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MINIMIZERS AND SYMMETRIC MINIMIZERS
FOR PROBLEMS WITH CRITICAL SOBOLEV EXPONENT

SHOYEB WALIULLAH

ABSTRACT. In this paper we will be concerned with the existence and non-
existence of constrained minimizers in Sobolev spaces D*:?(RY), where the
constraint involves the critical Sobolev exponent. Minimizing sequences
are not, in general, relatively compact for the embedding D*?(RN) —
" (RN, Q) when @ is a non-negative, continuous, bounded function. How-
ever if @) has certain symmetry properties then all minimizing sequences
are relatively compact in the Sobolev space of appropriately symmetric
functions. For @ which does not have the required symmetry, we give a
condition under which an equivalent norm in D*P(RN) exists so that all
minimizing sequences are relatively compact. In fact we give an example of
a @ and an equivalent norm in D’“’(]RN) so that all minimizing sequences
are relatively compact.

1. Introduction

In this paper we will be concerned with the existence and non-existence of
constrained minimizers in Sobolev spaces D¥?(R™), where p > 1 and the con-
straint involves the critical Sobolev exponent. It is well known that such mini-
mizers correspond to non-trivial solutions of nonlinear elliptic partial differential
equations. After the minimization problem has been formulated one can easily
state conditions under which non-trivial solutions to the minimization problem
will not exist. One can then go on to state conditions under which the problem
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will have a solution. In general these conditions are not easy to check, but in
some cases this can be done.

We would also like to mention that some of the problems we look at here
have already been considered by other authors, but our method is technically
somewhat simpler.

The paper is organized as follows. We initially consider the problem of find-
ing a minimizer associated with the embedding D*?(RY) < LP" (RN, Q), with
the usual norm in D*P?(RY). To this end, we use some preliminary results to es-
tablish the well known concentration-compactness lemma. We then give a proof
of the known result, that minimizers in general do not exist if @) is not constant
and @ > 0, and in this case minimizing sequences concentrate at the maximum
of Q. However, such concentration does not take place if () has certain symme-
try properties, which will be defined later on, and provided we can show that a
certain inequality is strict. Examples show the existence of @ so that the afore
mentioned inequality is strict. In Section 7 we apply our results to nonlinear
partial differential equations to show the existence of solutions. There, we derive
some more conditions on @ so that solutions to the partial differential equations
exist, and give results which are similar to results given in [6].

In the section following that one we obtain results concerning the weighted
Sobolev embedding D*?(RN, H) < LP" (RN, Q), where we choose the weight H
to be a continuous bounded positive function such that inf, cpv H > 0. This
ensures that D*?(RN | H) is just the space D*?(R") equipped with an equivalent
norm. We proceed by first proving the existence of minimizers, provided a certain
condition is satisfied. An example is then provided to verify the existence of
functions H and @ so that the above mentioned condition is satisfied. Before
ending the section with a treatment of the symmetric case, we give conditions
under which minimizers do not exist.

The final section is devoted to problems with singular weights. These prob-
lems arise from the well-known Caffarelli-Kohn—Nirenberg inequality. Our work
here is related to the work in [33] and [11].

2. Notation and conventions

In order to prevent ourselves from repeating let us state here some notation
and conventions we will use throughout this paper. @ will denote a continuous,
bounded, non-negative function in RY. Qg := Q(0), Qoo := mm%o Q(z) and if
we write Qoo = lim|;| 00 @(2) we assume that the limit exists. This distinction
is made because many of our results do not require the existence of this limit.

We will denote by G any closed subgroup of O(N), the group of orthogonal
transformations. Let G, = {gz : ¢ € G} be the orbit of z; |G| denote the
number of elements in G, and |G| := 1. Note that we necessarily have |Go| = 1.
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As usual, D*P(RV) is the completion of C§°(RY) under the norm

1/p
(21) 9 uly = ([ 194l a )
RN

and |VFulP := 2 jal=k D ulP.
The equivalent norm for 1 < p < oo which will be useful is the following one:

[(=A)*/ 2], if k is even,

(2.2)
[V (=A)E=D/ 2y, if k is odd.

This is a consequence of the inequality ||VZu||, < C||Aul|,, which can be found
in [25], [27], [17]. Since many of our results are independent of the norm used
in D*P(RY), we will denote both of them by ||ulx,,. Where necessary we will
specify which norm is being used.

For the sake of convenience we will write LP(RY Q) = LP(Qdxz) where the
norm is denoted by [|ul|,.q = ([ [u[PQ dz)'/P. Also we will usually write [, u in-
stead of fQ u(x) dz, and if no region of integration is mentioned then the integra-
tion is to be taken over RY. Further, following the notation used in distribution
theory, we will use the symbol p(¢) to mean [, ¢d.

3. Preliminary remarks

We will begin by considering the following minimization problem:
(3.1) S = inf {||u||2’p tu € DFP(RY), /Q|u\P* - 1},

where p* := Np/(N — kp) is the critical Sobolev exponent and pk < N. As we
have mentioned, one can use any one of the norms (2.1) or (2.2) in (3.1).

REMARK 3.1. By applying the Lagrange multiplier method, we see that any

properly normalized minimizer of (3.1), when k = 1, solves
= 32 DD D) = Q@)lul” 2,
lee|=1
if we use the norm in (2.1) and
—div(|Vul|P~2Vu) = Q(z)|ulP” ~2u,

if we use the norm in (2.2). Of course, the value of the constant S depends on
the norm as well.

REMARK 3.2. For general ) we will show that minimizers of (3.1) usually
do not exist. This is a well-known fact which can be deduced from the work
of P.-L. Lions [23], [24]. Our motivation for presenting it here is to show the
contrast between the results when ) does and does not have any symmetry.
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When (@ is invariant under the action of G we have the following minimization
problem

(3.2) S = inf {||u||g,p cu e DEP(RY), /Q|u\p* - 1}.

Here D5P(RYN) is the subspace of D¥?(RN) consisting of functions which are G-
symmetric (or G-invariant). We say that u: RY — R is G-symmetric if u(gx) =
u(r) for all ¢ € G and almost every # € RY. In the sequel the minimizers
of (3.2) will be called symmetric minimizers. We note that by the principle of
symmetric criticality [34, Theorem 1.28] minimizers of the above problem also
give us solutions to partial differential equations.

The partial differential equation associated with (3.2) was studied in [6] when
p = 2, k = 1 and the second norm was used. There the authors used the
mountain-pass theorem and the principle of symmetric criticality to show the
existence of G-symmetric solutions. Here we will not appeal to the mountain-
pass theorem but will use more direct methods.

The case when () = 1 was studied by P.-L. Lions in [23], where it was shown
that there exists a u # 0 which achieves

o ful,
uepbr®Y) ([ [ulP”)p/e”
u#0
Equivalently we have
(3.3) S = inf{”u”i,p Tu € Dk,p(RN)’ /|u|p* _ 1}.

The crucial tool here is the concentration-compactness lemma, originally due
to P.-L. Lions, with extensions made by G. Bianchi, J. Chabrowski, A. Szulkin,
Ben-Naoum, Troestler, M. Willem [23], [24], [6], [34].

4. The concentration-compactness lemma

Before we go on to state and prove the concentration-compactness lemma,
we prove a few preliminary results. We denote by (‘]’j’G(RN ) the subspace of
C§°(RY) consisting of G-symmetric functions. We note that for every e > 0
there exists a constant C'(e,p) > 0 such that

(4.1) [lz 4+ yP — |z|P| < e|z|P + C(e,p)|y|P for all z,y € R.
PROPOSITION 4.1. Suppose kp < N, |a| =k, £ € S’OG(RN) and u, — 0 in

Dé’p(RN), then

n—oo

lim | D (Euy)|P da = lim/ |ED“uy|Pdz,
RN n—oo JpN



MINIMIZERS AND SYMMETRIC MINIMIZERS 295

provided the limit exists.
PROOF. The Leibniz formula gives
D*(up) = ED%un + Y Ca DD Puy,.
0<B<a
For ¢ > 0 put z = {£D%u,, and y = ZO<B§0¢ Co 3DPEDY Py, in (4.1) to get
1D (Eun)[P = [€D%uy |P| < e€Dunl? + C(e,p)| Y CagD’ED* Puy P,
0<B<a
Now an application of Holder’s inequality (for sums) gives
[1D* (un)|” = [€D%un|”| < ¢ D unl” + Ci(e,p) D |CapD D™ Pup|?.
0<B<La

Since D¢ € Cg°(RY), we have DP¢D* Py, — 0 in LP(RY) for 0 < 3 < a, by
the Rellich—Kondrachov theorem. So

lim / | D (Eup)|P da — / |ED%uy |P da
< lim [| D (Eun)|P — [€D%uy |P|dx < e lim / |EDYuy,|Pd.
n—oo JpN n—oo [pN
Since € is arbitrary, we reach the desired conclusion. O

We next give a proposition which is an essential part in the proof of the
concentration-compactness lemma. The proof can be found in P.-L. Lions [23],
but we give a slightly different argument.

PROPOSITION 4.2. Let p,v be two bounded nonnegative measures on RN
satisfying for some constant C > 0

1/q 1/p
azn ([ era) <o [ eras) . oraise ore)

where 1 < p < q < oo, and let ug be the atomic part of u. Then there exists
an at most countable set (x;);es of distinct points in RY and a set of numbers
(vj)jer in ]0,00[ such that

V= Z Vjls,, s > C7P Z Vf/q&ﬁj.

jed jeJ
PROOF. From inequality (4.2) we obtain
(v(A))P/7 < CPu(A) for all Borel sets A.

We decompose v into the atomic and non-atomic parts, i.e. we write

z/zﬁ—l—Zuj(Szj.

jeJ
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The set J is at most countable since v is a bounded measure. Since v({z}) =
lim._,o v(B(z,¢)), we have

()1 = v({2; )P < CPu({z;})-

We further conclude that v is absolutely continuous with respect to p, and
by the Radon-Nikodym theorem v = fu where f € LL (). For pra.e. z which
is not an atom of p we have

ol dv)r/a (a—p)/q
C7Pf(x)P/9 = lim fBP(I) ; < lim (/ du) =0.
p—0 (pr(w) dp)P/1 p—0 B,(z)

Since v is atom free and p has at most countably many atoms, the result follows.[J

We point out here that if the reverse inequality in (4.2) also holds then p
and v concentrate at a single point (see [23]). Recall the definition (3.2) of Sg
and let M (R™) denote the space of finite measures in RY. When G is the trivial
group we will denote Sg by S.

LEMMA 4.3 (Concentration-compactness lemma). Let G be any closed sub-
group of O(N) and Q a non-negative continuous bounded G-symmetric function
on RN Further let {u,}5°; C Dé’p(RN) be a sequence such that

un —u in DEP(RY),
V*(un =) = i in M(RY),
Ql(un —w)P” 2 v in M(RV),

Up — U A.E. 0N RY

and define

foo := lim lim |VEu,|P, Voo := lim lim Qlun|? .
R—o00n—o0 lz|>R R—o0n—o0 lz|>R

If ps is the atomic part of u, then it follows that

(4.3) v = Zuj&cj,

JjeJ

(4.4) IP7" <56 s,

(4.5) vt < ?E;luoo,

(4.6) T unll}, 2l + sl + oo
(4.7) T lun o = el g + 7] + v

Moreover, if u = 0 and ||v||P/P" = galﬂuH, then v and |1 are concentrated at
a single orbit.
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PROOF. Our argument is patterned on the proof of Lemma 1.40 in [34]. We
note that S¢ > 5 > S||Q||=*" > 0.
(i) Assume first u = 0. Let £ € C°(RY), then we have

.
( [ @t dm)p T [ 19+ € az.

Taking limits on both sides and using Proposition 4.1 gives

-
( / e dv)p B / €17 dpe.

Equality (4.3) now follows from Proposition 4.2. In order to obtain inequality
(4.4) we observe that v is G-symmetric and so if v concentrates at x then it
concentrates at gz for all g € G, i.e. v concentrates on GG,. Further, the amount
of mass at each point is the same. Since v has finite mass, we conclude that the
orbit G of concentration can have only finitely many distinct points.

Now let & € C3%(RY), then we have

. p/p” .
(/qunp da:) <5 /|Vk(§un)\pdx.

Taking limits on both sides and using Proposition 4.1 gives

p/p*
(45) ([ ar)™ <55 [leran

In particular
(W(G)P?" < 85 1n(Gy) = F6' 1s(Ga)
if G, is an orbit of concentration.
Inequality (4.4) now follows from the strict concavity of the map A — \P/PT
(ii) For R > 1, let g € C°°(RY) be a radially symmetric function such that
Yr(z) =1 for |z| > R+ 1, ¢¥r(z) = 0 for |z| < R and 0 < ¥r(x) < 1 on RV,
We then obtain

. p/p” .
( / Qv run|? dx) <5 / V* ()P da
Since D* Ay, — 0in LP

P (RN) and DPypr € C3°(RY) for 0 < 8 < a, we obtain
the following inequality by applying Proposition 4.1:

p/p*
(4.9) Tim ( / Qv run P dx) <S5 Tm / |V, [P, da.
We also have that

/ |VFu, [P de < /\vkun\wgdxg/ |VFu, |P dx
|z|>R+1

|z|>R
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and
/ Qlun P da < /Q|un\P*¢f§ da g/ Qlun|?” dx.
|| >R+1 lz|>R
Hence
_ 1 T k DD — 1 T p*,P"

Inequality (4.5) now follows from (4.9).

(iii) Further assume that ||v||P/?" = ?E;lH,uH. From Holder’s inequality we
have, for £ € C3% (RY)

1/p X 1/p*
( / I£Ipdu> <||u’“/N( / e du) .

Combining this with (4.8) gives

* 1/p ——1/p k/N * 1/p
([rera) " < st ( flera)

The above inequality gives v < Sg" /p||,u||’“’*/ Np, which combined with the
equality ||v|[?/?" =S ||ul| implies

y:?gl’ /PHM“kp*/N'u and Mzgng/H_pk/Ny_

So for £ € fG(RN) we have from (4.8)

P dy o < Pyl PR/N g
€ < [1eriv
1/p” 1/
||u||k/N< / |f|p*du) ’ <( / fwy) '

Hence for each open G-symmetric set Q C RY

that is,

v( Q)P RNEIN < ()1,

It follows that either v(Q) = 0 or ¥(RY) < v(Q). Therefore v is concentrated at
a single orbit, and so is .

(iv) Consider now the general case. Set v, = u,—u, then v,, = 0in Dé’p (RN)
and inequality (4.4) follows from part (i) of the proof.

(v) For any € > 0, set x = D%u,, and y = —D%u in inequality (4.1) to obtain,

[| D% [P — | D%up|P| < | D%up|P + C(e, p)| DYulP.
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It follows that

M L (VFnl” = V¥ unl?) da
xz|>

= ‘/u . > (1D P — |D%up|?) dav
x|>

|a|=k

<[ YUt -t ds
|z|>R

|| =k

§€/ > [DYup[P dx + C(e, p) > [DulP dx
|"”‘>R\a|:le |:1:\>R‘a|:k

:5/ |Vkun|pdx—|—0(€,p)/ VEul? da.
|z|>R

|z|>R

Since ¢ is arbitrary, by letting n — co and R — oo, we conclude that

lim lim VR0 P = fhoo.
R—o00 n—0o0 |z|>R

From the Brézis—Lieb lemma (see [34, Lemma 1.32]) we have

lim (/ Qlun|P" dz —/ Qlvn|”” dx) z/ QlulP” dx.
n—oo |z|>R lz|>R lz|>R
So

lim lim Q|vn\p* = Voo
R—00 Nn—00 lz|>R

Inequality (4.5) now follows from part (ii) of the proof.

(vi) There exists a finite measure ji such that |V*u,|? = 7 in M(RY).

Let ¢, € C§°(B(z;,1)), 0 < ¢, < 1 and ¢,(x;) = 1 where z; is an atom of
w. Set x = D%, and y = D%u in inequality (4.1) to get

o) = @) < Jim [ 57 oyll0un? = D%,

|| =k

< Jim [ 3 (e6,ID% "+ Clep)y D)

n— oo
lo|=k

—culon) + ) [ IVFuPa,,
RN
Letting n — 0, we have

[n({z5}) = ps ({5 ))] < eps({25)-

From the fact that € is arbitrary, we see that the atomic part of 1 is equal to pus.
Since £D%u,, — £D% in LP(RY) for all positive & € C§°(RY), we have

lim [ |€VFu,|P Z/|£Vku|p.
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Now, |V*u|P seen as a measure is relatively singular to the Dirac measures Oujs
and it follows that

17l > Ny, + sl
For R > 1 we have

H |Vk’u,n|p = H (/wR|V’“un|p+/(1—¢R)|Vkun|p>-
As R — oo, by Lebesgue’s dominated convergence theorem we have
(4.10) i fun[} ), = proo + 17l = proc + [lull}, + ll1s]l-

An application of the Brézis—Lieb lemma gives, for R > 1,

[ @ = T ([ e+ [0 vour)

T [ enQlua + [0 vmyiv+ [ - vl

As R — oo,

Tl g =l g+ ]+ vee
follows from Lebesgue’s dominated convergence theorem. Hence we have proved
(4.6) and (4.7). O

It is important to make the following remarks.

REMARK 4.4. There are many variants of the above lemma as we will see
later on. We mention here one of them. It is clear that we could have used the
norm in (2.2). The only difference in this case would be that the conclusion of
Proposition 4.1 needs to be replaced by

lim [(~A)2 (W), = lim [o(-A)ul, (even k),
lim [|V(~2)5D2(,u)l, = lim [V (~2)5D"2u],  (odd k).

The argument is similar.

REMARK 4.5. Looking back at the proof of the above lemma, we see that
part (vi) is rather cumbersome and forces (4.6) to be an inequality rather than
an equality. However, in the case when p = 2, we can avoid the argument in
part (vi) of the proof above by using the following argument which exploits the
Hilbert space structure of DZ’Q (RM).

lim [ |[V*0,|*y%dz = lim /\Vkun|2¢12%dx—/|Vku\2w%dx,

since the Brézis—Lieb lemma holds when almost every convergence is replaced
by weak convergence (see [34, Remarks 1.33]). Hence,

lim Ilim /\V’“un|2¢§dx=Rhm lim /|Vkun|2w%dx:,uoo.

R—ocon—oo
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For R > 1 we have, once again by the Brézis-Lieb lemma
im [ |VFu,|?

Jm i ( Jontvhul+ [0 —wmlv’“unﬁ)
[ onlVhu [0 v [ ) TR

As R — oo, by Lebesgue’s dominated convergence theorem we have
T [funlf = i+ el + [ 9%l
n—oo

So we arrive at the stronger conclusion

i [l = Nl + ]+ .

Further, one can replace ps with p in inequality (4.4).

REMARK 4.6. If u = 0, then by definition, @ = u. Hence it follows from
(4.10) that lim,, ||Un||§,p = fioo + [|]]-

If {u, }22, C D*?(R") is a bounded sequence such that Q[(u, —u)[?" = v,
then we may assume that |u, — ulP 2 ~. Hence, by defining 7., in the same
way as Vs, we see that v({z}) = Q(x)y({z}) and v < Quo¥o- So v and
v concentrate at exactly the same points, if @ > 0. Further, vy = QooVoo if

5. Non-existence result

The proposition given below is the essential part in showing that for general
@ a minimizer of (3.1) does not exist.

ProPoOSITION 5.1. If Q is a bounded nonnegative continuous function in
RY | then S = S||Q|2P" .

PrROOF. We have,

[I95p [19¢up s

C e : =
wents ) (T QPP = wenta) QI ([l v QI

So, S < §||Q||€ép* follows. Let u be a function which achieves S in (3.3) and for

zo € RY set
* r—x
ue () = e N/P u<0>.
€

Through a variable substitution we have

[VFu.|P dz JIVEulP dy

= To@ el dey’ ~ ([ Qg + o)l dg)ol
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As e — 0, by Lebesgue’s dominated convergence theorem we obtain

— S
S<———.
= Q(xg)P/P
The assertion follows, since we have (Q(z0))P/?'S < S < S||Q|%*", for all
Xo € RV, |

To see that minimizers of (3.1) usually do not exist, assume that « is such
a minimizer. Then in view of Proposition 5.1 we have

p/p* p/p*
( / Q|u|p*> < QI ( [ )
p/p*
<llQizr s [ 19kl = ( / Qlul”*) .

([, 00l - @pur) o

We now deduce that if the set F = {x € RY : ||Q||s = Q(z)} has measure zero,
then a minimizer of (3.1) does not exist. We can further conclude, since the

So it follows that

minimizers for S are positive everywhere when p > 1, k=1orp=2and k > 1
(see Section 7), that the minimizers of (3.1) exist if and only if @ is constant.
We state these observations in the following proposition.

PROPOSITION 5.2. If the set E = {z € RY : ||Qlx = Q(x)} has measure
zero, then problem (3.1) has no minimizer. Further, whenp > 1, k=1 or when
p =2, k> 2, minimizers of (3.1) exist if and only if Q is constant.

6. Sufficient condition for existence of minimizers

In this section we assume that () is invariant under the action of the group G.
We give a sufficient condition for the existence of symmetric minimizers for
problem (3.2). We will then give examples which show that there are functions
() so that this condition holds.

THEOREM 6.1. If S¢SuD,erny oo} Q(x)P/P"|GL|P/P" 1 < S then problem
(3.2) has a minimizer.

PROOF. Let {u,} be a minimizing sequence for Sg such that ||u,|/,«q = 1.
For some subsequence, still denoted {u,}, we may assume that the conditions
of Lemma 4.3 are fulfilled, and so the conclusions hold. We need to show that

||VH = Vs = 0. We have
So = lim [luall?, > lull}, + ] + ioc,

veo T IVl +veo.

*
1= Tim [fun |2 = lu
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Combining these with inequalities (4.4) and (4.5) gives

(6.1) Sc(llully. g + Il +vee)’?" = llullf, , + llisll + poo

> S ((ullh. " + [P/ + vR").

So, only one of the three quantities, ||u Z: o+ V|l and veo, is equal to 1 and the

other two are zero. If v, = 1, then using the hypothesis, Remark 4.6, (6.1) and
(4.5) with @ =1 and G the trivial group (i.e. S = S) we have

S(700)"?" > 56(Qoevo0)?”" 2 86 (Vo) 2 oo = S(760)P7,

a contradiction. So vs = 0. If ||| = 1 then u = 0 and |v[|?/?" = Sg' ||| by
(6.1) and Remark 4.6, and so v is concentrated at a single orbit G,. We can
conclude that |G,| < oo from the fact that the set of concentration points of
v are G-invariant and the concentration mass is the same at each point. Once
again we get a contradiction, since

S{zh))?" > Sl GalP ~HQU)y ()
= S| Ga PP ({27 = u{a}) = S(({2h))r.

Here we have used the fact that |G.|[P/?" (v({z}))P/?" = |v||P/?" = gélﬂu” =
g(_;l\Gﬂ,u({x}). It follows that |u||+, ¢ =1, and u is a minimizer of (3.2). O

REMARK 6.2. The results presented above are independent of the norm cho-
sen on D*P(RYN). But we still have to show that there are functions @ for which
the above condition holds. To this end, we will assume that the norm used on
DFP(RY) is the norm given in (2.2). This will guarantee that there are radially

symmetric, nonnegative and decreasing minimizers for problem (3.3), (see [23,
Corollary 1.2]). Now, if

. k *
Sa = 1nf{||uz’p Tu € DG’p(RN), /\u|p = 1},
then S¢ = S. This is because there exists a radially symmetric and hence
G-symmetric function which minimizes S and S < Sg.

Let 6 > 0, and choose a G-symmetric function u € C§°(RY) such that

[ulli

rE
[l

S =25a< < S+

For any orbit G, with finite cardinality, let x;, ¢ = 1,... ,n, be the distinct
elements of the orbit and set
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If € is small enough, then the functions in the above sum have disjoint supports.
Through a variable substitution we have

9. < luellk _ >z llully,

(J Q@)uclr de)p/v™ (321, [ Qley + i)lu

By Lebesgue’s dominated convergence theorem we may take the limit under the

p* dy)p/p* ’

integral sign. Hence by letting € go to 0 we obtain
Sa < Qa) /PTG, PP (S +6).

Since § is arbitrary, we have Sg < Q(z) P/P |G, |'"P/P"S for all z € RN. We
may also take the function u.(z) = e~ N/ u(z/e) and allow € to go to oo to
obtain S¢ < Q""" S provided Quo = limy,| oo Q(z). Since S/|Q|P < Sg
(see the argument of Proposition 5.1), we may conclude that

S _ G| —r/P”
—— < S5¢< S inf 7‘ | —.
QI zeRNUfoo} Q(2)P/P
We further observe that if |\Q||;o”/p* = inf,crnufoo) |Gal 7P/P"Q(z) 7P/P", which
can occur only at points € RY U {oo} with |G,| = 1, then the assumptions

of Theorem 6.1 cannot be satisfied. In this case we can state a result similar to
Proposition 5.2.

ExXAaMPLE 6.3. The most trivial example of @ satisfying the assumption of
Theorem 6.1 is when Qp = Q4 = 0 and |G| = oo for z € RY — {0}. These
conditions immediately guarantee that concentration can neither occur at infinity
nor at any point of RV, and the assumption of Theorem 6.1 is satisfied.

The following example shows that the condition

Sc suwp Q@)PT|GL P < S

z€RNU{oo}
is not always necessary to conclude that minimizers of S exist.

EXAMPLE 6.4. Suppose that

1G.IP/P71Q0 > Q) > Qo = Qoo = lim Q(z) >0 for all z € RY.

|z|— 00
We know that

S~< 8 inf |Gm‘17p/p*
¢ = xER}VnU{oo} Q(x)p/p* .

If strict inequality holds then a minimizer for S exists by Theorem 6.1. On the

other hand if .
- N

S = f =
¢ wE]RJanU{oo} Q(x)p/p* Qg/p*
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then a minimizer for S¢ also exists. To see this, let u be a minimizer for S. We
then have

[ullkp [ullk,p S

p — * - *
o QYT ulE.  QyP

So wu is a minimizer for Sg as well.

=Sa.

) Sa <
(6.2) Sag < a

We have thus proved:
COROLLARY 6.5. Problem (3.2) with the norm in (2.2) has a minimizer if

IGLP/P71Q0 > Q(x) > Qo = Qoo = lim Q(z) >0 for all z € RY.

|z]—o0

The above corollary together with Proposition 5.2 shows that S < Sg if
E = {2 €R" :|Q|l = Q(z)} has measure zero and |G,[P"/P71Qy > Q(z) >
Qo = Qoo = lim || Q(7) > 0 for all z € RY.

REMARK 6.6. From (6.2) we can conclude that @Q is constant on sets where

u, the minimizer for S, does not vanish. In particular, when p =2 or k = 1 we
know that w is strictly positive and so () must be constant.

7. Application to partial differential equations
In this section |u|x,, will denote the norm in (2.2).

7.1. The case p =2, k = 1. In [6] the authors studied the solutions to the
following problem

(7.1) —Au=Q@)|[u* 2u inRY, ue DF*RY),

where N > 2, 2* = 2N /(N —2) and @ is G-symmetric. We know that any
minimizer of problem (3.2) with p = 2 and & = 1 will then give a solution of
the above problem. In Proposition 2 in [6] the authors show that a solution to
problem (3.2) exists if Sg maX{Qg/z* Rl |G|_2/NHG||%2*} < S where |G| =
inf,cry 420 |Gz| and |G| is as before. Comparing this to Theorem 6.1 shows
that our result is the one given there.

We can now state some conditions on @, taken from [6], which will guarantee
that the assumption of Theorem 6.1 is satisfied. The proofs are similar to those
of Corollaries 1 and 2 in [6]. We include them for further reference.

COROLLARY 7.1. Suppose that Q is G-symmetric,

|Gx|172/2* 1

. _
seRNU(ec) QZE QI

and either

(a) Q(x) > Qo +¢lx|N for some e >0 and |z| small or
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(b) |Q(x) — Qo| < Clx|* for some constant C >0, a > N, |z| small and
| (@) = @ulel ¥ dz > 0

Then there exists a nontrivial solution to problem (7.1).

PrOOF. We know that the instanton v(z) = (1 + |2[?)~N/2?" is the unique
minimizer for (3.3) with £ = 1 and p = 2, up to translation and dilation. In view
of Theorem 6.1 it suffices to show that, for some 7 > 0,

5% / Q)| Av(z/n)* > / QolAv(z/n)* = QoS /2,
RN RN

where A > 0 is a constant chosen so that ||Av(z/n)|l1,2 = 1. Of course this is
equivalent to showing that, for some 1 > 0,

1 N 1 N
/RN Qm(??? T x|2> - / Q°<n2 T |:c|2> =0

(a) By the hypothesis, for some 6 > 0,

Je )0 <772+1|w2>N i 5/z|<5 <n?f||x|2)N o

as 7 — 0. On the other hand, for all n > 0 we have

‘ /|m>5(Q(x) @) (772+1|56|2>N' =G /|w>5 le% =

for some constants Cp, Co greater than zero and independent of 1. We now
obtain the required conclusion.

(b) By the hypothesis, |Q(x) — Qol|z|™2N € L*(RY), and by Lebesgue’s
dominated convergence theorem we have

[0 (tes) [ @

as 1 — 0. Hence, we deduce the required conclusion. ]
COROLLARY 7.2. Suppose that Q is G-symmetric, Qoo = lim|z| o0 Q(7),

|Gm|172/2* 1

. _
reRNU{oc) Q)22 22

and either

(a) Q(z) > Quo +lx|™N for some e > 0 and |z| large or
(b) |Q(x) — Quo| < Cla|™® for some constant C >0, oo > N, |x| large and

/ Q@) — Qo) da > 0.
RN
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Then there exists a nontrivial solution to problem (7.1).

PROOF. As mentioned in the proof of the previous corollary, in view of The-
orem 6.1 it suffices to show that for some 1 > 0

> /RN Q($)|A’U($/77)|2* > /RN Qoo‘A”U(x/n)‘z* _ Qoo572*/2,

——2%/2

Sa

(a) Hence, we need to show that

/RN(Q(CU) - Qm)(w)]\] >0

for some > 0. By the hypothesis, we can find R > 0 such that Q(z) >
Qoo +elx|~V for all |z| > R. It follows that

/|I|>R<Q<x> - Q°°><1+1x/n|2>N oo

as 7 — 0o. We also have

‘/uogR(Q(x) = Qeo) (W)N’ e

where C7 > 0 is independent of 7. By putting these two observations together,
we obtain the desired result.
(b) By the hypothesis, |Q(z) — Qo] € L*(RY) and so
1 N
li Qo) ——— = — Q) dx >0,
i [ @@ -0 ) = [ @@ -0x)
we immediately conclude the desired result. O
REMARK 7.3. We observe that Qo = lim|;|_o Q(z) is now a part of the
assumption. In the case when
‘Gm‘lfp/p* ] “o/p" y—p/p"
vty Qo S M@ QT

one can construct @ such that assumption of Theorem 6.1 is satisfied (see [6]).

7.2. The case p =2 and k£ > 1. We continue with a higher order variant
of the above example. We wish to find non-trivial solutions to the following
semi-linear partial differential equation

(7.2) (=A)u = Qx)ul* 2u inRY, ue DF*RY),

where N > 2k, 2* = 2N /(N — 2k) and @ is G-symmetric. Keeping in mind the
norm (2.2), a minimizer for (3.2) with p = 2, will then give a solution of the
above problem. In the previous example, by knowing explicitly the instanton
which minimizes (3.3), we could state explicit conditions on @ under which
problem (3.2) has a minimizer. We do the same thing here, since we know that



308 S. WALIULLAH

up to translation and dilation the instanton v(x) = (1+|z|?)~"/?" is a minimizer
for (3.2) (see [29]). By the same arguments as in Corollaries 7.1 and 7.2 we see
that the following results hold.

COROLLARY 7.4. Suppose that Q is G-symmetric,
|Gz|172/2* 1

inf _
J:E]R}Vnu{oo} Q(x)2/2 Q(QJ/Q*

and either

(a) Q(z) > Qo +¢|z| for some e > 0 and |z| small or
(b) |Q(x) — Qo] < Clx|* for some constant C >0, a > N, |z| small and

| (@) = @ulal 2 do >0

Then there exists a nontrivial solution to problem (7.2).
COROLALRY 7.5. Suppose that Q is G-symmetric, Qoo = lim|; o0 Q(),

|Gx|1_2/2* 1

wER}VnU{oo} Q(SL’)Q/Q* %2*

and either

(a) Q(z) > Quo +lx|™N for some e > 0 and |z| large or
(b) 1Q(x) — Quo| < Clx|™® for some constant C > 0, oo > N, |x| large and

/ Q@) - Q) dz > 0.
]RN

Then there exists a nontrivial solution to problem (7.2).

REMARK 7.6. Once again, when
. ‘Gx‘l_p/p* . —p/P" ~—p/p*
inf ————— < min ,Qp/p
zERNU{oo} Q(I)p/p* —_ {QO QOO }
one can construct ¢ such that assumption of Theorem 6.1 is satisfied.
For results in the non-critical case we refer to [5] and references therein.

7.3. The case p > 1 and k = 1. Here we obtain an equation involving the
p-Laplace operator. We have

(7.3) ~Apu=Q(z)|ulP 2u inRY, u € DF*RY),

where Apu = div(|Vu|P~2Vu), N > p, p* = Np/(N — p) and Q is G-symmetric.
It is known from the work of T. Aubin [2] and G. Talenti [32] that v(z) =
(1 + |z|P/P=1))=N/P" i5 the unique minimizer up to translation and dilation, for
problem (3.3) with & = 1. In this case also Corollaries 7.1 and 7.2 hold with
minor changes. Since the proofs are similar we skip them.
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COROLLARY 7.7. Suppose that Q) is G-symmetric,
) |Gx|1*p/p* 1

}an Q( )p/p* = e
z€RNU{oo} X QO

and either

(a) Q(x) > Qo + ||V ®=Y for some ¢ > 0 and |x| small or
(b) 1Q(z) — Qol < C|z|* for some constant C >0, a > N/(p—1), |x| small
and

[ (@@ - Qulsl /1 dz 0.
RN
Then there exists a nontrivial solution to problem (7.3).
COROLLARY 7.8. Suppose that Q is G-symmetric, Qoo = lim|z| o Q(),

|G$|1—p/p* 1

mGR}VnU{oo} Q(x)p/p* Q:g(/)p*

and either

(a) Q(z) > Qoo +lx|™N for some e > 0 and |z| large or
(b) |Q(x) — Qoo| < Clx|™® for some constant C >0, o > N, |x| large and

/ (Q(x) — Quo)da > 0.
RN

Then there exists a nontrivial solution to problem (7.3).

The p-Laplace operator in equation (7.3) has been the object of many studies,
where both critical and non-critical exponents have been considered. We refer
the reader e.g. to [30], [26], [1], [12], [28] and the references therein.

7.4. The p-biharmonic operator. Let
1
= [ 1aup,
P JrwN
then )
F'(u)p = ];/ |AuP~2AuA¢  for all ¢ € CF°(RY),
RN

i.e. any minimizer of problem (3.2) with k& = 2 will satisfy
(7.4) A(JAuP~2Au) = QlulP" ~2u in RY, u € DZP(RN).

In this case the explicit form of the minimizers of S is not known, therefore we
are not able to give explicit conditions on @ so that a solution to (7.4) exists.
However, by using Corollary 6.5 we may conclude that if |G, [P /?~1Qo > Q(z) >
Qo = Qoo = lim || Q(7) > 0 then equation (7.4) has a G-invariant solution.

The operator A(|Au|P~2Au) is called the p-biharmonic operator. In com-
parison to the p-Laplace operator, very little is known about it. However see
[14], [19] and [31].
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8. Double weights

In this section, we will apply the methods developed in the previous sections
to a more general problem. Let H be a bounded continuous function in R¥.
Assume that H = inf,cgn H(x) > 0 and Hy := lim|g_.o H(z) exists. We will
look at the following problem:

I'=inf{|[ul[} , z:ue€ DFP(RN), |u

P*,Q — 1}~

k/2

Here |ul|kpz can either be ||[V*ul, z or ||(=A)*/2ull, z when k is even and

|V(—=A)E=D/2y||, i when k is odd. There is no problem in doing so since our
hypothesis on H shows that, for even k,

A2~ [ sk [ [,
RN RN RN

where ~ indicates the equivalence of norms. The same is true for odd k. Similarly

RN

as in Section 4, we first assume that |[ul|xp.z = [|V*u|p.5-

We note that the condition H > 0 guaranties the positivity of I and also that
| |5.p.zr is an equivalent norm to || - ||, in D*P(RY). To keep things simple
we will also assume that Qo := lim|;|—o Q(7) exists. It is easy to see that the
methods applied in the previous sections can be adapted to handle the case of
double weights.

This type of problems with double weights have been studied by some au-
thors. We refer the reader to [3], [4], [9], [18] and references therein.

We start by studying the effect of dilation and translation in order to obtain
a relationship between the values I and S. Let u be a function which achieves
S in (3.3) and for g € RY set

uc(z) = 5_1\]/7"*u<JU — xo).

€
Through a variable substitution we have
JH(x)|VFucPde [ H(ey+ xo)|VFulP dy
~ (S Q@)luclpr dx)p/P” ([ Qey + xo)ulP” dy)p/P*
As e — 0, by Lebesgue’s dominated convergence theorem we obtain,
IS Gt
Since the above inequality holds for all zo € RY, we conclude

 H@)
=98 Qi

On the other hand, we have

p* vl p/p* p* pi -1 ||Q||Z‘>7</>p k,|p
o) <t ([up)" <5 IO [ pign,
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for all u € D*P(RY). Hence we deduce that

H 1.5 H(z)

Next, we require the concentration-compactness lemma, which gives us in-
formation regarding weakly converging sequences and in particular minimizing
sequences. Since Proposition 4.1 holds even when we use H dx as weights, we
can state another version of the concentration-compactness lemma. Since the
proof is similar to that of Lemma 4.3 we omit it.

LEMMA 8.1 (Concentration-compactness lemma). Assume that our hypoth-
esis on H and Q hold, and {u,}°; C D¥P(RYN) is a sequence such that

u, —u in DFP(RY),
HIVH(un = 0)l? 2 0 in M(RY),
Ql(un —w)[”” = v in M(RY),
Up —u  a.e. on RY,

and define

Hoo = lim lim H|V*u,|P, Voo := lim lim Qlun|?P .
R—00 n—00 lz|>R R—00 n—00 lz|>R

If s is the atomic part of u, then it follows that
v=vide, P <INl BT < I,
jeJ
T [l > Tl + sl + b
i (fun[p. o = l[ullj. o + 7]l + veo-
Moreover, if u = 0 and ||v|[P/?" = I=Y|u||, then v and p are concentrated at
a single point.

REMARK 8.2. It is obvious that we could have taken into account the action
of a closed subgroup G C O(N) provided H and @ are G-invariant and obtain
a result similar to Lemma 4.3.

REMARK 8.3. If {u,}2°, C D*P(RY) is a bounded sequence such that
HIVF(up —w)[? S, Qlu — ) S,
then we may assume that
IVE(uy —w)P a0 and  |(u, —uw)P” 5 8.

Hence, by defining a and s in the way poo is defined, we see that p({z}) =
H(JJ)O&({.’IJ}), V({.’E}) = Q(.’I,‘)ﬁ({l‘}), Moo = MMoolloo and Voo = Qooﬁoo
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We can now state a result which basically, is a necessary and sufficient con-
dition for all minimizing sequences to be relatively compact. That it is sufficient
follows from the following theorem. To see that this is also necessary we refer
the reader to the work of P.-L. Lions [21]-[24]. We would like to mention that
the hypothesis of the next theorem is hard to check, but we give an example
which will show that there exist H and () such that the assumption is satisfied.

THEOREM 8.4. If I < Sinf,cpy H(z)/(Q(x))P/?" then all minimizing se-
quences are relatively compact. In particular, a minimizer for I exists.
PrOOF. Let {u,}32, C D¥P(R"™) be a minimizing sequence for I. Arguing

exactly as in Theorem 6.1 we see that only one of the three quantities, ||u Z: Q>

7]l and vo, is equal to 1 and the other two are zero.
(a) If voo = 1, then

Hoo
QY

Hence, I > SHOO/Qgép* > Sinf,cpn H(x)/(Q(x))P/?" contradicts our assump-
tion.

I=T(se)""" = I(QoofBsc)””" > o = Hooltoo = SHuc(Bc)?/?" =S

(b) If ||lv|| = 1, then uw = 0, I||v||P/?" > ||u|| and so by the previous lemma v
concentrates at a point z € RY. We now have

I=I1(w({z})"" = 1Q@)B{z})P"" = p({a})
= H(z)a({z}) > SH(2)(B({z})"/?".

Once again I > SH(z)/(Q(x))?/?" will contradict our assumption. It follows

that [ju g: o = 1 and so the proof is complete. O

We now give the example mentioned above.

EXAMPLE 8.5. Let k =1 and H = QP/?". We shall construct a Q such that

: H(x) _
I<S inf omryyor =5

Set u(x) = (14 |x|P/P=D)=N/P" 5o that |Vul? = C|z|P/®P=D|u[P” and

o _JIvu
o (f |u|p™ /P
For some 1 > 0,let 1 < Q(z) <1+mnandset Q(z) =1if |z > 25, Q(z) =1+n
if |z| < 6. We shall show that 6 > 0 can be chosen such that

pr/p*|Vu|p
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We have

Jerrwur= [ s |
x| <

0<|z|<20

QP VP + / IVl

26<|x|

:/ (1+n)P/P*|Vu|P+/ Qp/p*|w|p+/|wp—/ Vul?
|z]<é 0<|z|<28 |z|<26

/| L = Ol Dl
x| <
@ DO ()
<|z|<
p/p”
<Eycwon [ o la@oped [ as( fur)
p |z|<§ p 5<|z|<28

D . D . A\ PP
37770517/(17*1)/ |uP Jrcli*n(%)p/(p*l)/ |uP +S</|u|p ) )
p |z|<d p z|<$

\
We have used the inequalities

(1 +n)P/? §1+£*n and / Jul?” §C2/ ul?”.
p 5<|z|<28 |z| <6

The second one follows easily from the fact that w is decreasing in |z|. Also,
A\ PP . 3 A\ PP
(four ) =(uf 1w/ @-vwp s 1)
|z|<é 0<|z|<26
. A\ PP
> f e )
|z| <&

Taylor expansion of f(z) = 2?/?" about [ |u|P" gives
A\ P/P" A\ P/ D A\ P/P-1 .
(faur) ™ =([fuwr) " +2(fur)" [
p |z| <&
+0(77/ |u|p*>.
|z| <8

[ul”” + Cs ﬁn(%)”/ =D / Jul”*

|z| <5

P N . x
<sZ(fur )" [ o [ ).
p |z|<6 |z]<d

P" = o(1), the above inequality can be re-written in the form
A16P/P=1) < Ay 4 o(1). Hence it suffices to choose § > 0 small enough.

So, we see that (8.3) holds if we can show that

ETIC(;Z)/(?*I) /
p*

|z| <8

Since f\z|<6 lu

REMARK 8.6. The above theorem together with the example shows a rather
surprising fact regarding the embedding D*?(RY) — LP"(RY, Q). In Section 5
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we saw that in general not all minimizing sequences are relatively compact if
the norms (2.1) or (2.2) are used in D*P(RY). But, for some Q there exists
an equivalent norm in D*?(R™) so that all minimizing sequences are relatively
compact.
Returning to inequality (8.2) we see that if
H H
inf (@) =

RN (Q2))P/P|Q|IEL”

then the hypothesis of Theorem 8.4 cannot be satisfied. In this case minimizing

sequences are not relatively compact and minimizers do not exist. More pre-
cisely, we have the following proposition which of course is a straight forward
generalization of the observations made in Section 5.

PROPOSITION 8.7. Suppose that I = SH/|Q|XY . If Eq = {x € RN :
Qe = Q(x)} or Exg = {x € RN : H = H(x)} has measure zero, then there
are no minimizers to problem (8.1).

Proor. We argue as we did in Proposition 5.2. Suppose that I = SF/HQH’SQP*
and u € D¥P(RY) is a minimizer for I. Then

A\ PP § A\ P/t S—1||Q”p/p* o
(fowr) <taw (fur) < 22 [agsy
_ A\ P/
= 1*1/H|V’6u\P < I’l/H|V’“u|p = (/QW )

So it follows that [(||Qle — Q)|u[?” dz = 0 and [(H — H)|V*ul? = 0. Hence
there are no minimizers. ]

REMARK 8.8. Combining the above proposition and Theorem 8.4 gives an-
other interesting result. Suppose that Eg = {x € RY : ||Q||c = Q(x)} or Efy =
{z € RN : H = H(x)} has measure zero, then I < Sinf,cpv H(z)/(Q(z))P/?"
implies T > SH /|| Q2P

Now we turn to the problem of finding symmetric minimizers. Assuming
that H and @ are G-invariant, we consider the following problem

(8.4) Ie = mf{|lull}, 5 - w € DgF(RY), Jullyq =1},

where ||ul|rp i = ||(—A)*/?u||, g when k is even and | V(—A)*~D/2y||, i when
k is odd. We can now state the conditions under which a minimizer to the above
problem exists. We use the same notation for H as we do for Q.

THEOREM 8.9. If Ig < Sinf,cpnyfoo} |Gol PP H(2)Q(2)"P/?" then the
infimum in (8.4) is attained.

The above theorem is a straight forward generalization of Theorem 6.1 and
the proof is an obvious adaptation of that of Theorem 6.1. From the above
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theorem we can immediately conclude that if Qyp = Qv = 0 and |G| = oo for
x € RN — {0}, then a minimizer to problem (8.4) exists. By using explicitly the
properties of the minimizers of problem (3.3) we can state explicit conditions on
H and @ so that the minimizer of problem (8.4) exists.

The following corollaries are generalizations of Corollaries 7.7 and 7.8.

COROLLARY 8.10. Assume that H and Q are G-symmetric functions,

H, . o I
Q:v/(;* B xE]R}an{oo} Gal! " H(z)Q() o
0

and Hy = sup H. If either

(a) Q(z) > Qo + ¢lz|N/®P=Y) for some e > 0 and |z| small or
(b) 1Q(z) — Qol < C|z|* for some constant C > 0, a > N/(p—1), |x| small
and

/ (Q(x) — Qo) PN/ @~ d > 0
RN
then there exists a minimizer for problem (8.4) with p > 1 and k = 1.

PrOOF. We know that the instanton v(z) = (1 + |z[P/®P=D)=N/P" ig the
unique minimizer for problem (3.3) with £k =1 and p > 1, up to translation and
dilation. In view of Theorem 8.9, we need to show that for some n > 0,

[HIVA@(a/) . Ho [|V(Av@/m)" _ o Ho
(J QIAv(z/mP)P/r™ = (Qo [ [Av(x/m)l )piv” — = p/v™

where A > 0 is a constant chosen so that ||Av(z/n)|1,, = 1. Since

[l < o [ [9Cav/m)

it suffices to show that, for some n > 0,

N
1
/RN(Q("””) ~ @) (T,p/(pn n |x|p/<p1>) >0
The proof is as in Corollary 7.2 (cf. Corollary 7.8). |

I <

COROLLARY 8.11. Assume that H and Q) are G-symmetric functions,

Hoe it (G H@)Q)

Qgép* z€RNU{oo}
and Hy, = sup H. If either

(a) Q(z) > Quo +elz|™N for some ¢ > 0 and |z| large or
(b) |Q(x) — Q| < Cla|™ for some constant C > 0, « > N, |z| large and

(/(mw—QMMx>m
RN
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then there exists a minimizer for problem (8.4) with p > 1 and k = 1.

PROOF. The instanton v(z) = (1 + |z[P/®=1)=N/P" is the unique minimizer
for problem (3.3) with £ =1 and p > 1, up to translation and dilation. In view
of Theorem 8.9, we have to show that for some n > 0

Ig < JHINA(/m)P _ He [IV(Av(z/m)I” ¢ Ho

(J QLA /)P 7™~ Qoo [ [Av(a/mF o~ Qulr™

where the A > 0 is a constant chosen such that ||Av(z/n)|1,2 = 1. Since
[ HIVAv(z/n))|P < Hs [ |V(Av(z/n))|P, it suffices to show that for some > 0

1 N
—Qoo)| —— 77— 0.
[ @@= () >
The proof is as in Corollary 7.2 (cf. Corollary 7.8). ]

We see that similar proofs to the ones given for the two preceding corollaries
above is valid even when p = 2 and k£ > 1, and so we have

CORLLARY 8.12. Assume that H and Q are G-symmetric functions,

Hy . ook Py
G = el O R
0

and Hy =sup H, 2* = 2N /(N — 2k). If either

(a) Q(z) > Qo + elz|N for some e > 0 and |z| small or
(b) |Q(x) — Qo| < Clx|* for some constant C > 0, a > N, |z| small and

| (@) = @ulel 2 do >

Then there exists a minimizer for problem (8.4) with p =2 and k > 1.

CORLLARY 8.13. Assume that H and Q are G-symmetric functions,

e , . .
o :zeR}vnuf{m}‘Gm‘l 27 H(2)Q(x)*/?
o0

and Hoo =sup H, 2* = 2N /(N — 2k). If either

(a) Q(z) > Qoo +lx|™N for some e > 0 and |z| large or
(b) 1Q(z) — Qo] < Clx|~* for some constant C >0, a > N, |z| large and

/ Q@) - Q) dz > 0.
RN

Then there exists a minimizer for problem (8.4) with p =2 and k > 1.
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9. Singular weights

Let DL2(R™) be the completion of C§°(RY) under the norm

1/2
(/ ||x|_aVu|2dx) .
RN

We define
(9.1) S(a,b) :==  inf Jan x|~ Vul® dx
) ueDL2(RY) (f]RN ||!L‘|7bu|p dx)g/pa
u#0
92)  S(a,b,A) == inf Jan 2] 72Vl + Ajz|~ @ Duf? de
. TN ueDb2@®Y) (Jon 2] ~tulP dz)2/P )
u#0

where N >3,0<a< (N —-2)/2,a<b<a+]1,

2N
N-2+2(b—a)

p=pla,b) =

and A is a negative parameter. Due to an inequality by L. Caffarelli, R. Kohn
and L. Nirenberg [7] S(a,b) and S(a,b, \) are positive for a < b < a + 1 and
suitable A (see [33]).

The first problem was studied in [20] when a = 0, and for positive a it
was studied in [10]. There one can also find an explicit form of the minimizer.
Both problems were then studied in [33] by using a different method. There
the authors proved the existence of minimizers provided —S(a,a + 1) < A < 0.
More results can also be found in [8]. Due to these results, the method we have
developed in the previous sections allows us now to study

—ay/ 2d
(9.3) I(a,b) = inf Jox ll2l"*Vuf dz

ueD?(®Y) (fpn @z~ bul? dw)?/P’
u#0

(9.4) I(a,b,A) = inf o el *Vul jL,AHm'_(aH)u'zdx
ueDy* (R (Ja Qlla|~bulp dz)2/P
u

In a recent paper by Y. Deng and L. Jin [11] the authors studied the second
problem when a = 0 and @ is G-symmetric. Our method will allow us to improve
the results given in [11] for the case b > 0. We mention here that the above
problems are delicate when a = b since then we are dealing with the critical
Sobolev exponent.

In our present work, we are mainly interested in the case when @ is G-
symmetric, but as an illustration of the advantage of our method, we give the
following simple result. Since problems (9.1) and (9.2) are dilation invariant, we
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have by the same argument as in the beginning of the previous section that

S(a,b)

Q2P

M < I(a7 b, )‘) < min{(QO)_Q/pﬂ (QOO)_Q/Z)}S(U“’ b, >\)

Q127

provided Qo = lim|,|_o Q(x) exists (see the argument following Remark 6.2;

< I(a,b) < min{(Qo)"*/*, (Qse)~*"}5(a,b),

it will become clear later why we have neglected Q(z) for other z). This shows
that the assumption of the following proposition is satisfied by some Q. With
this in mind, we state conditions under which minimizers to problems (9.3) and
(9.4) will not exist.

ProrosiTION 9.1. If

I(a,b) = S(a’;z or I(a,b,\) = S(“il;/i)
1Rl QI
and if E = {z € RY : Q(z) = ||Q|l~} has measure zero then there are no

minimizers, respectively for I(a,b) and I(a,b,\).

PROOF. The argument is the same as in Proposition 8.7 but somewhat sim-
pler. O

Assume now that @ is a G-symmetric function. Denote by Di:é(}RN ) the
subspace of D12(RY) consisting of G-symmetric functions. Sg(a,b), Sa(a,b, \),
Ig(a,b) and Ig(a,b, \) will denote the infima as in (9.1)-(9.4), but with D}2(RY)
replaced by Di%(RN ). Of course we have a similar result to Proposition 9.1 with
identical proof, in this symmetric case.

ProroSITION 9.2. If

Sal(a,b Sal(a, b, \
la(ab) = S4B - pyap, ) = Sel@0 )
Q15 Q5
and if E = {z € RY : Q(z) = ||Q|l~} has measure zero then there are no

minimizers for Ig(a,b) and Ig(a,b,\).

We start by stating one more version of the concentration-compactness lem-
ma. When G is the group consisting of only the identity element, the lemma
and its proof can be found in [33].

LEMMA 9.3 (Concentration-compactness lemma). Assume that Q is a G-
symmetric continuous, bounded function and let N > 3, 0 < a < (N —2)/2,
a<b<a+1l,p=plab) and —I(a,a+1) < X. Let {u,}52, C Dié(RN) be
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a sequence such that

Up — U in Di:é(RN),
|z| =V (un —w)[* = p in M(RY),
Q||x|_b(un—u)|p S v oin M(RN),
127V (un = w)[* + A2~ u —up[* Sy in M(RY),

Up — U a.e. 0N RN,
and define

foo := lim lim |||~ Vul?,

Voo := lim lim Q||z|bul?,

Yoo := lim lim ||| ~9Vu|? 4+ Al|z|~(@F D)2
R—o00 n—00 lz|>R

Then it follows that

(9.5) [v)1?P < Ig(a,b) " |,
I )2/P < Ig(a, b, A)~ A,
(9.6) V2P < I6(a,b) " oo,

Vgép S IG(G, ba )‘)_1’7007

T (||2]7*Vun |13 = [[[2] = Vull3 + (1]l + oo,

lim |||~V |3 + M~ |13
n—00

= [llel Va3 + Al “Full3 + ] + oo,

T o] uallf, = el ~ul g + W] + vec.

Further, suppose u = 0, then ||[v]|*/? = Ig(a,b)~ |u|| implies that v, u are
concentrated at a single orbit and |v||*/P = Ig(a,b,\)" ||| implies that v, ~
are concentrated at a single orbit.

The proof is similar to that of Lemma 4.3, keeping in mind that Di:QG(RN )
is a Hilbert space, and so Remark 4.5 is applicable. The only technical point is
the verification of a result similar to Proposition 4.1. This can be easily deduced
by using the following lemma, which is actually similar to Lemma 2 in [33] and

its proof is easily adapted.
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LEMMA 9.4. Let N >3 and 0 < a < (N —2)/2. If up, — u in Dyg(RY)

then |x|~%u, — |z|~%u in L} (RY).

REMARK 9.5. If {u,}52, C DlllZQG(]RN) is a bounded sequence such that
Q||z) = (up, —u)|P = v then we may assume that ||| ~°(u, —u)|? = a, for some a.
Hence, by defining a., in the way v is defined, we see that v({z}) = Q(z)a({z})
and Voo < Qooloe Where Qo = H,mbw Q(z). Further, vo = Qoolieo if Qoo =
limg oo Q@) = limjy) o0 Q).

REMARK 9.6. Our present problem is somewhat different from the previous
ones. This is due to the fact that the quotient associated with S(a,b) is not
translation invariant. To understand the effect of this, we choose u € C§°(RY)
and see that

Jen 2|7Vl |? da - g—2(b—a) Jan ez 4y~ Vul? dx
(Jan llz|~tul|pdz)?/e — (fon llex + y|~bulp dx)?/p 7

where u¥(z) = u((x —y)/e). Hence if b > a and y # 0 the quotient turns to
infinity as € turns to zero. This also shows the different nature of the problem
when b = a.

With reference to Lemma 9.3 we have the following lemma.

LEMMA 9.7. Assume that {u,} is a minimizing sequence for Sg(a,b) such
that ||v]|*/? = Sg(a,b)"Y|ul|. Then concentration can only occur at zero and
nfinity.

PROOF. Assume first that G is the group consisting of only the identity
element and concentration occurs at some y # 0.

We may assume that [ |[z|~u,|P = 1. From Lemma 9.3 we have that
||z ~Pu, [P = 6, and ||z|~*Vu,|> = S(a,b)d, in the sense of measures.

Now, for any ¢ > 0,

Jan 217V, | dz
(Jaw ||z bun|P dx)2/P

< S(a,b)+¢

provided n is large. Also, for any n > 0 there is a A() > 0 such that |y|=2¢ —n <
|z|72% and |z|7% < |y|7% 4+ n for 2 € B(y,A(n)). Choose A < A(n) and let
¢ € C°(B(y,\)) be a radially symmetric function about y with 0 < ¢ <1 and
¢ =1in B(y,A/2). From our assumptions we have

i / |17 2] unl? = 1
n—oo
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and since u, — 0 in L?(B(y, \)) the first two integrals on the right hand side of
the following equality turn to zero

/ 279 () ? = / 2|22 |V g2

+2/\x|72“un¢v¢.Vun+/|sc\72a¢2|Vun\2.

Hence
lim /Hx|_“an\2 = S(a,b),

where v, = ¢u,. By using Sobolev’s inequality and then Holder’s inequality we
arrive at

(st v +o) (4 [lolra ) (ol =) [ 190l

> (ly|=>* = n) 2yl = m)Soallp| By, P27,

where n is large, S = 5(0,0), 2* = p(0,0) and |B(y,\)| is the N dimensional
Lebesgue measure of B(y, \). By letting n turn to oo, we obtain

(S(a,b) + &) (|y| = +m)*? > (|y| =2 — n)S|B(y, N)[*/* ~2/7.

Since A can be chosen arbitrarily small and 2* > p for b > a the above inequality
leads to a contradiction. When b = a, p = 2* and from the above inequality
we obtain S(a,a) > S. This however contradicts the fact, proven in [33], that
S(a,a) < S. In the general case we know that the orbit of concentration G, has
finite cardinality. If y;, ¢+ = 1,...,m, are the distinct points of G, we choose
small disjoint balls B(y;, A). We then choose functions, radially symmetric about
Vi, 0; € C§°(B(yi, A)) with 0 < ¢; <1 and ¢; = 1 in B(y;, A/2). One can now
argue as above but instead of ¢ one uses the function ¢g = 27;1 ¢;, which can
be assumed to be G-symmetric. ]

With a concentration-compactness lemma at our disposal, we may proceed
to compare I (a,b) and Sg(a,b) as required by our method. We know from [10]
that function

(97) u(ac) — (1 + |x|2a—bp+2)(N—2a—2)/(2a—bp+2)

is, up to dilation and multiplication by a constant, a minimizer for S(a,b).
Since S(a,b) < Sg(a,b) and the above minimizer is radially symmetric, we have
S(a,b) = Sqg(a,b).

The following theorem is the main result of this section.
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THEOREM 9.8. If Ig(a,b) < min{Qa2/p, ngwp}Sg(a, b) then all minimizing
sequences are relatively compact. In particular, there is a minimizer for I(a,b).

PRrROOF. The argument is similar to the ones given in the previous sections.
Therefore we omit some details. Let {u,}52; C Di:é(RN ) be a minimizing
sequence for I(a,b). Going if necessary to a subsequence, still denoted by w,,
we may assume that the conditions of Lemma 9.3 are fulfilled. Hence

Te(a,b) = T [lle]=Vun3 = lla~*Vul + ] + e
and
L= T funll g = ull g + V1] + .
So we have using inequalities (9.5) and (9.6)

Ic(a,b)([lully g + VIl + vee) > = lllel~*Vull3 + |1l + poo
> I (a,b)((ully ) + v |*/? + v3LP).

Since p > 2, we deduce that only one of the quantities |ull? o, [|v]| and veo is
1 and the other two are zero. If v,, = 1, we obtain a contradiction, since from
Remark 9.5 and Lemma 9.3 we have

Sa(a,b)(as)?? > Ig(a,b)(Quecas)??
> IG(a,b)(yoo)Q/p = oo > SG(a,b)(Oéoo)Z/p.

If |v|| = 1 then w = 0 and ||v||?>/? = Ig(a,b)"!||p|| and so v is concentrated at
the origin by Lemma 9.7. Once again we obtain a contradiction since

Sa(a,b)(a({01)*? > Ig(a,b)(Qoa({0}))*”
= I (a,0)(v({0})*? = ||u]l = Sc(a, b)(a({0}))*/?.

So it follows that [lul|? 5 = 1 and we reach the desired conclusion. O
Set un(x) _ u(:c/n) _ (1 + |l./77|2a—b;o+2)(N—2a—2)/(2a—bp-&-2)7 then

_ f]RN ||m|_“Vu7,|2 dx

S b) =
G(Cl, ) fRN Hm|—bun|pdx

for all n > 0.

If we assume that Qo = lim|y—o Q(x), then by placing the above function
in the quotient associated with Ig(a,b) and letting n tend to 0 and oo, we
obtain as before, I(a,b) < min{Qaz/p7Q;2/p}Sg(a,b). At this point we can
casily deduce that if min{Q, */?,Q=""} = ||Q[=/" then by Proposition 9.2,
minimizers in general will not exist. However, we have the following corollary to
Theorem 9.8, which is similar to Corollary 6.5.
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COROLLARY 9.9. If Q is G-symmetric and

Q(z) > Qo = Qoo = lim Q(z) >0

|z|—o00
then there is a minimizer for Is(a,b).

PROOF. When @y = Q~ = 0 it is easy to see that concentration cannot oc-
cur at zero or infinity. So a minimizer exists. Assume Qp = Qo > 0. If I(a, b) <
Q(;Q/pSG(mb) then we are done by Theorem 9.8. If Iz(a,b) = QSQ/pSG(a,b)7
let u be the function in (9.7). u is then a minimizer of S¢(a,b), and

fRN |||~ Vul? dz
(Jon Qllz|~PulP dz)?/r
—Vul?d
oo eV S
o " (Jn |z ~bulp da)2/P Qo

IG(aa b) <

It follows that u is a minimizer of Iz(a,b). O

We note that a remark similar to Remark 6.6 is also applicable here.
Of course knowing the explicit form of the minimizer for Sg(a,b) allows us
to give conditions on (), similar to those given in the previous sections, so that

minimizers exist.

COROLLLARY 9.10. Suppose that Q is G-symmetric, Qp > Qoo > 0 and
either

(a) Q(z) > Qo + ¢|z|N =% for some e > 0 and |z| small or
(b) |Q(z) — Qo| < Clz|* for some constant C' > 0, « > N — bp, |z| small
and

/ (Q(x) — Qo)|z| 2N dz > 0.
RN

Then there exists a minimizer for Ig(a,b).

COROLLARY 9.11. Suppose that Q is G-symmetric, Qs > Qo > 0 and
either

(a) Q(7) > Qoo + lz| "N for some ¢ > 0 and |z| large or

(b) 1Q(z) — Qoo| < Clz|~* for some constant C >0, o > N — bp, |z| large

and

/ (Q(x) — Qoo)|| % dx > 0.
RN

Then there exists a minimizer for Ig(a,b).

The proofs are similar to those of Corollaries 7.1 and 7.2.
Having established the resluts above we can prove the following result by

using similar arguments.
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THEOREM 9.12. If Ig(a,b, A) < min{Qq >"", Qx/"}Sc(a, b, \) then all min-
mmizing sequences are relatively compact. In particular, there exists a minimizer
for I(0,b, \).

COROLLARY 9.13. If Q is G-symmetric, Q(x) > Qo = Qoo = lim|y|—oo Q(x)
> 0 then Ig(a,b,A\) has a minimizer.

In Deng’s and Jin’s article (see [11, Theorem 2.1]) the authors presented a
result which in effect says that there exists a minimizer for I(0,b, A) provided
that

Ic(0,b,\) < inf  Q(z)”¥P|GL|'"2/PSc(0,b, \).

z€RNU{oo}
We see that Theorem 9.12 improves this result for b > 0, since our condition
does not require any knowledge of |G,|.

In order to obtain explicit conditions on @ so that the assumption of The-
orem 9.12 is satisfied, we require the explicit knowledge of the minimizer for
Sc(a,b, A). This explicit form is not known to the author. However, in the case
when a = 0 and 0 > A > X = —((n —2)/2)? we know from [11] that, up to
multiplication by a constant and dilation, S(0, b, \) is achieved by

1
= |1‘|\/j—ﬁ(1 + |1‘|(2—bp)ﬁ/\/j)(1\[_2)/(2_bp) b

where 8 = (A —X)/2. Since the above function is radially symmetric, we deduce
that S¢(0,b, A) has a minimizer. We may now proceed to formulate explicit
conditions on @ so that a minimizer for I(0,b, A) exists.

COROLLARY 9.14. Suppose that Q is G-symmetric, Qo > Qo > 0 and
either

(a) Q(z) > Qg + e|x[PWN=)/(N=2) for some e > 0 and |x| small or
(b) |Q(x)—Qo| < Clz|™ for some constant C > 0, o > 20(N — bp)/(N —2),

|z| small and
[ (@) = Qula] NI 2 g,
RN

Then there exists a minimizer for Ig(0,b, ).

CORLLARY 9.15. Suppose that Q is G-symmetric Q.o > Qo > 0 and either

(a) Q(x) > Qoo + elz| 2PN =)/ (N=2) for some ¢ > 0 and || large or
(b) 1Q(z) — Quo| < Clx|™® for some constant C > 0, o > 26(N —bp)/
(N —2), |z| large and

[ (@) = Qe 2/ g
RN



MINIMIZERS AND SYMMETRIC MINIMIZERS 325

Then there exists a minimizer for Ig(0,b, ).

The proofs are similar to those of Corollaries 7.1 and 7.2.
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