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GRAVITY SOLITARY WAVES BY MINIMIZATION:
AN UNCOUNTABLE FAMILY

Boris Buffoni

Abstract. We improve and simplify the minimization method for soli-

tary waves in two cases: firstly, when the surface tension is weak (that is,

the Bond number is < 1/3) and the depth is finite, and secondly, when the
depth is infinite. In a previous work on the first case, minimizers were shown

to exist for a sequence tending to 0 of values of the horizontal impulse. The

main difficulty is that strict subadditivity in the concentration-compactness
method is unsettled. Here we observe in both examples that strict subaddi-

tivity nevertheless holds for a set of horizontal impulses of positive measure
and the related propagation speeds are estimated from above.

1. Introduction

In the Euclidean plane, consider an horizontal layer of perfect fluid that
is inviscid, of constant density and submitted to constant downward gravity.
The upper boundary is free, submitted to surface tension and described by the
graph of a map (τ, x) → η(τ, x), where τ is time and x the horizontal variable.
Its depth is either finite with flat horizontal bottom (first example) or infinite
(second example). We are interested in the case η → 0 as x→ ±∞ and the flow
is irrotational.
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As observed by Zakharov [17], the problem has an Hamiltonian structure: if
(τ, x) → ξ(τ, x) is the trace of the velocity potential on the upper surface, then,
formally,

∂τη = ∂ξH(η, ξ), ∂τξ = −∂ηH(η, ξ),

where (η, ξ) → H(η, ξ) is the nonlinear and nonlocal functional that gives the
total energy (depending on the velocity, gravity and surface tension), and ∂ξ and
∂η denote functional derivatives.

The total horizontal momentum P(η, ξ) (that is, the integral of the horizontal
velocity below the surface) is preserved, which means that ∂τP(η, ξ) = 0. The
profiles (η0, ξ0) := (η(0, · ), ξ(0, · )) at times τ = 0 of solitary waves with given
P can be found as critical points of (η0, ξ0) → H(η0, ξ0) under the constraint
P(η0, ξ0) = P0, where P0 is any small positive constant. Given η0, let ξ0 = ξ0(η0)
minimize ξ0 → H(η0, ξ0) under the constraint P(η0, ξ0) = P0. Solitary waves can
then be found by minimizing the functional η0 → H(η0, ξ0(η0)). After a nonlocal
transformation η0 → u [1], [2], [10] and considering some appropriate multiple
µ > 0 of P0, we are lead to the following nonlinear functional

u→ Jµ(u) := K(u) +
µ2

L(u)

defined for u 6= 0 in a small ball

U = {u ∈W 2,2(R) : ‖u‖W 2,2(R) < r}, r > 0.

We assume K and L to be C1 on U endowed with the W 2,2(R)-topology (this
can be proved for the two particular examples). The critical points of Jµ satisfy

K′(u) =
µ2

L(u)2
L′(u).

The stability problem for Jµ is to show that its set of minimizers is not empty and
that each minimizing sequence tends to the set of minimizers. See [4] for more
explanation and the relationship between Jµ and Smale’s amended potentials
[15], [16]. In what follows, the spatial variable t is related to x by some nonlocal
transformation.

In the first example, K(u) and L(u) are given by

K(u) =
∫

R

{
β

√
u′2 + (1 +Nu)2 − β(1 +Nu) +

1
2
u2(1 +Nu)

}
dt

and
L(u) =

1
2
Λ

∫
R
u ·Nudt,

where β ∈ (0, 1/3) is a fixed parameter, N :W 1,2(R) → L2(R) is the non-local
operator defined via Fourier’s transform by

N̂u(s) =
s cosh s
sinh s

û(s),
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and the constant

Λ = min
{

(βs2 + 1)
sinh s
s cosh s

: s ≥ 0
}
> 0

enforces the normalization property (2.1) below (we set sinh(s)/s = 1 at s = 0).
The critical points of Jµ correspond in this example to solitary capillary-

gravity water waves on a two-dimensional ocean of finite depth when the surface
tension is weak. The parameter β ∈ (0, 1/3) is the Bond number (a dimensionless
combination of various physical quantities, including gravity and surface tension,
that is fixed in all what follows). The parameter µ > 0 is proportional to the
total horizontal impulse and the propagation speed is proportional to µ/L(u)
(the proportionality constant being independent of µ and the critical point u).

For this example, it can be shown like in [4] that the stability problem is
indeed related to conditional stability of solitary water waves. See also [14] for
an approach to stability based on center-manifold theory and that introduced
the main concepts used in [4]–[6].

In the second example,

K(u) =
∫

R

√
u′2 + (1 +Hu′)2 − (1 +Hu′) dt+

1
2

∫
R
u2(1 +Hu′) dt

=
∫

R

u′
2
dt√

u′2 + (1 +Hu′)2 + (1 +Hu′)
+

1
2

∫
R
u2(1 +Hu′) dt,

L(u) =
∫

R
uHu′ dt,

where H:L2(R) → L2(R) is the Hilbert transform, defined by

Ĥv(s) = −isgn(s)v̂(s), v̂(s) =
1√
2π

∫
R
e−itsv(t) dt.

If r is small enough, the denominator in K is positive, thanks to ||u||L∞(R) ≤
Const ||u||W 1,2(R) by a standard Sobolev’s embedding, and to the fact that the
Hilbert transform is a bounded operator in L2(R) (in fact H preserves the norm).

Concerning the second example, Iooss and Kirrmann [11] proved the ex-
istence of at least two even solitary waves on the surface of a two-dimensional
ocean of infinite depth, with the help of normal form theory for reversible infinite-
dimensional dynamical systems. Later, in [5], we showed the existence by a vari-
ational method of a solitary wave, offering in this way an alternative method.
However, the variational nature of the solution was unclear because, in the proof,
there was a loss of information when taking limits of minimizing sequences.

In this paper we follow the minimization approach of [4], [6], so that the
solitary waves we now find are really minimizers of the functional Jµ. The
present approach is also more efficient than the one in [6] because it leads to
a minimizer of Jµ for a set of values of µ that is of positive Lebesgue’s measure,
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whereas in [6] the set was only shown to be countable. Moreover, for these
values of µ, the stability problem can be solved. The main ingredient is the
concentration-compactness method [12], [13], as in the stability analysis in [9].

Let us now state precisely the stability property (ST) that we shall prove in
both examples for a measurable set of values of µ that has positive Lebesgue’s
measure (assuming moreover that r is small enough).

Stability property (ST) at µ > 0. The set of minimizers of Jµ defined
on U \ {0} is not empty and, for all minimizing sequences {un} satisfying

(1.1) lim sup
n→∞

‖un‖W 2,2(R) < r,

the L2(R)-distance between un and the set of minimizers tends to 0 as n→∞.

It is explained in [4] that, in the first example, property (ST) indeed implies
some kind of weak conditional stability of the set of solitary waves corresponding
to the minimizers of Jµ.

In each example, once it is known that Jµ has a minimizer u ∈ U \{0} (with
r small), more information on u could be obtained by studying the equation
K′(u) = (µ2/L(u))L′(u), like the regularity of u and its asymptotic behavior
(see e.g. [3]). However, it is unsettled if t→ u(t) is even with respect to some t,
like the solitary waves obtained in [11] in the second example.

Note added in proof. In a joint work with Mark Groves and Shu-Ming
Sun (B. Buffoni, M. Groves and S.-M. Sun, Existence and conditional energetic
stability of three-dimensional fully localised solitary gravity-capillary water waves,
preprint), we establish the existence and conditional energetic stability of 3D
fully-localized waves for all small values of the horizontal impulse, extending in
this way a previous work by M. Groves and S.-M. Sun (M. Groves and S.-M. Sun,
Fully localised solitary-wave solutions of the three-dimensional gravity-capillary
water-wave problem, Arch. Rational Mech. Anal. 188 (2008), 1–91). In this case,
we carefully analyze the minimizing sequences of some penalized functional and
build a particular minimizing sequence made of functions behaving appropriately
at infinity. This allows us to show strict subadditivity.

2. List of hypotheses

Remember that K and L are assumed to be C1 on U endowed with the
W 2,2(R)-topology. The following additional hypotheses are satisfied in both ex-
amples.

Regularity hypothesis (R) on K,L. K and L are continuous on U en-
dowed with the topology induced from L2(R).
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Remark 2.1. This hypothesis holds true for both examples (if r is small
enough) because of the estimate

||u′||L∞(R) + ||Nu||L∞(R) + ||Hu′||L∞(R) ≤ Const ||u||W 2,7/4(R)

and the fact that convergence to 0 in L2(R) of any sequence bounded in W 2,2(R)
implies convergence to 0 in W 2,7/4(R). In fact, in both examples, L is quadratic
and K is analytical if r is small enough, but only continuity is used in this paper.
As U is bounded in W 2,2(R), hypothesis (R) implies that K and L are continuous
on U endowed with the topology induced from W 2,s(R) for any fixed 0 < s < 2.

Coercivity hypothesis (C) of K, L. For all u ∈ U \ {0}

0 < L(u) ≤ Const and K(u) ≥ Const
∫

R
u2 dt

for some positive constant.

Remark 2.2. It clearly holds in both examples if r is small enough.

Hypothesis (BMS): existence of a sufficiently Bounded Minimizing
Sequence. There exists a minimizing sequence {un} ⊂ U \ {0} of Jµ such that

lim sup
n→∞

‖un‖W 2,2(R) < r.

Remark 2.3. If r is small enough, such a minimizing sequence exists in
both examples for all values of µ that are small enough. However, our proof
that such a minimizing sequence exists is involved. For the first example (where
β ∈ (0, 1/3)), the proof is almost the same as the proof of Lemma 16 in [4] for
the case β ≥ 1/3. The proof for the second example is similar, but slightly more
complicated (see the Appendix). Note that, in both case, the proof relies heavily
on Theorem 1 in [4], which is related to the previous works [7], [8]. We shall need
the existence of such a minimizing sequence to show that the set of minimizers
is not empty for many values of µ.

Hypothesis (NV): non vanishing of every minimizing sequence {un}
⊂ U \ {0} of Jµ.

lim inf
n→∞

{max
t
|un(t)|+ max

t
|u′n(t)|} > 0.

Remark 2.4. For such a sequence {un}, (3.1) below holds too if each un is
shifted in t appropriately. An important step in the concentration-compactness
method is to prove it for every minimizing sequence (see [12], [13] where the
idea is explained in a more general setting). The proof for the first example can
be found in [4] and the proof for the second example is similar (µ and r small
enough).

Let c(µ) = inf{Jµ(w) : w ∈ U \ {0}}
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Subcriticallity hypothesis (SUB-C) on c.

lim
µ→0+

c(µ)
µ

= 2 and ∃µ0 > 0 ∃κ > 0 ∀µ ∈ (0, µ0] c(µ) ≤ 2µ− κµ3.

Remarks 2.5. This implies L(0) = 0. The value 2 appearing as limit in
(SUB-C) is, in both examples, related to the fact that

(2.1) inf
u 6=0

K′′(0)(u, u)
2L(u)

= 1.

Indeed, in the first example, K′′(0)(u, u) =
∫

R(βu′2 + u2) dt and in the second
K′′(0)(u, u) =

∫
R(u′2 + u2) dt. In the first example, Λ in the definition of L is

chosen in such a way that (2.1) holds. Property (2.1) also holds in the second
example, as it is easy to check by working with Fourier’s transform. (SUB-C)
holds for the first example, as proved in [6] with the help of a “test function”.
In the Appendix, we shall sketch the proof that (SUB-C) holds in the second
example too. In both examples, (SUB-C) is in fact used to prove that hypothesis
(BMS) holds and to show the non-vanishing hypothesis (NV). Finally, in the
proof of our main result, it is used to check that strict subadditivity holds for
many values of µ (see (SUB-A) below).

Splitting hypothesis (SP). If the sequence {un} ⊂ U satisfies (1.1) and
converges weakly to some w∞ ∈ U , then, replacing {un} by one of its subsequence
if necessary, there exist two sequences {u1,n} ⊂ U and {u2,n} ⊂ U such that:

(a) for all n ∈ N and j ∈ {1, 2}, the function uj,n has compact support
supp(uj,n) ⊂ R;

(b) limn→∞ dist(supp(u1,n), supp(u2,n)) = ∞;
(c) limn→∞(K(un)−K(u1,n)−K(u2,n)) = 0;
(d) limn→∞(L(un)− L(u1,n)− L(u2,n)) = 0;
(e) limn→∞ ‖u1,n + u2,n − un‖L2(R) = 0;
(f) un ⇀ w∞ weakly in W 2,2(R) and limn→∞ ‖u1,n − w∞‖L2(R) = 0 for

some w∞ ∈W 2,2(R).

Remarks 2.6. The splitting property is a key ingredient in the concentra-
tion-compactness method [12], [13]. It holds for the first example if r > 0 is small
enough, as proved in Theorem 4 in [4]. It also holds for the second example, the
proof being the same, but equation (19) in [5] is used instead of equation (15)
in [4]. In 3U , all the norms W s,2(R) are equivalent for 0 ≤ s < 2. Hence,
in the statement, the L2(R)-norm can be replaced by any W s,2(R)-norm with
0 < s < 2. When applying the splitting property, the point is usually to show
that {u2,n} converges to 0 in L2(R).
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3. Results

The following property is also a key ingredient of the concentration-compact-
ness method. It appears as hypothesis in the lemma below and will be shown
to hold in both examples for a measurable set of values of µ that has positive
Lebesgue’s measure (see the proof of the theorem below).

Property (SUB-A) at µ > 0: strict subadditivity. c(µ) < c(µ1)+c(µ2)
for all µ1, µ2 > 0 such that µ1 + µ2 = µ.

Remark 3.1. It is unsettled in our examples if it holds for all small µ.

The concentration-compactness lemma can be stated as follows (see [4], which
deals with Jµ, and [12], [13] for the general case):

Lemma 3.2. Let K,L satisfy the hypotheses (R), (C) and (SP) above, µ >
0 satisfy the strict subadditivity property (SUB-A) and {un} be a minimizing
sequence of Jµ that satisfies (1.1) and

(3.1) lim inf
n→∞

{|un(0)|+ |u′n(0)|} > 0.

Then {un} converges in L2(R), up to a subsequence.

Proof. Let {un} converge weakly to w∞ (after extracting a subsequence if
necessary). Consider the two sequences given by the splitting property. Observe
that

lim
n→∞

K(u1,n) = K(w∞) and lim
n→∞

L(u1,n) = L(w∞)

by (f) of the splitting property and by the regularity hypothesis (R) on K, L.
Moreover, taking subsequences if necessary, the sequences {K(un)} and {L(un)}
can be assumed to converge (since {un} is a minimizing sequence, K remains
bounded along it).

First consider the case

L := lim
n→∞

L(un) > L(w∞).

Set

µ1 = µ
limn→∞ L(u1,n)

L
= µ

L(w∞)
L

and µ2 = µ
limn→∞ L(u2,n)

L
.

Since w∞ 6≡ 0, we know that µ1, µ2 > 0 with µ1 + µ2 = µ (see hypothesis (C)
and (3.1)). By strict subadditivity, we get the contradiction

c(µ) <c(µ1) + c(µ2)

≤ lim
n→∞

{K(u1,n) + µ2
1L(u1,n)−1}+ lim

n→∞
{K(u2,n) + µ2

2L(u2,n)−1}

= lim
n→∞

K(u1,n) + L−2µ2 lim
n→∞

L(u1,n) + lim
n→∞

K(u2,n) + L−2µ2 lim
n→∞

L(u2,n)

= lim
n→∞

{K(un) + µ2L(un)−1} = c(µ).
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Hence we have proved that L = L(w∞). From K ≥ 0 on U , we deduce that

c(µ) ≤K(w∞) + µ2L(w∞)−1 = lim
n→∞

{K(u1,n) + µ2L(un)−1}

≤ lim
n→∞

{K(u1,n) +K(u2,n) + µ2L(un)−1}

= lim
n→∞

{K(un) + µ2L(un)−1} = c(µ),

which shows that the minimum of Jµ in U is attained at w∞. Since, by the co-
ercivity hypothesis (C), K(u2,n) ≥ Const

∫
R u

2
2,n dt (for some positive constant),

we also get that ‖u2,n‖L2(R) → 0 and ‖un − w∞‖L2(R) → 0. �

Our main result is

Theorem 3.3. Let K, L satisfy the hypotheses (R), (C) and (SP), and c

satisfy the subcriticallity hypothesis (SUB-C). Suppose further that, for all small
enough µ, hypotheses (BMS) and (NV) hold. Then there exists a Borelian set
S ⊂ (0,∞) such that

(a) S ∩ (0, δ] has positive Lebesgue’s measure for all δ > 0;
(b) for all µ ∈ S and all minimizing sequences {un} of Jµ in U \ {0}

satisfying (1.1) and (3.1), there exists a subsequence that converges in
U \ {0} with respect to the L2(R)-distance;

(c) the stability property (ST) above holds for all µ ∈ S;
(d) µ/L(w) < 1 for all µ ∈ S and all w ∈ U \ {0} such that Jµ(w) = c(µ),

where c(µ) is the infimum of Jµ on U \ {0} (remember that µ/L(w) is
proportional to the speed of propagation).

By interpolation, the convergence of the subsequence in (b) also holds with
respect to the W 1,2(R) and the W 1,∞(R) distances. Its limit cannot be the
function 0, because of (3.1), and it is therefore a minimizer of Jµ (thanks to the
regularity hypothesis (R)).

In [6], a weaker version of the previous theorem was proved for finite depth
and weak surface tension; namely an analogous set to S was obtained that sat-
isfies the third conclusion of the Theorem but was only shown to contain a
sequence converging to 0, without estimate on µ/L(w).

Proof. In the concentration-compactness method [12], [13], an important
intermediate result is strict subadditivity for all small µ. It is unknown for the
examples considered in this paper if it does indeed hold for all small µ. The
present improvement relies on the observation that if, for some small µ > 0,
the function s → c(s)/s reaches its strict minimum on (0, µ] exactly at µ, then
c(µ) < c(µ1) + c(µ2) for all µ1, µ2 > 0 with µ1 + µ2 = µ. Indeed

c(µ) = µ1
c(µ)
µ

+ µ2
c(µ)
µ

< µ1
c(µ1)
µ1

+ µ2
c(µ2)
µ2

= c(µ1) + c(µ2).
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Let S ⊂ (0, µ0] be the set of such values of µ (µ0 > 0 small enough).
Let us first prove (b) and (c). By Lemma 3.2, if µ ∈ S and {un} is any

minimizing sequence of Jµ in U \ {0} satisfying (1.1) and (3.1), then {un} con-
verges (up to a subsequence) in U \{0} with respect to the L2(R)-distance. This
proves (b).

If {un} satisfies

lim inf
n→∞

{max
t
|un(t)|+ max

t
|u′n(t)|} > 0

instead of (3.1), then the conclusion holds after shifting in t each un. This shows
stability for µ ∈ S and proves (c). See [4], [6].

The subcriticallity hypothesis (SUB-C) shows that lims→0+ c(s)/s = 2− and
that I = {c(s)/s : 0 < s ≤ µ0} is a non-trivial interval (thanks to the continuity
of c, see below) that is included in (0, 2). For t ∈ I, define h(t) = min{τ ∈
(0, µ0] : c(τ)/τ = t}, so that S = {h(t) : t ∈ I}. The map t→ h(t) is a bijection
from I to S, its inverse being the map s → c(s)/s restricted to S. This shows
that S is uncountable and, moreover, that 0 ∈ S because h(t) → 0+ as t→ 2− .

This remark can be improved as follows. First observe that the function
s → c(s)/s is locally Lipschitz on (0, µ0]. Indeed, for all δ ∈ (0, µ0), the map
c is Lipschitz on [δ, µ0] as the infimum of the family of equi-Lipschitz functions
s→ Js(w) (here w such that L(w) > δ/4 is seen as a parameter for the family):

c(s) = inf{Js(w) : ‖w‖W 2,2(R) < r, L(w) > δ/4}.

Note that Js(w) < 2s implies s2/L(w) < 2s and L(w) > s/2 > δ/4.
Thus the map s → c(s)/s sends negligible sets to negligible sets. Since

the function t → h(t) is non increasing on the interval I, its range S is Borel
measurable (in fact S \S is at most countable, like the set of discontinuity points
of h). As the map s→ c(s)/s is locally Lipschitz on S and I has positive measure,
we conclude that S has positive measure. This proves (a).

For µ ∈ S, we also get the estimate µ/L(w) < 1 for all w ∈ U \{0} such that
Jµ(w) = c(µ):

0
µ∈S
≥ lim sup

s→1−
(s− 1)−1

{
c(sµ)
sµ

− c(µ)
µ

}
≥ lim

s→1−
(s− 1)−1

{
Jsµ(

√
sw)

sµ
− Jµ(w)

µ

}
=
d

ds

Jsµ(
√
sw)

sµ

∣∣∣∣
s=1

=
d

ds

K(
√
sw) + s2µ2L−1(

√
sw)

sµ

∣∣∣∣
s=1

=
J ′

µ(w)w
2µ

+
2µ
L(w)

− Jµ(w)
µ

=
2µ
L(w)

− Jµ(w)
µ

.
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Hence
µ

L(w)
≤ c(µ)

2µ
≤ 1− κµ2

2
< 1.

This proves (d). �

In the concentration-compactness, it is usual to prove the following property.

Property (SUB-H) at µ > 0: strict subhomogeneity.

c(t) < sc(s−1t) for all s > 1 and 0 < t ≤ µ.

It is unsettled in our examples if it holds for some small µ. However, in the
proof of the theorem above, a simple modification of it is shown to hold for many
values of µ. Strict subhomogeneity is equivalent to requiring that t→ c(t)/t be
strictly decreasing on (0, µ]. As well known [12], [13], strict subhomogeneity
implies strict subadditivity:

c(µ) = µ1
c(µ)
µ

+ µ2
c(µ)
µ

< µ1
c(µ1)
µ1

+ µ2
c(µ2)
µ2

= c(µ1) + c(µ2)

for all µ1, µ2 > 0 such that µ1 +µ2 = µ. In the first example, it is known to hold
in the case β ≥ 1/3 and µ small. However, in the case of interest in this paper
(that is, β ∈ (0, 1/3)), it is unsettled if it holds.

4. Appendix: the second example

The second example is dealt with in [5], but using a different minimization
procedure and without studying minimizing sequences. Therefore, even if the
computations are similar to those in [4]–[6], we feel that it is worth giving more
details. The critical points of Jµ satisfy

K′(u) =
µ2

L(u)2
L′(u),

the solutions of which correspond to solitary capillary-gravity water waves on
the surface of an ocean of infinite depth. Their propagation speeds are propor-
tional to µ/L(u) (the constant of proportionality being independent of µ and
the minimizer u). For related problems with finite depth, this implies some kind
of weak stability for the set of minimizers as a whole [4], [6], [14], and its seems
likely that some analogous stability result could also be deduced in the present
case.

Let us first sketch the proof that the inequality in the subcriticallity hypoth-
esis (SUB-C) holds:

∃µ0 > 0 ∃κ > 0 ∀µ ∈ (0, µ0] c(µ) ≤ 2µ− κµ3.

For φ, ψ ∈ C∞0 (R) to be chosen later and α > 0 small, we define

u(t) = αφ(αt) cos(t) + α2ψ2(αt) cos 2t
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and µ = L(u). On page 513 in [5], we obtained the following estimates:√
u′2 + (1 +Hu′)2 − (1 +Hu′) =

1
2
u′

2 − 1
2
u′

2Hu′ − 1
8
u′

4 +
1
2
u′

2(Hu′)2 + . . . ,∫
R
u′

2
dt =

α

2

∫
R
φ2 dt+

α3

2

∫
R
φ′

2
dt+ 2α3

∫
R
ψ2 dt+O(α4),∫

R
u2 dt =

α

2

∫
R
φ2 dt+

α3

2

∫
R
ψ2 dt+O(α4),∫

R
uHu′ dt =

α

2

∫
R
φ2 dt+ α3

∫
R
ψ2 dt+O(α4),∫

R
u′

2Hu′ dt =
α3

2

∫
R
φ2ψ dt+O(α4),∫

R
u2Hu′ dt = α3

∫
R
φ2ψdt+O(α4),∫

R
u′

4
dt =

3α3

8

∫
R
φ4 dt+O(α4),∫

R
u′

2(Hu′)2 dt =
α3

8

∫
R
φ4 dt+O(α4).

We deduce

Jµ(u)− 2µ =K(u) +
µ2

L(u)
− 2µ = K(u)− L(u)

=α

{
1
4

+
1
4
− 1

2

} ∫
R
φ2 dt

α3

4

∫
R
φ2 dt

+ α3

{
1 +

1
4
− 1

} ∫
R
ψ2 dt+

α3

4

∫
R
φ′

2
dt

+
(
− 1

4
+

1
2

)
α3

∫
R
φ2ψ dt+

α3

16

∫
R
φ4 dt− 3α3

64

∫
R
φ4 dt+ o(α3).

Setting ψ = −Aφ2 for some constant A, we thus get

Jµ(u)−2µ = α3

{
1
4

∫
R
φ2 dt+

1
4

∫
R
φ′

2
dt

}
+α3

(
1
4
A2−1

4
A+

1
64

) ∫
R
φ4 dt+o(α3).

We can now choose A > 0 such that

1
4
A2 − 1

4
A+

1
64

< 0

and then φ such that

1
4

∫
R
φ2 dt+

1
4

∫
R
φ′

2
dt+

(
1
4
A2 − 1

4
A+

1
64

) ∫
R
φ4 dt < 0.

Moreover,

µ =
α

2

∫
R
φ2dt+O(α3).
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This clearly implies

∃µ0 > 0 ∃κ > 0 ∀µ ∈ (0, µ0] c(µ) ≤ 2µ− κµ3.

Finally let us explain how to get a bounded minimizing sequence as in hypothesis
(BMS). Remember equation (19) in [5]: there exists a constant C > 0 such that

|Hu′(t)| ≤ C{1 + dist(t, supp(u))}−3/2‖u‖W 2,2(R)

for all u ∈ W 2,2(R) with compact support (C being independent of the size of
the support). For the first example, a larger power than 3/2 is available (see
equation (15) in [4]) and this larger power is used in the method of [4] to prove
(BMS).

To get a larger power, instead of Hu′ we consider Nεu defined as follows. For
u ∈W 2,2(R) and small ε > 0 ,

N̂εu(s) :=
s cosh(s/ε)
sinh(s/ε)

û(s).

The operator Nε is related to the water-wave problem when the depth is finite
and proportional to 1/ε.

We then get an analogous estimate as (15) in [4]. Namely, for all n ≥ 1, there
exists a constant Cε,n > 0 such that, for all u ∈ W 2,2(R) with compact support
supp(u),

|Nεu(t)| ≤ Cε,n{1 + dist(t, supp(u))}−n+(1/2)

{ ∫
supp(u)

(u− u′′)2 ds
}1/2

(Cε,n is independent of the size of the support). Moreover,

lim
ε→0+

sup
{∣∣∣∣ s cosh(s/ε)

sinh(s/ε)(1 + s2)1/2
− |s|

(1 + s2)1/2

∣∣∣∣ : s ∈ R∗
}

= 0

and therefore

lim
ε→0+

sup{||Nεu−Hu′||W 1,2(R) : u ∈W 2,2(R), ||u||W 2,2(R) ≤ 1} = 0.

For fixed small µ > 0, we now apply the method of Theorem 2.1 in [6] and of
Lemma 9 in [4] to the functionals u→ Lε(u) := Λε

∫
R u·Nεu dt, Kε obtained from

K by replacing each occurrence of H′ by Nε, and Jµ,ε(u) = Kε(u) + µ2Lε(u)−1.
The constant

Λε = min
{

(s2 + 1)
sinh(s/ε)
s cosh(s/ε)

: s ≥ 0
}
> 0

is chosen such that

inf
u 6=0

K′′ε (0)(u, u)
2Lε(u)

= 1.
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It satisfies limε→0+ Λε = 2. Clearly Jµ,ε is defined on U \ {0} too (if ε > 0 is
small enough) and

lim
ε→0+

sup{|Jµ,ε(u)− Jµ(u)| : u ∈ U, L(u) > µ/4} = 0.

Hence, in the proof of Theorem 2.1 in [6], the test function u above for Jµ can
also be used for Jµ,ε if ε is small enough. As in Lemma 9 in [4], for small fixed
µ > 0 and all small enough ε > 0, we get a minimizing sequence {un,ε} ⊂ U \{0}
of Jµ,ε such that

lim sup
ε→0+

lim sup
n→∞

||un,ε||W 2,2(R) < r.

It is then easy to get a minimizing sequence {un} ⊂ U \ {0} of Jµ such that

lim sup
n→∞

||un||W 2,2(R) < r.
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