative, the positive and the zero Morse indices of the symmetric matrix
define it, respectively. For the symmetric matrix αM , we define our index as

i−(α) =
∞∑

k=1

(M−(Tk(αM))− 2N) and i0(α) =
∞∑

k=1

M0(Tk(αM)).

Noting that Tk(αM) is symmetric, its eigenvalues are all real. Since for k large
enough, one has M−(Tk(αM)) = 2N and M0(Tk(αM)) = 0. Hence, i−(αM)
and i0(αM) are well defined.

Write α0 = (1/τ)
∫ τ

0
β0(t) dt, α∞ = (1/τ)

∫ τ

0
β∞(t) dt. Then our main results

read as follows.
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Theorem 1.1. Suppose that (H1) and (H3) hold. If i0(α0M) = i0(α∞M) =
0 and i−(α0M) 6= i−(α∞M), then the equation (1.1) possesses at least one
nontrivial 2π-periodic solution x(t) satisfying x(t) = −x(t− π).

Theorem 1.2. Suppose that (H2) and (H3) hold. If i0(α∞M) = 0 and
i−(α∞M) /∈ [i−(α0M), i−(α0M) + i0(α0M)], then the equation (1.1) possesses
at least one nontrivial 2π-periodic solution x(t) satisfying x(t) = −x(t− π).

Remark 1.3. As we pointed out before, Theorems 1.1 and 1.2 are concerned
with the existence of periodic solutions for the non-autonomous differential de-
lay equation (1.1). Therefore, our results generalize the results gotten in the
references.

Remark 1.4. In the sequel, the equation (1.1) was first changed to a form
of Hamiltonian system. Thus, finding periodic solutions of (1.1) is equivalent to
seeking periodic solutions of the Hamiltonian system. Periodic solutions of the
Hamiltonian system are obtained as critical points of a functional φ defined on
a Hilbert space E. We shall apply Galerkin approximation method and two well
known critical point results to obtain periodic solutions of the non-autonomous
differential delay equation (1.1).

The present paper is organized as follows. In Section 2, we transform (1.1)
to a form of Hamiltonian system which is asymptotically linear both at 0 and ∞.
In Section 3, we construct a symplectic transformation with respect to “A2N”
which reduces the linear parts of the Hamiltonian system to constant coefficients.
Subsequently, in Section 4, we recall two critical point results while some useful
lemmas are also given. Finally, the proofs of Theorems 1.1 and 1.2 will be carried
out in Section 5.

2. An equivalent Hamiltonian system

In this section, we change (1.1) to an equivalent Hamiltonian system. We
show that the main idea in [14], [17], [8] can be applied to seek for periodic
solutions of the equation (1.1) for n = 2N . Precisely speaking, if a 2π-periodic
solution X(t) = (x1(t), x2(t), . . . , xn(t)) of the following system:

(2.1)
d

dt
X(t) = AnF (t, X(t))

satisfies the following symmetric structure

(2.2) x1(t) = −xn(t− τ), x2(t) = x1(t− τ), . . . , xn(t) = xn−1(t− τ),

then x(t) = x1(t) is a 2π-periodic solution of the equation (1.1) and satisfies
x(t − nτ) = −x(t). Here F (t, X) = (f(t, x1), . . . , f(t, xn))> and An = A2N is
defined in Section 1.
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Since n = 2N + 1, the matrix A2N+1 is not a Hamiltonian matrix anymore.
For each y = (y1, . . . , y2N )> ∈ R2N , we define a Hamiltonian function as follows:

H(t, y) =
∫ y1

0

f(t, x) dx + . . . +
∫ y2N

0

f(t, x) dx +
∫ PN

j=1(y2j−y2j−1)

0

f(t, x) dx.

Then following the ideas in [17], the system (2.1) can be written as the following
Hamiltonian system

(2.3) y′(t) = A2N∇yH(t, y),

where ∇yH(t, y) denotes the gradient of H(t, y) with respect to y.

Remark 2.3. Here we point out that the matrix A2N is the symplectic
structure associated to the Hamiltonian system (2.3), since according to [22]
there is a non-degenerate matrix S such that SA2NS> = J , where J is called
the standard symplectic structure of a Hamiltonian system. In the following of
the present paper, we only need to study the Hamiltonian system (2.3).

3. A symplectic transformation with respect to “A2N”

In this section, we construct a symplectic transformation with respect to the
symplectic structure “A2N” which reduces coefficients of the linear parts of the
Hamiltonian system (2.3) to constants. Since the coefficients of the linear parts
at 0 and ∞ may be different, the Floquet theory can not be applied directly. We
want to use Hamiltonian flow mapping to construct such global symplectic trans-
formation. For this purpose, it is enough for us to construct the corresponding
Hamiltonian function.

By the condition (H3), one has

f(t, x) =

{
β0(t)x + o(|x|) as |x| → 0,

β∞(t)x + o(|x|) as |x| → ∞.

Then H(t, y) is even with respect to y and satisfies

∇yH(t, y) =

{
β0(t)My + o(|y|) as |y| → 0,

β∞(t)My + o(|y|) as |y| → ∞.

Where M is the symmetric definite matrix defined in Section 1. Thus, the
corresponding Hamiltonian system (2.3) satisfies

y′(t) = A2NMβ0(t)y + o(|y|) as |y| → 0,(3.1)

y′(t) = A2NMβ∞(t)y + o(|y|) as |y| → ∞.(3.2)

For the system (3.1), let y = P1(t, z)= eQ1(t)z, where Q1(t) = A2NM
∫ t

0
γ0(ξ) dξ

and γ0(t) = β0(t) − α0. Then the transformation y = P1(t, z) is symplectic.
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Then with the transformation y = P1(t, z), the system (3.1) is changed to the
following system

(3.3) z′(t) = α0A2NMz + o(|z|) as |z| → 0.

Similarly, let y = P2(t, z), where P2(t, z) = eQ2(t)z, Q2(t) = A2NM
∫ t

0
γ∞(ξ)dξ

and γ∞(t) = β∞(t) − α∞. In the same way we have that the transformation
y = P2(t, z) is also symplectic. Then the equation (3.2) can be transformed to
the following system

(3.4) z′(t) = α∞A2NMz + o(|z|) as |z| → ∞.

Noting that Qi(t)(i = 1, 2) are τ -periodic, the functions e−Qi(t)(i = 1, 2) are
bounded. Therefore, there are two positive constants r and R with r < R such
that

r|y| ≤ |e−Qi(t)y| ≤ R|y| (i = 1, 2).

We now manage to construct a global symplectic transformation Ψ(t, z) such
that

y = Ψ(t, z) =

{
P1(t, z) if |z| < r/R,

P2(t, z) if |z| > R/r.

Let Γ0(t) =
∫ t

0
γ0(ξ) dξ and Γ∞(t) =

∫ t

0
γ∞(ξ) dξ. Then Γ0(t) and Γ∞(t)

are two τ -periodic functions. Let ρ1(w) and ρ2(w) be two smooth functions
satisfying

ρ1(|w|2) =

{
1 as |w| < r,

0 as |w| > R,
ρ2(|w|2) =

{
0 as |w| < r,

1 as |w| > R.

Set
H̃t(w) =

1
2
Γ0(t)(Mw,w)ρ1(|w|2) +

1
2
Γ∞(t)(Mw,w)ρ2(|w|2),

where t is regarded as a parameter and ( · , · ) denotes the inner product in
R2N . It is easy to see that H̃t(w) is a τ -periodic function with respect to the
parameter t.

Now we consider the following Hamiltonian system

(3.5)
dw

ds
= A2N∇wH̃t(w).

Note that the above Hamiltonian system (3.5) is autonomous with respect to s

and t is regarded as a parameter. Let Ψt(s, w) be the general solution of (3.5).
By the uniqueness of solutions of ordinary differential equations, Ψt(s, w) is τ -
periodic with respect to the parameter. Now we prove that the flow mapping
Ψt(s, w) is symplectic with respect to the symplectic structure “A2N”, that is,

∂Ψt(s, w)
∂w

A2N

(
∂Ψt(s, w)

∂w

)>
= A2N .
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Since A2N is skew symmetric and non-degenerate, according to [22], there is
a non-degenerate matrix S such that

SA2NS> = J,

where J is the standard symplectic matrix. Let w = S−1z̃. Then the system
(3.5) is transformed to the following standard Hamiltonian system

(3.6)
dz̃

ds
= J∇ez

˜̃
Ht(z̃),

where ˜̃
Ht(z̃) = H̃t(S−1z̃). Let Ψ̃t(s, z̃) = SΨt(s, S−1z̃). Then Ψ̃t(s, z̃) is the

general solution of the Hamiltonian system (3.6). Since the Jacobian of a flow
mapping of a Hamiltonian system is symplectic, we have that

∂Ψ̃t(s, z̃)
∂z̃

J

(
∂Ψ̃t(s, z̃)

∂z̃

)>
= J,

i.e.

S
∂Ψt

∂w
S−1J

(
S

∂Ψt

∂w
S−1

)>
= J ⇒ S

∂Ψt

∂w
(S−1J(S−1)>)

(
∂Ψt

∂w

)>
S> = J

⇒ ∂Ψt

∂w
A2N

(
∂Ψt

∂w

)>
= A2N .

Let y = Ψ(t, z) = Ψt(s, w)|s=1,w=z = Ψt(1, z). Then one has

∂Ψ
∂z

A2N

(
∂Ψ
∂z

)>
= A2N .

For |w| < r, the system (3.5) becomes dw/ds = Γ0(t)A2NMw. So w(s) =
eΓ0(t)A2N Msz. If |s| < 1, |z| < r/R, then |w(s)| ≤ |eΓ0(t)A2N Ms||z| ≤ R|z| < r.
Thus for |s| < 1, |z| < r/R, we have w(s) = eΓ0(t)A2N Msz. Therefore Ψ(t, z) =
P1(t, z) as |z| < r/R. In the same way we can prove that Ψ(t, z) = P2(t, z) as
|z| > R/r.

Let z = Φ(t, y) be the inverse mapping of the transformation y = Ψ(t, z).
Then the system (2.3) is changed to the following system

(3.7)
dz

dt
= A2N∇zĤ(t, z) +

∂Φ
∂t

,

where Ĥ(t, z) = H(t,Ψ(t, z)). By a direct computation, A−1
2N (∂2Φ/∂t∂y) is

a symmetric matrix. According to [22], there is a smooth function R such that

A2N∇zR =
∂Φ
∂t

.
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Then H∗(t, z) = Ĥ(t, z)+R(t, z) is the Hamiltonian function of the system (3.7)
and the Hamiltonian system (3.7) can be written as the following form:

(3.8)
dz

dt
= A2N∇zH

∗(t, z).

By (3.3) and (3.4), H∗(t, z) satisfies the following asymptotically linear proper-
ties.

∇zH
∗(t, z) = α0Mz + o(|z|) as|z| → 0,(3.9)

∇zH
∗(t, z) = α∞Mz + o(|z|) as |z| → ∞.(3.10)

Now in order to prove the main results of this paper, we only need to consider
the Hamiltonian system (3.8). It is enough for us to prove the following two
theorems.

Theorem 3.1. Under the conditions of Theorem 1.1, the system (3.8) pos-
sesses at least one nontrivial 2π-periodic solution x with x(t) = −x(t− π).

Theorem 3.2. Under the conditions of Theorem 1.2, the system (3.8) pos-
sesses at least one nontrivial 2π-periodic solution x with x(t) = −x(t− π).

4. Two critical point theorems and some lemmas

In this section, let E = W 1/2,2(S1, R2N ). Then E is a Hilbert space. Denote
the inner product and the norm in E by 〈 · , · 〉 and ‖ · ‖, respectively. A better
way to understand this space seems as follows. The space E consists of all z(t)
in L2(S1, R2N ) whose Fourier series

z(t) = a0 +
∞∑

k=1

(ak cos kt + bk sin kt)

satisfies

|a0|2 +
∞∑

k=1

k(|ak|2 + |bk|2) < ∞,

where a0, ak, bk ∈ R2N . The inner product on E is defined by

〈z1, z2〉 = (a1
0, a

2
0) +

∞∑
k=1

k[(a1
k, a2

k) + (b1
k, b2

k)],

where

zi = ai
0 +

∞∑
k=1

(ai
k cos kt + bi

k sin kt) (i = 1, 2).

Observe that A−1
2N is also a nonsingular skew symmetric. For each z, y ∈ E, we

define an operator A on E by extending the bilinear form

〈Az, y〉 =
∫ 2π

0

(A−1
2Nz′(t), y(t)) dt.
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It is not difficult to check that the operator A is a bounded self-adjoint linear
operator on E. For any z ∈ E, a direct computation yields that

Az =
∞∑

k=1

(A−1
2Nbk cos kt−A−1

2Nak sin kt).

For each z ∈ E we define a functional φ on E by

φ(z) =
1
2
〈Az(t), z(t)〉 −

∫ 2π

0

H∗(t, z(t)) dt.

It is well known that critical points of φ are solutions of the system (3.8). Hence,
finding periodic solutions of the system (3.8) is equivalent to seeking critical
points of φ.

For any α ∈ R and z, y ∈ E, we define another operator Bα on E by

(4.1) 〈Bαz, y〉 = −
∫ 2π

0

(αMz(t), y(t)) dt.

Then Bα is also a bounded self-adjoint linear operator on E. Moreover, Bα is
compact and from a direct check, we have for any z ∈ E,

(4.2) Bαz = −αMa0 +
∞∑

k=1

1
k

(−αMak cos kt− αMbk sin kt).

Combining (4.1) and (4.2), for any z(t) ∈ E, one has

(4.3) (A + Bα)z(t) = −αMa0

+
∞∑

k=1

((
A−1

2Nbk −
1
k

αMak

)
cos kt +

(
−A−1

2Nak −
1
k

αMbk

)
sin kt

)
.

Lemma 4.1. Suppose that (H1) and (H3) hold. Then the functional φ satis-
fies

‖φ′(z)− (A + Bα0)z‖ = o(‖z‖) as ‖z‖ → 0,(4.4)

‖φ′(z)− (A + Bα∞)z‖ = o(‖z‖) as ‖z‖ → ∞.(4.5)

Proof. From (3.9), for any r̃ > 0, there exists a constant C(r̃) (here and in
the following C denotes various constants) such that

|∇xH∗(t, x)− α0Mx| ≤ r̃|x|+ C(r̃)|x|2, for each x ∈ R2N .

Note that

φ(z) =
1
2
〈(A + Bα0)z(t), z(t)〉 −

∫ 2π

0

(H∗(t, z(t))− 1
2
(α0Mz(t), z(t))) dt.

We have

‖φ′(z)− (A + Bα0)z‖ ≤ C‖∇zH
∗(t, z)− α0Mz‖ ≤ C(r̃‖z‖+ C(r̃)‖z‖2),
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which means (4.4). By (3.10), we have

|∇xH∗(t, x)− α∞Mx| ≤ r̃|x|+ C(r̃), for each x ∈ R2N .

Observing that

φ(z) =
1
2
〈(A + Bα∞)z(t), z(t)〉 −

∫ 2π

0

(H∗(t, z(t))− 1
2
(α∞Mz(t), z(t))) dt,

one has

‖φ′(z)− (A + Bα∞)z‖ ≤ C‖∇zH
∗(t, z)− α∞Mz‖ ≤ C(r̃‖z‖+ C(r̃)).

Thus, we get (4.5). �

In order to obtain solutions of (3.8) with the symmetric structure (2.2), we
define the following 2N × 2N matrix T2N by

T2N =


1 −1 . . . 1 −1
1 0 . . . 0 0

0 1
. . .

...
...

...
...

. . . 0 0
0 0 0 1 0

 .

For any z(t) ∈ E, define an action on z by

δz(t) = T2Nz(t− τ).

Then by a direct computation we have that δ2N+1z(t) = −z(t − (2N + 1)τ),
δ4N+2z(t) = z(t) and G = {δ, δ2, . . . , δ4N+2} is a compact group action over E.
It is not difficult to see that if δz(t) = z(t) holds, then z(t) has the symmetric
structure (2.2).

We claim that a solution y of (2.3) also has the symmetric structure (2.2)
when δz(t) = z(t) holds, where z is a solution of (3.8). Hence, the solution y gives
a solution to (1.1). By y = Ψ(t, z), we only need to show that Ψ(t, δz) = δΨ(t, z),
i.e. Ψ is G-invariant with respect to z. In fact, note that A2NM can commute
with T2N and T2N is isometric, i.e. |T2Nw|2 = |w|2. We set z̃(s) = Ψt(s, T2Nw),
ỹ(s) = Ψt(s, w). Then

dz̃(s)
ds

=A2N{Γ0(t)MT2Nwρ1(|w|2) + Γ0(t)〈Mw,w〉ρ′1(|w|2)T2Nw

+ Γ∞(t)MT2Nwρ2(|w|2) + Γ∞(t)〈Mw,w〉ρ′2(|w|2)T2Nw}
=T2NA2N{Γ0(t)Mwρ1(|w|2) + Γ0(t)〈Mw,w〉ρ′1(|w|2)w

+ Γ∞(t)Mwρ2(|w|2) + Γ∞(t)〈Mw,w〉ρ′2(|w|2)w} = T2N
dỹ(s)
ds

,

this, jointly with Ψt(0, T2Nw) = T2Nw = T2NΨt(0, w) shows that T2NΨt(s, w) =
Ψt(s, T2Nw), i.e. Ψ(t, δz) = δΨ(t, z).
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Set SE = {z ∈ E : δz(t) = z(t)} and write βk = 2k − 1. Then by a similar
proof with Lemma 2.1 of [8], one has:

SE =
{

z(t) =
∑
k=1

(ak cos(2k − 1)t + bk sin(2k − 1)t) :(
ak

bk

)
∈ span

{(
uk

wk

)
,

(
−wk

uk

)}}
,

where

uk =(1, cos βk, cos(2βk), . . . , cos((2N − 1)βk))T ,

wk =(0, sinβk, sin(2βk), . . . , sin((2N − 1)βk))T .

Let Ω = {Pm : m = 1, 2, . . . } be a sequence of orthogonal projections. Ω is
called a Galerkin approximation scheme with respect to the operator A + Bα, if
it satisfies the following properties:

(1) The image of Pm, as a subspace of E, has finite dimension;
(2) Pmz → z as m →∞ for any z ∈ E;
(3) Pm commutes with A + Bα.

We now define a subspace Em of E by

Em =
{

z(t) : z(t) = a0 +
m∑

k=1

(ak cos kt + bk sin kt)
}

.

Let SEm = Em∩SE and Pm:E → SEm be the orthogonal projection. One may
check easily that Pm satisfies the above properties (1)–(3). Therefore, Ω = {Pm :
m = 1, 2, . . . } is a Galerkin approximation method with respect to A + Bα.

Let Am and φmbe the restrictions of A and φ on SEm, respectively. We have
the following important lemma.

Lemma 4.2. Let (H1) and (H2) hold. If i0(α∞M) = 0, then

(a) φ satisfies (PS)∗ condition over E, i.e. every sequence {zj} ⊂ E with
zj ∈ SEj, φj(zj) → 0 and φj(zj) being bounded, possesses a convergent
subsequence.

(b) φj satisfies (PS) condition, i.e. every sequence {zi} ⊂ SEj, φj(zi) → 0
and φj(zi) being bounded, possesses a convergent subsequence.

Proof. Note that i0(α∞M) = 0 yields that A+Bα∞ has a bounded inverse.
Then the proof is standard. �

Observe that our functional φm acts on the finite dimensional space SEm.
The following two theorems were well known results in critical point theory(see
[1], [3], [18]) and will be used in our arguments.
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Theorem 4.3. Let φm be a C1 function satisfying (4.4)–(4.5). If

M0(Am + PmBα0Pm) = M0(Am + PmBα∞Pm) = 0

and M−(Am + PmBα0Pm) 6= M−(Am + PmBα∞Pm), then φm has at least one
nontrivial critical point.

Theorem 4.4. Let φm be a C2 function satisfying (4.4)–(4.5). If

M0(Am + PmBα∞Pm) = 0

and M−(Am + PmBα∞Pm) /∈ [M−(Am + PmBα0Pm),M−(Am + PmBα0Pm) +
M0(Am + PmBα0Pm)], then φm has at least one nontrivial critical point.

Notice that i0(αM) = 0 means that A + Bα is invertible, A and B are both
linear self-adjoint operators. Moreover, B is compact. Then with the same proof
as Lemma 2.3 of [18], we have the following lemma.

Lemma 4.5. If i0(αM) = 0, then

M−(Am + PmBαPm)−M−(Am) = M−(Ak + PkBαPk)−M−(Ak)

for m, k large enough.

For the linear compact operator Bα, we define

I−(Bα) = {k = M−(Am + PmBαPm)−M−(Am), for infinitely many m},
I0(Bα) = {k = M0(Am + PmBαPm), for infinitely many m}.

Let

I−(φ,∞) = I−(Bα∞), I−(φ, 0) = I−(Bα0);

I0(φ,∞) = I0(Bα∞), I0(φ, 0) = I0(Bα0).

By Lemma 4.5, the indices above are well defined. Now we prove the following
lemma.

Lemma 4.6. Let φ|SE be the restriction of φ over SE. Then with respect to
the approximation scheme Ω, one has

I−(φ|SE , 0) =
∞∑

k=1

(M−(Tk(α0M))− 2N) = i−(α0M),

I−(φ|SE ,∞) =
∞∑

k=1

(M−(Tk(α∞M))− 2N) = i−(α∞M),

I0(φ|SE , 0) =
∞∑

k=1

M0(Tk(α0M)) = i0(α0M).
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Proof. Note that

SEm = SE ∩ Em =
{

z(t) : z(t) =
m∑

k=1

(ak cos(2k − 1)t + bk sin(2k − 1)t)
}

.

For k ≥ 1, set

SE(k) = {z(t) = ak cos(2k − 1)t + bk sin(2k − 1)t}.

Then SEm = SE(1) ⊕ SE(2) . . . ⊕ SE(m) and SE =
⊕∞

k=1 SEk. It follows
from the definition of the negative Morse index of Tk(α0M) and (4.3) that the
dimension of the negative eigenspace of the operator Am +PmBα0Pm on SEm =⊕m

j=1 SE(j) is equal to
∑m

k=1(M
−(Tk(α0M)). For α0 = 0, M−(Tk(α0M) = 2N .

Therefore, the formula

I−(φ|SE , 0) =
∞∑

k=1

(M−(Tk(α0M))− 2N) = i−(α0M)

holds. The other formulas hold similarly. �

5. Proof of the main results

We are now ready to give the proofs of our results. We first prove Theo-
rem 3.1.

Proof of Theorem 3.1. As we already pointed above, critical points of
φ in SE are indeed nonconstant classic 2π-periodic solutions of (2.3) with the
symmetric structure (2.2), and hence they give solutions of (1.1) with the prop-
erty x(t− (2N + 1)τ) = x(t− π) = −x(t). Therefore, we will seek critical points
of φ in SE, i.e. critical points of φ|SE .

Set g∞(z) = φ|SE(z) − (1/2)〈(A + Bα∞)z, z〉. Under the assumptions of
Theorem 3.1 and by (4.5), for ε = (1/2)‖(A+Bα∞)−1‖−1, there is a large R > 0
such that

‖g′∞(z)‖ < ε‖z‖ for ‖z‖ > R.

That yields

‖φ′|SE(z)‖ ≥ ‖(A + Bα∞)−1‖−1‖z‖ − ‖g∞(z)‖ > ε‖z‖ for ‖z‖ > R.

This means φ|SE has no critical points outside the ball

BR = {z ∈ SE : ‖z‖ < R}.

Let g0(z) = φ|SE(z)− (1/2)〈(A + Bα0)z, z〉. Since A + Bα0 has bounded inverse
and ‖(I − Pm)Bα0‖ → 0 as m → 0, there exists a constant C such that ‖(Am +
PmBα0Pm)−1‖ < C. By (4.4), we can take r small enough with r < R such that

‖g′0(z)‖ <
1

2C
‖z‖ for ‖z‖ < r.
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Thus, for m large enough and for z ∈ SEm with ‖z‖ < r, one has

‖φ′|SE(z)− (Am + PmBα0Pm)(z)‖ ≤ ‖g′0(z)‖ <
1

2C
‖z‖

<
1
2
‖(Am + PmBα0Pm)−1‖−1‖z‖.

From the above inequality, we get

‖φ′|SE(z)‖ > ‖(Am + PmBα0Pm)(z)‖ − 1
2
‖(Am + PmBα0Pm)−1‖−1‖z‖

> ‖(Am + PmBα0Pm)−1‖−1‖z‖ − 1
2
‖(Am + PmBα0Pm)−1‖−1‖z‖

=
1
2
‖(Am + PmBα0Pm)−1‖−1‖z‖.

Therefore, 0 is the unique critical point φ|SE inside the ball Br = {z ∈ SE :
‖z‖ < r}.

By Lemma 4.6, M−(Am + PmBα0Pm) 6= M−(Am + PmBα∞Pm). Then
Lemmas 4.1 and 4.3 yield φm has a nontrivial critical point zm inside the annular
area Θ = {z : r < ‖zm‖ < R}. By Lemma 4.2, φ|SE satisfies the (PS)∗ condition.
Hence, {zm} has a subsequence convergent to a point z, which is just a critical
point of φ|SE inside Θ = {z : r < ‖z‖ < R}. �

Proof of Theorem 3.2. Let (A+Bα0)|SE denote the restriction of A+Bα0

over SE. Noting that M0(Tm(α0)) = 0 for m large enough, the null space of
(A + Bα0)|SE can be included in SEm. Thus, there is a constant C such that

‖(Am + PmBα0Pm)]‖ < C for m large enough,

where (Am + PmBα0Pm)] denotes the inverse of Am + PmBα0Pm restricted in
the range of Am + PmBα0Pm. By (4.4) we can take a small r such that

‖φ′′m(z)− (A + Bα0)‖ ≤
1

2C
as ‖z‖ < r.

As ‖z‖ < 2r one has

‖φ′′m(z)− (Am + PmBα0Pm)‖ ≤ ‖φ′′m(z)− (A + Bα0)‖

≤ 1
2C

<
1
2
‖(Am + PmBα0Pm)]‖−1.

Then by a similar argument with [4, Theorem 1.3], we have the fact that if φm

has critical points, then at least one of them is outside Br. By Lemma 4.6, we
have for m large enough

M−(Am + PmBα∞Pm)

/∈ [M−(Am + PmBα0Pm),M−(Am + PmBα0Pm) + M0(Am + PmBα0Pm)].

Hence, Lemma 4.4, jointly with Lemma 4.1 and the proof of Theorem 3.1 yields
that φm has a nontrivial critical point zm inside the annular area Θ = {z : r <
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‖zm‖ < R}. By Lemma 4.2, φ|SE satisfies the (PS)∗ condition. Therefore, {zm}
has a subsequence convergent to a point z, which is just a critical point of φ|SE

inside Θ = {z : r < ‖z‖ < R}. �
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