EXISTENCE OF POSITIVE SOLUTIONS TO SYSTEMS OF NONLINEAR INTEGRAL OR DIFFERENTIAL EQUATIONS

Xiyou Cheng - Zhitao Zhang

Abstract

In this paper, we are concerned with existence of positive solutions for systems of nonlinear Hammerstein integral equations, in which one nonlinear term is superlinear and the other is sublinear. The discussion is based on the product formula of fixed point index on product cone and fixed point index theory in cones. As applications, we consider existence of positive solutions for systems of second-order ordinary differential equations with different boundary conditions.

1. Introduction

In this paper, we consider existence of positive solutions for the following system of nonlinear Hammerstein integral equations

$$
\begin{cases}u(x)=\int_{\bar{\Omega}} k_{1}(x, y) f_{1}(y, u(y), v(y)) d y & \text { for } x \in \bar{\Omega} \tag{S}\\ v(x)=\int_{\bar{\Omega}} k_{2}(x, y) f_{2}(y, u(y), v(y)) d y & \text { for } x \in \bar{\Omega}\end{cases}
$$

where $\Omega \subset \mathbb{R}^{n}$ is a bounded domain, $k_{i} \in C\left(\bar{\Omega} \times \bar{\Omega}, \mathbb{R}^{+}\right)$, $f_{i} \in C\left(\bar{\Omega} \times \mathbb{R}^{+} \times \mathbb{R}^{+}, \mathbb{R}^{+}\right)$ $(i=1,2)$ and $\mathbb{R}^{+}=[0, \infty)$.

2000 Mathematics Subject Classification. 45G15, 34B18, 47H10.
Key words and phrases. Positive solution, Hammerstein integral equations, fixed point index, product cone.

Supported in part by the NSFC $(10671195,10471056,10831005)$ of China and the NSF (06kJD110092) of Jiangsu Province of China.

Definition 1.1. Let $C^{+}(\bar{\Omega})=\{u \in C(\bar{\Omega}) \mid u(x) \geq 0$, for all $x \in \bar{\Omega}\}$, we say that (u, v) is one positive solution, if $(u, v) \in\left[C^{+}(\bar{\Omega}) \backslash\{\theta\}\right] \times\left[C^{+}(\bar{\Omega}) \backslash\{\theta\}\right]$ satisfies system (S).

The study of nonlinear Hammerstein integral equations was initiated by Hammerstein, see [4]. Subsequently a number of papers have dealt with existence of nontrivial solutions of nonlinear Hammerstein integral equations, see the monographs [3], [5] and the references therein. To the best of our knowledge, the papers dealing with existence of nontrivial solutions, especially positive solutions for system (S) are few, see [7]-[10]. They mainly studied existence of nontrivial or nonnegative solutions for systems of nonlinear Hammerstein integral equations by use of topological methods or fixed point index theory in cones.

Recently, in [1] Cheng and Zhong considered existence of positive solutions for a super-sublinear system of second-order ordinary differential equations by applying the product formula of fixed point index on product cone and fixed point index theory in cones. Motivated by these works, we shall deal with existence of positive solutions for system (S), in which one nonlinear term is superlinear and the other is sublinear. As applications, we consider existence of positive solutions to systems of second-order ordinary differential equations with superlinear and sublinear nonlinearities under different boundary conditions.

Throughout this paper, we suppose that kernel functions $k_{i}(x, y)(i=1,2)$ satisfy the following conditions:
(i) $k_{i}(x, y)=k_{i}(y, x)$, for all $x, y \in \bar{\Omega}$;
(ii) there exist $p_{i} \in C(\bar{\Omega}), 0 \leq p_{i}(x) \leq 1$ such that

$$
k_{i}(x, y) \geq p_{i}(x) k_{i}(z, y), \quad \text { for all } x, y, z \in \bar{\Omega}
$$

(iii) $\max _{x \in \bar{\Omega}} \int_{\bar{\Omega}} k_{i}(x, y) p_{i}(y) d y$ is positive.

Lemma 1.2. Let $B_{i}: C(\bar{\Omega}) \rightarrow C(\bar{\Omega})$ be defined by

$$
B_{i} u(x)=\int_{\bar{\Omega}} k_{i}(x, y) u(y) d y, \quad i=1,2
$$

Then the spectral radius of $B_{i}, r\left(B_{i}\right)$ is positive.
Proof. From the definition of B_{i} and the conditions about k_{i}, we have

$$
B_{i} p_{i}(x)=\int_{\bar{\Omega}} k_{i}(x, y) p_{i}(y) d y \geq p_{i}(x) \int_{\bar{\Omega}} k_{i}(z, y) p_{i}(y) d y, \quad x \in \bar{\Omega}
$$

and

$$
B_{i} p_{i}(x) \geq p_{i}(x)\left\|B_{i} p_{i}\right\|, \quad x \in \bar{\Omega}
$$

here

$$
\left\|B_{i} p_{i}\right\|=\max _{x \in \bar{\Omega}} \int_{\bar{\Omega}} k_{i}(x, y) p_{i}(y) d y>0
$$

By induction, we get

$$
B_{i}^{n} p_{i}(x) \geq p_{i}(x)\left\|B_{i} p_{i}\right\|^{n}, \quad x \in \bar{\Omega},
$$

thus $\left\|B_{i}^{n}\right\| \geq\left\|B_{i} p_{i}\right\|^{n}$. From the formula of spectral radius, we know that

$$
r\left(B_{i}\right)=\lim _{n \rightarrow \infty}\left\|B_{i}^{n}\right\|^{1 / n} \geq\left\|B_{i} p_{i}\right\|>0
$$

Definition 1.3. If f_{1}, f_{2} in system (S) satisfy the following assumptions:
$\left(\mathrm{H}_{1}\right) \quad \limsup \max _{u \rightarrow 0^{+}} \frac{f_{1}(x, u, v)}{u}<\frac{1}{r\left(B_{1}\right)} \quad$ uniformly w.r.t. $v \in \mathbb{R}^{+}$;
$\left(\mathrm{H}_{2}\right) \quad \liminf _{v \rightarrow 0^{+}} \min _{x \in \bar{\Omega}} \frac{f_{2}(x, u, v)}{v}>\frac{1}{r\left(B_{2}\right)} \quad$ uniformly w.r.t. $u \in \mathbb{R}^{+}$,
then we say that f_{1} is superlinear with respect to u at the origin and that f_{2} is sublinear with respect to v at the origin.

Definition 1.4. If f_{1}, f_{2} in system (S) satisfy the following assumptions:
$\left(\mathrm{H}_{4}\right) \quad \limsup _{v \rightarrow \infty} \max _{x \in \bar{\Omega}} \frac{f_{2}(x, u, v)}{v}<\frac{1}{r\left(B_{2}\right)} \quad$ uniformly w.r.t. $u \in \mathbb{R}^{+}$,
then we say that f_{1} is superlinear with respect to u at infinity and that f_{2} is sublinear with respect to v at infinity.

Our main result is the following.
TheOrem 1.5. Assume that f_{1} is superlinear w.r.t. u at the origin and infinity, f_{2} is sublinear w.r.t. v at the origin and infinity and satisfies the following condition:
(G) $\lim \sup _{u \rightarrow \infty} \max _{x \in \bar{\Omega}} f_{2}(x, u, v)=g(v)$ uniformly w.r.t. $v \in[0, M]$ (for all $M>0$), here g is a locally bounded function.
Then system (S) has at least one positive solution.
REMARK 1.6. If f_{1} is superlinear w.r.t. u at the origin and infinity and f_{2} is also superlinear w.r.t. v at the origin and infinity, then system (S) has at least one positive solution, which can be seen from Steps 1 and 2 in the proof of our theorem.

REmARK 1.7. If f_{1} is sublinear w.r.t. u at the origin and infinity and f_{2} is also sublinear w.r.t. v at the origin and infinity, furthermore, there exist locally bounded functions g_{1} and g_{2} such that

$$
\limsup _{v \rightarrow \infty} \max _{x \in \bar{\Omega}} f_{1}(x, u, v)=g_{1}(u)
$$

uniformly w.r.t. $u \in[0, M]$ and

$$
\limsup _{u \rightarrow+\infty} \max _{x \in \bar{\Omega}} f_{2}(x, u, v)=g_{2}(v)
$$

uniformly w.r.t. $v \in[0, M]$ (for all $M>0$), then system (S) has at least one positive solution, which can be seen from Steps 3 and 4 in the proof of our theorem.

The paper is organized as follows: in Section 2, we make some preliminaries; in Section 3, we prove our main result; in Section 4, as applications, we prove existence of positive solutions to systems of second order differential equations with different boundary conditions.

2. Preliminaries

In this section, we shall construct a cone which is the Cartesian product of two cones and change the problem (S) into a fixed point problem in the constructed cone. At the same time, we will give some useful preliminary results for the proof of our theorem.

It is well known that $C(\bar{\Omega})$ is a Banach space with the maximum norm $\|u\|=\max _{x \in \bar{\Omega}}|u(x)|$, and $C^{+}(\bar{\Omega})$ is a total cone of $C(\bar{\Omega})$. Choose bounded domains $\Omega_{i} \subset \Omega(i=1,2)$ such that $\delta_{i} \stackrel{\text { def }}{=} \min _{x \in \bar{\Omega}_{i}} p_{i}(x)>0$, which is feasible by the hypotheses of p_{i}. Now construct sub-cones and subsets as following:

$$
\begin{gathered}
K_{i}=\left\{u \in C^{+}(\bar{\Omega}) \mid u(x) \geq \delta_{i}\|u\|, \text { for all } x \in \bar{\Omega}_{i}\right\}, \\
K_{r_{i}}=\left\{u \in K_{i} \mid\|u\|<r_{i}\right\}, \quad \partial K_{r_{i}}=\left\{u \in K_{i} \mid\|u\|=r_{i}\right\}, \quad \text { for all } r_{i}>0 .
\end{gathered}
$$

Noticing that $B_{i}(i=1,2)$ is completely continuous and positive, it follows from Lemma 1.2 and Krein-Rutman theorem (see [6]) that $r\left(B_{i}\right)$ is one of eigenvalues for B_{i} and there exist positive eigenfunctions corresponding to $r\left(B_{i}\right)$.

Lemma 2.1. Let $\psi_{i}(x)$ be the positive eigenfunctions of B_{i} corresponding to $r\left(B_{i}\right)$ with $\int_{\bar{\Omega}} \psi_{i}(x) d x=1$, then the following conclusions are valid:
(a) $\int_{\bar{\Omega}} \psi_{i}(x) u(x) d x \leq\|u\|$, for all $u \in K_{i}$;
(b) $\psi_{i}(x) \geq p_{i}(x)\left\|\psi_{i}\right\|$, for all $x \in \bar{\Omega}$;
(c) there exist constants $c_{i}>0$ such that $\int_{\bar{\Omega}} \psi_{i}(x) u(x) d x \geq c_{i}\|u\|$, for all $u \in K_{i}$.

Proof. (a) Obviously,

$$
\int_{\bar{\Omega}} \psi_{i}(x) u(x) d x \leq \int_{\bar{\Omega}} \psi_{i}(x) d x \cdot\|u\|=\|u\|
$$

(b) Noticing that $k_{i}(x, y) \geq p_{i}(x) k_{i}(z, y)$, for all $x, y, z \in \bar{\Omega}$, we have

$$
\int_{\bar{\Omega}} k_{i}(x, y) \psi_{i}(y) d y \geq \int_{\bar{\Omega}} p_{i}(x) k_{i}(z, y) \psi_{i}(y) d y, \quad \text { for all } x, z \in \bar{\Omega}
$$

and

$$
r\left(B_{i}\right) \psi_{i}(x) \geq r\left(B_{i}\right) p_{i}(x) \psi_{i}(z), \quad \text { for all } x, z \in \bar{\Omega}
$$

which implies that $\psi_{i}(x) \geq p_{i}(x)\left\|\psi_{i}\right\|$, for all $x \in \bar{\Omega}$.
(c) It follows from (b) and the definition of K_{i}.

For $\lambda \in[0,1], u, v \in C^{+}(\bar{\Omega})$, we define the mappings:

$$
\begin{gathered}
T_{\lambda, 1}(\cdot, \cdot), T_{\lambda, 2}(\cdot, \cdot): C^{+}(\bar{\Omega}) \times C^{+}(\bar{\Omega}) \rightarrow C^{+}(\bar{\Omega}), \\
T_{\lambda}(\cdot, \cdot): C^{+}(\bar{\Omega}) \times C^{+}(\bar{\Omega}) \rightarrow C^{+}(\bar{\Omega}) \times C^{+}(\bar{\Omega})
\end{gathered}
$$

by

$$
\begin{aligned}
& T_{\lambda, 1}(u, v)(x)=\int_{\bar{\Omega}} k_{1}(x, y)\left[\lambda f_{1}(y, u(y), v(y))+(1-\lambda) f_{1}(y, u(y), 0)\right] d y \\
& T_{\lambda, 2}(u, v)(x)=\int_{\bar{\Omega}} k_{2}(x, y)\left[\lambda f_{2}(y, u(y), v(y))+(1-\lambda) f_{2}(y, 0, v(y))\right] d y
\end{aligned}
$$

and

$$
T_{\lambda}(u, v)(x)=\left(T_{\lambda, 1}(u, v)(x), T_{\lambda, 2}(u, v)(x)\right)
$$

It is obvious that the existence of positive solutions of system (S) is equivalent to the existence of nontrivial fixed points of T_{1} in $K_{1} \times K_{2}$.

To compute the fixed point index of T_{1}, we need the following results.
LEMMA 2.2. $T_{\lambda}: K_{1} \times K_{2} \rightarrow K_{1} \times K_{2}$ is completely continuous.
Proof. For $(u, v) \in K_{1} \times K_{2}$, we show that $T_{\lambda}(u, v) \in K_{1} \times K_{2}$, i.e. $T_{\lambda, 1}(u, v) \in K_{1}$ and $T_{\lambda, 2}(u, v) \in K_{2}$. By the above definitions and the conditions about $k_{i}(x, y)$, we have

$$
\begin{aligned}
T_{\lambda, 1}(u, v)(x) & =\int_{\bar{\Omega}} k_{1}(x, y)\left[\lambda f_{1}(y, u(y), v(y))+(1-\lambda) f_{1}(y, u(y), 0)\right] d y \\
& \geq p_{1}(x) \int_{\bar{\Omega}} k_{1}(z, y)\left[\lambda f_{1}(y, u(y), v(y))+(1-\lambda) f_{1}(y, u(y), 0)\right] d y \\
& =p_{1}(x) T_{\lambda, 1}(u, v)(z)
\end{aligned}
$$

for all $x, z \in \bar{\Omega}$, which implies that

$$
T_{\lambda, 1}(u, v)(x) \geq \delta_{1}\left\|T_{\lambda, 1}(u, v)\right\|, \quad x \in \bar{\Omega}_{1} .
$$

Similarly,

$$
T_{\lambda, 2}(u, v)(x) \geq \delta_{2}\left\|T_{\lambda, 2}(u, v)\right\|, \quad x \in \bar{\Omega}_{2} .
$$

Hence, $T_{\lambda}\left(K_{1} \times K_{2}\right) \subset K_{1} \times K_{2}$. By the Arzelà-Ascoli theorem, we know that $T_{\lambda}: K_{1} \times K_{2} \rightarrow K_{1} \times K_{2}$ is completely continuous.

Remark 2.3. Denoting $T(\lambda, u, v)(x)=T_{\lambda}(u, v)(x), \overline{T\left([0,1] \times K_{r_{1}} \times K_{r_{2}}\right)}$ is a compact set by the Arzelà-Ascoli theorem.

Next, we recall some concepts about the fixed point index (see [2], [11]), which will be used in the proof of our theorem. Let X be a Banach space and let $P \subset X$ be a closed convex cone in X. Assume that W is a bounded open subset of X with boundary ∂W, and let $A: P \cap \bar{W} \rightarrow P$ be a completely continuous operator. If $A u \neq u$ for $u \in P \cap \partial W$, then the fixed point index $i(A, P \cap W, P)$ is defined. One important fact is that if $i(A, P \cap W, P) \neq 0$, then A has a fixed point in $P \cap W$. The following results are useful in our proof.

Lemma 2.4 ([2], [11]). Let E be a Banach space and let $P \subset E$ be a closed convex cone in E. For $r>0$, denote

$$
P_{r}=\{u \in P \mid\|u\|<r\}, \quad \partial P_{r}=\{u \in P \mid\|u\|=r\} .
$$

Let $A: P \rightarrow P$ be completely continuous. Then the following conclusions are valid:
(a) if $\mu A u \neq u$ for every $u \in \partial P_{r}$ and $\mu \in(0,1]$, then $i\left(A, P_{r}, P\right)=1$;
(b) if mapping A satisfies the following two conditions:
(b1) $\inf _{u \in \partial P_{r}}\|A u\|>0$;
(b2) $\mu A u \neq u$ for every $u \in \partial P_{r}$ and $\mu \geq 1$,
then $i\left(A, P_{r}, P\right)=0$.
Lemma 2.5 ([1]). Let E be a Banach space and let $P_{i} \subset E(i=1,2)$ be a closed convex cone in E. For $r_{i}>0(i=1,2)$, denote

$$
P_{r_{i}}=\left\{u \in P_{i} \mid\|u\|<r_{i}\right\}, \quad \partial P_{r_{i}}=\left\{u \in P_{i} \mid\|u\|=r_{i}\right\} .
$$

Suppose $A_{i}: P_{i} \rightarrow P_{i}$ is completely continuous. If $u_{i} \neq A_{i} u_{i}$, for all $u_{i} \in \partial P_{r_{i}}$, then

$$
i\left(A, P_{r_{1}} \times P_{r_{2}}, P_{1} \times P_{2}\right)=i\left(A_{1}, P_{r_{1}}, P_{1}\right) \cdot i\left(A_{2}, P_{r_{2}}, P_{2}\right)
$$

where $A(u, v) \stackrel{\text { def }}{=}\left(A_{1} u, A_{2} v\right)$, for all $(u, v) \in P_{1} \times P_{2}$.

3. Proof of Theorem 1.5

We will choose a bounded open set $D=\left(K_{R_{1}} \backslash \overline{K_{r_{1}}}\right) \times\left(K_{R_{2}} \backslash \overline{K_{r_{2}}}\right)$ in product cone $K_{1} \times K_{2}$ and verify that a family of operators $\left\{T_{\lambda}\right\}_{\lambda \in I}$ satisfy the sufficient conditions for the homotopy invariance of fixed point index on ∂D. Next, we separate the proof into four steps.

Step 1. From the superlinear assumption of f_{1} at the origin, there are $\varepsilon \in$ $\left(0,1 / r\left(B_{1}\right)\right)$ and $r_{1}>0$ such that

$$
\begin{equation*}
\lambda f_{1}(x, u, v)+(1-\lambda) f_{1}(x, u, 0) \leq\left(1 / r\left(B_{1}\right)-\varepsilon\right) u \tag{3.1}
\end{equation*}
$$

for all $x \in \bar{\Omega}, u \in\left[0, r_{1}\right]$ and $v \in \mathbb{R}^{+}$. We claim that

$$
\begin{equation*}
\mu T_{\lambda, 1}(u, v) \neq u, \quad \text { for all } \mu \in(0,1] \text { and }(u, v) \in \partial K_{r_{1}} \times K_{2} \tag{3.2}
\end{equation*}
$$

In fact, if it is not true, then there exist $\mu_{0} \in(0,1]$ and $\left(u_{0}, v_{0}\right) \in \partial K_{r_{1}} \times K_{2}$, such that $\mu_{0} T_{\lambda, 1}\left(u_{0}, v_{0}\right)=u_{0}$. In combination with (3.1), it follows that

$$
u_{0}(x) \leq T_{\lambda, 1}\left(u_{0}, v_{0}\right)(x) \leq \int_{\bar{\Omega}} k_{1}(x, y)\left(1 / r\left(B_{1}\right)-\varepsilon\right) u_{0}(y) d y
$$

Multiplying the both sides of this inequality by $\psi_{1}(x)$ and integrating on $\bar{\Omega}$, we get that

$$
\int_{\bar{\Omega}} u_{0}(x) \psi_{1}(x) d x \leq \int_{\bar{\Omega}} \int_{\bar{\Omega}} k_{1}(x, y)\left(1 / r\left(B_{1}\right)-\varepsilon\right) u_{0}(y) \psi_{1}(x) d y d x
$$

and

$$
\int_{\bar{\Omega}} u_{0}(x) \psi_{1}(x) d x \leq\left(1 / r\left(B_{1}\right)-\varepsilon\right) \int_{\bar{\Omega}} \int_{\bar{\Omega}} k_{1}(x, y) \psi_{1}(x) d x u_{0}(y) d y
$$

that is

$$
\int_{\bar{\Omega}} u_{0}(x) \psi_{1}(x) d x \leq\left(1-r\left(B_{1}\right) \varepsilon\right) \int_{\bar{\Omega}} u_{0}(y) \psi_{1}(y) d y
$$

Noticing that $\int_{\bar{\Omega}} u_{0}(x) \psi_{1}(x) d x>0$, hence $1 \leq 1-r\left(B_{1}\right) \varepsilon$, which is a contradiction!

Step 2. By use of the superlinear hypothesis of f_{1} at infinity, there exist $\varepsilon>0$ and $m>0$ such that

$$
\begin{equation*}
\lambda f_{1}(x, u, v)+(1-\lambda) f_{1}(x, u, 0) \geq\left(1 / r\left(B_{1}\right)+\varepsilon\right) u \tag{3.3}
\end{equation*}
$$

for all $x \in \bar{\Omega}, u \geq m$ and $v \in \mathbb{R}^{+}$, thus

$$
\begin{equation*}
\lambda f_{1}(x, u, v)+(1-\lambda) f_{1}(x, u, 0) \geq\left(1 / r\left(B_{1}\right)+\varepsilon\right) u-C_{0} \tag{3.4}
\end{equation*}
$$

for all $x \in \bar{\Omega}$ and $u, v \in \mathbb{R}^{+}$, here $C_{0}=\left(1 / r\left(B_{1}\right)+\varepsilon\right) m$.
We can prove that there exists a $R_{1}>r_{1}$ such that

$$
\begin{equation*}
\mu T_{\lambda, 1}(u, v) \neq u \quad \text { and } \quad \inf _{u \in \partial K_{R_{1}}}\left\|T_{\lambda, 1}(u, v)\right\|>0 \tag{3.5}
\end{equation*}
$$

for all $\mu \geq 1,(u, v) \in \partial K_{R_{1}} \times K_{2}$.
First, if there are $\left(u_{0}, v_{0}\right) \in K_{1} \times K_{2}$ and $\mu_{0} \geq 1$ such that $u_{0}=\mu_{0} T_{\lambda, 1}\left(u_{0}, v_{0}\right)$, together with (3.4), we get that

$$
u_{0}(x) \geq T_{\lambda, 1}\left(u_{0}, v_{0}\right)(x) \geq \int_{\bar{\Omega}} k_{1}(x, y)\left(1 / r\left(B_{1}\right)+\varepsilon\right) u_{0}(y) d y-C
$$

It follows that

$$
\int_{\bar{\Omega}} u_{0}(x) \psi_{1}(x) d x \geq \int_{\bar{\Omega}} \int_{\bar{\Omega}} k_{1}(x, y)\left(1 / r\left(B_{1}\right)+\varepsilon\right) u_{0}(y) d y \psi_{1}(x) d x-C
$$

and

$$
\int_{\bar{\Omega}} u_{0}(x) \psi_{1}(x) d x \geq\left(1+r\left(B_{1}\right) \varepsilon\right) \int_{\bar{\Omega}} u_{0}(y) \psi_{1}(y) d y-C
$$

which yields

$$
\int_{\bar{\Omega}} u_{0}(x) \psi_{1}(x) d x \leq \frac{C}{r\left(B_{1}\right) \varepsilon}
$$

Furthermore, in view of Lemma 2.1(c), we know that

$$
\left\|u_{0}\right\| \leq \frac{C}{c_{1} r\left(B_{1}\right) \varepsilon} \stackrel{\text { def }}{=} R^{*}
$$

Therefore, as $R>R^{*}, u \neq \mu T_{\lambda, 1}(u, v)$ for all $(u, v) \in \partial K_{R} \times K_{2}$ and $\mu \geq 1$. In addition, if $R>m / \delta_{1}$, then by use of (3.3) we know that for all $(u, v) \in \partial K_{R} \times K_{2}$,

$$
\begin{aligned}
\left\|T_{\lambda, 1}(u, v)\right\| & \geq \int_{\bar{\Omega}} T_{\lambda, 1}(u, v)(x) \psi_{1}(x) d x \\
& \geq \int_{\bar{\Omega}} \int_{\bar{\Omega}_{1}} k_{1}(y, x)\left(1 / r\left(B_{1}\right)+\varepsilon\right) u(y) d y \psi_{1}(x) d x \\
& \geq\left(1+r\left(B_{1}\right) \varepsilon\right) \int_{\bar{\Omega}_{1}} u(y) \psi_{1}(y) d y \geq\left(1+r\left(B_{1}\right) \varepsilon\right) \operatorname{mes}\left(\bar{\Omega}_{1}\right) \delta_{1}^{2}\left\|\psi_{1}\right\| R
\end{aligned}
$$

which implies that $\inf _{u \in \partial K_{R}}\left\|T_{\lambda, 1}(u, v)\right\|>0$. Hence, we choose

$$
R_{1}>\max \left\{r_{1}, R^{*}, m / \delta_{1}\right\}
$$

Step 3. In view of the sublinear assumption of f_{2} at the origin, there are $\varepsilon>0$ and $r_{2}>0$ such that

$$
\begin{equation*}
\lambda f_{2}(x, u, v)+(1-\lambda) f_{2}(x, u, 0) \geq\left(1 / r\left(B_{1}\right)+\varepsilon\right) v \tag{3.6}
\end{equation*}
$$

for all $x \in \bar{\Omega}, v \in\left[0, r_{2}\right]$ and $u \in \mathbb{R}^{+}$.
By (3.6) and the proof similar to Steps 1 and 2, we can deduce that

$$
\begin{equation*}
\mu T_{\lambda, 2}(u, v) \neq v \quad \text { and } \quad \inf _{v \in \partial K_{r_{2}}} \mid T_{\lambda, 2}(u, v) \|>0 \tag{3.7}
\end{equation*}
$$

for all $\mu \geq 1,(u, v) \in K_{1} \times \partial K_{r_{2}}$.
Step 4. By virtue of the sublinear hypothesis and condition (G) of f_{2} at infinity, there exist $\varepsilon \in\left(0,1 / r\left(B_{2}\right)\right), n>0$ and $C>0$ such that

$$
\begin{equation*}
\lambda f_{2}(x, u, v)+(1-\lambda) f_{2}(x, 0, v) \leq\left(1 / r\left(B_{2}\right)-\varepsilon\right) v \tag{3.8}
\end{equation*}
$$

for all $x \in \bar{\Omega}, v \geq n$ and $u \in \mathbb{R}^{+}$, and

$$
\begin{equation*}
\lambda f_{2}(x, u, v)+(1-\lambda) f_{2}(x, 0, v) \leq\left(1 / r\left(B_{2}\right)-\varepsilon\right) v+C \tag{3.9}
\end{equation*}
$$

for all $x \in \bar{\Omega}$ and $u, v \in \mathbb{R}^{+}$.
From (3.8), (3.9) and the similar argument used in Step 2, it can be proved that if $v_{0}=\mu_{0} T_{\lambda, 2}\left(u_{0}, v_{0}\right)$ for $\left(u_{0}, v_{0}\right) \in K_{1} \times K_{2}$ and $\mu_{0} \in(0,1]$, then

$$
\left\|v_{0}\right\| \leq R^{\prime} \stackrel{\text { def }}{=} \frac{C}{c_{2} r\left(B_{2}\right) \varepsilon}
$$

Hence, we choose $R_{2}>\max \left\{r_{2}, R^{\prime}\right\}$, then

$$
\begin{equation*}
\mu T_{\lambda, 2}(u, v) \neq v, \quad \text { for all } \mu \in(0,1] \text { and }(u, v) \in K_{1} \times \partial K_{R_{2}} \tag{3.10}
\end{equation*}
$$

Now we choose an open set $D=\left(K_{R_{1}} \backslash \overline{K_{r_{1}}}\right) \times\left(K_{R_{2}} \backslash \overline{K_{r_{2}}}\right)$. Based on the expressions (3.2), (3.5), (3.7) and (3.10), it is easy to verify that $\left\{T_{\lambda}\right\}_{\lambda \in I}$ satisfy the sufficient conditions for the homotopy invariance of fixed point index on ∂D; on the other hand, in combination with the classical fixed point index results (see Lemma 2.4), we have

$$
\begin{aligned}
i\left(T_{0,1}, K_{r_{1}}, K_{1}\right) & =i\left(T_{0,2}, K_{R_{2}}, K_{2}\right)=1 \\
i\left(T_{0,1}, K_{R_{1}}, K_{1}\right) & =i\left(T_{0,2}, K_{r_{2}}, K_{2}\right)=0
\end{aligned}
$$

Applying the homotopy invariance of fixed point index and the product formula for the fixed point index (see Lemma 2.5), we obtain that

$$
\begin{aligned}
i\left(T_{1}, D, K_{1} \times K_{2}\right) & =i\left(T_{0}, D, K_{1} \times K_{2}\right)=\prod_{j=1}^{2} i\left(T_{0, j}, K_{R_{j}} \backslash \overline{K_{r_{j}}}, K_{j}\right) \\
& =\prod_{j=1}^{2}\left[i\left(T_{0, j}, K_{R_{j}}, K_{j}\right)-i\left(T_{0, j}, K_{r_{j}}, K_{j}\right)\right]=-1
\end{aligned}
$$

Therefore, system (S) has at least one positive solution.

4. Applications

As applications, we consider existence of positive solutions for the following system of second-order ordinary differential equations

$$
\begin{cases}-u^{\prime \prime}(x)=f_{1}(x, u(x), v(x)) & \text { for } x \in \Omega \equiv(0,1) \tag{4.1}\\ -v^{\prime \prime}(x)=f_{2}(x, u(x), v(x)) & \text { for } x \in \Omega \equiv(0,1) \\ u(0)=u(1)=0 & \\ v(0)=v^{\prime}(1)=0 & \end{cases}
$$

here $f_{1}, f_{2} \in C\left([0,1] \times \mathbb{R}^{+} \times \mathbb{R}^{+}, \mathbb{R}^{+}\right)$.
Theorem 4.1. Assume that f_{2} satisfies condition (G) and f_{1}, f_{2} satisfy:
$\left(\mathrm{H}_{1}^{*}\right) \quad \limsup \max _{u \rightarrow 0^{+}} \frac{f_{1}(x, u, v)}{u}<\pi^{2}<\liminf _{u \rightarrow \infty} \min _{x \in[0,1]} \frac{f_{1}(x, u, v)}{u}$
uniformly w.r.t. $v \in \mathbb{R}^{+}$;
$\left(\mathrm{H}_{2}^{*}\right) \quad \liminf _{v \rightarrow 0^{+}} \min _{x \in[0,1]} \frac{f_{2}(x, u, v)}{v}>\frac{\pi^{2}}{4}>\limsup _{v \rightarrow \infty} \max _{x \in[0,1]} \frac{f_{2}(x, u, v)}{v}$ uniformly w.r.t. $u \in \mathbb{R}^{+}$.

Then system (4.1) has at least one positive solution.
Proof. We know that system (4.1) is equivalent to the following system of nonlinear Hammerstein integral equations

$$
\begin{cases}u(x)=\int_{0}^{1} k_{1}(x, y) f_{1}(y, u(y), v(y)) d y & \text { for } x \in[0,1] \\ v(x)=\int_{0}^{1} k_{2}(x, y) f_{2}(y, u(y), v(y)) d y & \text { for } x \in[0,1]\end{cases}
$$

where

$$
k_{1}(x, y)=\left\{\begin{array}{ll}
x(1-y) & \text { if } x \leq y, \\
y(1-x) & \text { if } y \leq x,
\end{array} \quad \text { and } \quad k_{2}(x, y)= \begin{cases}x & \text { if } x \leq y \\
y & \text { if } y \leq x\end{cases}\right.
$$

It is easy to verify that kernel functions k_{i} satisfy conditions (i)-(iii).
According to Theorem 1.5, we need only show that $r\left(B_{1}\right)=\pi^{-2}$ and $r\left(B_{2}\right)=$ $4 \pi^{-2}$. On that purpose, we need only to verify that the minimal eigenvalue of B_{1}^{-1} and B_{2}^{-1} is π^{2} and $\pi^{2} / 4$, respectively. It follows from the following linear eigenvalue problems:

$$
\left\{\begin{array} { l }
{ - u ^ { \prime \prime } (x) = \lambda _ { n } u (x) , } \\
{ u (0) = u (1) = 0 , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
-v^{\prime \prime}(x)=\mu_{n} v(x) \\
v(0)=v^{\prime}(1)=0
\end{array}\right.\right.
$$

In fact, $\lambda_{n}=n^{2} \pi^{2}$ and $\mu_{n}=(n-1 / 2)^{2} \pi^{2}, n \in \mathbb{N}$.
Remark 4.2. For instance, $f_{1}(x, u, v)=\max \left\{|\sin u|, u^{2}\right\}\left(1+\tan ^{-1} v\right)$ and $f_{2}(x, u, v)=\pi^{2}\left(1+\cot ^{-1} u\right)|\sin v|$, then f_{1} and f_{2} satisfy conditions $\left(\mathrm{H}_{1}^{*}\right),\left(\mathrm{H}_{2}^{*}\right)$ and (G).

References

[1] X. Cheng and C. Zhong, Existence of positive solutions for a second-order ordinary differential system, J. Math. Anal. Appl. 312 (2005), 14-23.
[2] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, New York, 1988.
[3] D. Guo and J. Sun, Nonlinear Integral Equations, Shandong Press of Science and Technology, Jinan, 1987. (in Chinese)
[4] A. Hammerstein, Nichtlineare intergralgleichungen nebst anwendungen, Acta Math. 54 (1929), 117-176.
[5] M. A. Krasnosel'skiĬ, Topological methods in the Theory of Nonlinear Integral Equations, Pergamon, Oxford, 1964.
[6] M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Transl. Amer. Math. Soc. 10 (1962), 199-325.
[7] J. Sun and X. Liu, Computation for topological degree and its applications, J. Math. Anal. Appl. 202 (1996), 785-796.
[8] J. WANG, Existence of nontrivial solutions to nonlinear systems of Hammerstein integral equations and applications, Indian J. Pure Appl. Math. 31 (2001), 1303-1311.
[9] Z. Yang and D. O'Regan, Positive solvability of systems of nonlinear Hammerstein integral equations, J. Math. Anal. Appl. 311 (2005), 600-614.
[10] Z. ZHANG, Existence of nontrivial solutions for superlinear systems of integral equations and applications, Acta Math. Sinica 15 (1999), 153-162.
[11] C. Zhong, X. Fan and W. Chen, An Introduction to Nonlinear Functional Analysis, Lanzhou University Press, Lanzhou, 1998. (in Chinese)

Xiyou Cheng
Academy of Mathematics and Systems Science
Institute of Mathematics
Chinese Academy of Sciences
Beijing, 100190, P.R. China
and
Department of Applied Mathematics
Nanjing Audit University,
Nanjing, 210029, P.R. China
E-mail address: chengxy03@163.com
\section*{Zhitao Zhang}
Academy of Mathematics and Systems Science
Institute of Mathematics
Chinese Academy of Sciences
Beijing, 100190, P.R. China
E-mail address: zzt@math.ac.cn

