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UNIFORM NONSQUARENESS
OF DIRECT SUMS OF BANACH SPACES

Anna Betiuk-Pilarska — Stanisław Prus

Abstract. An inequality between James constants of Banach spaces Xs

and the James constant of their direct sum is obtained. This gives a char-

acterization of uniform nonsquareness of sums of Banach spaces.

1. Introduction

The class of uniformly nonsquare Banach spaces was introduced by James
in [7]. He proved that those spaces are super-reflexive, i.e. they admit equivalent
uniformly convex norms. In [4] Gao and Lau introduced a coefficient related to
uniform nonsquareness, which is called the James constant of a Banach space.
Uniform nonsquareness turned out to be useful in metric fixed point theory. The
James constant and its modifications give sufficient conditions for normal struc-
ture (see [5], [2] and [8]) and even estimates for the normal structure coefficient
(see [12]). In [6] it was proved that all uniformly nonsquare Banach spaces have
the fixed point property for nonexpansive mappings on bounded closed convex
sets. In this paper we deal with the problem of uniform nonsquareness of direct
sums of Banach spaces. The basic result in this area was obtained by Kato, Saito
and Tamura [9]. They found an equivalent condition for uniform nonsquareness
of a direct sum of two Banach spaces. In their paper they asked if it is possible
to generalize their result to direct sums of more than two spaces. A sufficient
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condition for uniform nonsquareness of direct sums of finite families of Banach
spaces can be found in [3]. In this paper we give an answer to the problem posed
in [9]. Following [1, p. 5] we consider a general product X = (

∑
s∈S Xs)Z of

a family {Xs}s∈S of Banach spaces. We will show an inequality between the
James constant J(X) of X and James constants of the spaces Xs and Z. As
a corollary we see that X = (

∑
s∈S Xs)Z is uniformly nonsquare if and only if

the space Z is uniformly nonsquare and sups∈S J(Xs) < 2. Our results can be
applied in particular to the case when Z = (Z, ‖ ·‖Z) is a real Banach space with
a 1-unconditional basis and (Xn) is a sequence of Banach spaces.

2. Preliminaries

Definition 2.1. A Banach space X is called uniformly nonsquare if there
exists δ ∈ (0, 1) such that for any x, y ∈ X with ‖x‖ = ‖y‖ = 1 we have
‖x+ y‖/2 ≤ 1− δ or ‖x− y‖/2 ≤ 1− δ.

In [9] Kato, Saito and Tamura showed a theorem which can be formulated
in the following way.

Theorem 2.2. Let X and Y be Banach spaces and ‖ · ‖Z be a norm on R2

such that ‖(1, 0)‖Z = ‖(0, 1)‖Z = 1 and ‖ · ‖Z is monotone i.e. if |x| ≤ |y|, then
‖x‖ ≤ ‖y‖. Then the following conditions are equivalent.

(a) (X ⊕ Y )Z is uniformly nonsquare.
(b) X and Y are uniformly nonsquare and ‖ · ‖Z is different from l1 and l∞
norm.

In their paper they asked about characterization of uniform nonsquareness
of direct sums of more than two spaces. In [3] Dhompongsa, Kaewcharoen,
Kaewkhao showed that if X1, . . . , Xn are uniformly nonsquare Banach spaces
and ‖ · ‖Z is a monotone uniformly convex norm on Rn then (X1 ⊕ · · · ⊕Xn)Z
is uniformly nonsquare.

The James constant, or the nonsquare constant of a Banach space X was
defined by Gao and Lau in [4] as

J(X) = sup{min{‖x+ y‖, ‖x− y‖} : x, y ∈ X, ‖x‖ = ‖y‖ = 1}.

In this definition condition that ‖x‖ = ‖y‖ = 1 can be replaced by: x, y belong
to the unit ball of X. Clearly, X is uniformly nonsquare if and only if J(X) < 2.
In [5], Gao and Lau proved that, in general,

√
2 ≤ J(X) ≤ 2 and X has uniform

normal structure provided that J(X) < 3/2. Next, in [2] it was shown that 3/2
can be replaced by (1 +

√
5)/2 in this theorem. The following refinement of the

triangle inequality will be the main tool for the proof of our theorem.



Uniform Nonsquareness of Direct Sums 183

Lemma 2.3 ([11]). For any nonzero elements x, y in a Banach spaces X we
have

‖x+ y‖+
(
2−
∥∥∥∥ x‖x‖ + y‖y‖

∥∥∥∥)min{‖x‖, ‖y‖}
≤ ‖x‖+ ‖y‖ ≤ ‖x+ y‖+

(
2−
∥∥∥∥ x‖x‖ + y‖y‖

∥∥∥∥)max{‖x‖, ‖y‖}.
3. Results

Let S 6= ∅ be an arbitrary set. Consider the space Map (S,R) of all functions
from S to R with the standard operations and order. Let (Z, ‖ · ‖Z) be a real
Banach space such that Z is a linear subspace of Map (S,R) and if x ∈ Z,
y ∈ Map (S,R) and |y| ≤ |x| then y ∈ Z and ‖y‖Z ≤ ‖x‖Z . Given a family
{Xs}s∈S of Banach spaces, we can therefore define the direct sum (see [1, p. 5])
X = (

∑
s∈S Xs)Z as the space of all functions x = {x(s)}s∈S where x(s) ∈ Xs

for every s ∈ S such that {‖x(s)‖}s∈S ∈ Z. We endow X with the norm given
by the formula

‖x‖ = ‖{‖x(s)‖}s∈S‖Z .

Theorem 3.1. Let X = (
∑
s∈S Xs)Z be as above. Then

J(X) ≤ 2− 1
2

(
2− sup

s∈S
J(Xs)

)
(2− J(Z)).

Proof. Observe that

λ =
1
2

(
2− sup

s∈S
J(Xs)

)
belongs to the interval [0, 1]. For every ε > 0 there exist u = {u(s)}s∈S , v =
{v(s)}s∈S in the unit sphere of X such that

J(X)(1− ε) ≤ min{‖u− v‖, ‖u+ v‖}.

Let S1 be the set of all s ∈ S such that u(s) = 0 or v(s) = 0 or u(s), v(s) are
not zero and ∥∥∥∥ u(s)‖u(s)‖

+
v(s)
‖v(s)‖

∥∥∥∥ = mink=±1

∥∥∥∥ u(s)‖u(s)‖
+ k
v(s)
‖v(s)‖

∥∥∥∥.
If s ∈ S1 and u(s) 6= 0, v(s) 6= 0, then from Lemma 2.3 we obtain

‖u(s) + v(s)‖ ≤‖u(s)‖+ ‖v(s)‖

−
(
2−
∥∥∥∥ u(s)‖u(s)‖

+
v(s)
‖v(s)‖

∥∥∥∥)min{‖u(s)‖, ‖v(s)‖}
= max{‖u(s)‖, ‖v(s)‖}

+
(∥∥∥∥ u(s)‖u(s)‖

+
v(s)
‖v(s)‖

∥∥∥∥− 1)min{‖u(s)‖, ‖v(s)‖}
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≤ max{‖u(s)‖, ‖v(s)‖}+ (J(Xs)− 1)min{‖u(s)‖, ‖v(s)‖}
≤ max{‖u(s)‖, ‖v(s)‖}+ (1− 2λ)min{‖u(s)‖, ‖v(s)‖}
=(1− λ)(‖u(s)‖+ ‖v(s)‖) + λ|‖u(s)‖ − ‖v(s)‖|.

This gives us the inequality

(3.1) ‖u(s) + v(s)‖ ≤ (1− λ)(‖u(s)‖+ ‖v(s)‖) + λ|‖u(s)‖ − ‖v(s)‖|

which holds also if u(s) = 0 or v(s) = 0. Consequently, it holds for all s ∈ S1.
Put

z0(s) = ‖u(s)‖+ ‖v(s)‖, s ∈ S
and

z1(s) =

{
|‖u(s)‖ − ‖v(s)‖| for s ∈ S1,
‖u(s)‖+ ‖v(s)‖ for s ∈ S2,

where S2 = S \ S1. We have

(1− λ)z0(s) + λz1(s)

=

{
(1− λ)(‖u(s)‖+ ‖v(s)‖) + λ|‖u(s)‖ − ‖v(s)‖| for s ∈ S1,
‖u(s)‖+ ‖v(s)‖ for s ∈ S2,

so, by (3.1), we get

J(X)(1− ε) ≤ ‖u+ v‖ ≤ ‖(1− λ)z0 + λz1‖Z
≤ (1− λ)(‖u‖+ ‖v‖) + λ‖z1‖Z = 2(1− λ) + λ‖z1‖Z .

This gives us the inequality

(3.2) J(X)(1− ε)− 2(1− λ) ≤ λ‖z1‖Z .

If s ∈ S2, then u(s) 6= 0, v(s) 6= 0 and∥∥∥∥ u(s)‖u(s)‖
− v(s)
‖v(s)‖

∥∥∥∥ = mink=±1

∥∥∥∥ u(s)‖u(s)‖
+ k
v(s)
‖v(s)‖

∥∥∥∥.
A reasoning similar to the previous one shows that

(3.3) J(X)(1− ε)− 2(1− λ) ≤ λ‖z2‖Z

where

z2(s) =

{
‖u(s)‖+ ‖v(s)‖ for s ∈ S1,
|‖u(s)‖ − ‖v(s)‖| for s ∈ S2.

Put

y1(s) = ‖u(s)‖, s ∈ S, y2(s) =

{
‖v(s)‖ for s ∈ S1,
−‖v(s)‖ for s ∈ S2.

Then ‖y1‖Z = ‖u‖ = 1 and ‖y2‖Z = ‖v‖ = 1. Moreover,

|y1 − y2|(s) =

{
|‖u(s)‖ − ‖v(s)‖| for s ∈ S1,
‖u(s)‖+ ‖v(s)‖ for s ∈ S2,
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which shows that ‖y1 − y2‖Z = ‖z1‖Z and

|y1 + y2|(s) =

{
‖u(s)‖+ ‖v(s)‖ for s ∈ S1,
|‖u(s)‖ − ‖v(s)‖| for s ∈ S2,

which implies that ‖y1 + y2‖Z = ‖z2‖Z . From (3.2) and (3.3) we therefore see
that

λJ(Z) ≥ λmin{‖y1 − y2‖Z , ‖y1 + y‖Z} ≥ J(X)(1− ε)− 2(1− λ).

Passing to the limit with ε → 0, we obtain λJ(Z) ≥ J(X) − 2(1 − λ) which
means that

J(X) ≤ λJ(Z) + 2(1− λ) = 2− 1
2

(
2− sup

s∈S
J(Xk)

)
(2− J(Z)). �

It is easy to see that all spaces Xs and Z are isometric to subspaces of
(
∑
s∈S Xs)Z . In view of Theorem 3.1 this gives us the following result.

Corollary 3.2. Let X = (
∑
s∈S Xs)Z be as in Theorem 3.1. Then X

is uniformly nonsquare if and only if the space Z is uniformly nonsquare and
sups∈S J(Xs) < 2.

We say that a Schauder basis (ek) of a real space Z is unconditional if when-
ever the series

∑∞
k=1 akek converges, it converges unconditionally, i.e.

∑∞
k=1 aπ(k)

·eπ(k) converges for any permutation π of N. In this case

λ = sup
{∥∥∥∥ ∞∑
k=1

εkakek

∥∥∥∥ : ∥∥∥∥ ∞∑
k=1

akek

∥∥∥∥ = 1, εk = ±1} <∞
and we say that (ek) is λ-unconditional. In the same way we can treat finite
bases. Let Z be a space with a 1-unconditional basis (ek). We can identify
a vector x =

∑∞
k=1 akek with the sequence (ak). Thus Z can be seen as a

subspace of the space Map (N,R). Since the basis (ek) is 1-unconditional, the
norm of Z is monotone (see [10, p. 19]). We can therefore consider the direct
sum X = (

∑∞
k=1Xk)Z of a sequence (Xk) of Banach spaces. In this case an

element x ∈ X is of the form x = (xk), where xk ∈ Xk for every k ∈ N and

‖x‖ =
∥∥∥∥ ∞∑
k=1

‖xk‖ek
∥∥∥∥.

So we obtain the following particular case of Theorem 3.1.

Theorem 3.3. Let Z = (Z, ‖ · ‖Z) be a real Banach space with a 1-uncon-
ditional basis and (Xk) be a sequence of Banach spaces. Put X = (

∑∞
k=1Xk)Z .

Then

J(X) ≤ 2− 1
2

(
2− sup

k∈N
J(Xk)

)
(2− J(Z)).

Considering the case Z = Rn, we obtain the following result.
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Corollary 3.4. Let ‖ · ‖Z be a monotone norm in Rn and X1, . . . , Xn be
Banach spaces. Put Z = (Rn, ‖ · ‖Z) and X = (X1 ⊕ . . .⊕Xn)Z . Then

J(X) ≤ 2− 1
2

(
2− max

1≤k≤n
J(Xk)

)
(2− J(Z)).

Consequently, X is uniformly nonsquare if and only if all spaces X1, . . . , Xn, Z
are uniformly nonsquare.

Let ‖ · ‖ be a monotone norm in R2 such that ‖(1, 0)‖ = ‖(0, 1)‖ = 1. Then
(R2, ‖ · ‖) is uniformly nonsquare if and only if ‖ · ‖ is different from l1 and l∞
norm. Theorem 2.2 can be therefore seen as a partial case of Corollary 3.4.
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nonsquare Banach spaces have the fixed point property for nonexpansive mappings,

J. Funct. Anal. 233 (2006), 494–514.

[7] R. C. James, Uniformly nonsquare Banach spaces, Ann. of Math. 80 (1964), 542–550.

[8] M. Kato, L. Maligranda and Y. Takahasi, On James and Jordan–von Neumann

constants and the normal structure and the normal structure coefficient of Banach

spaces, Studia Math. 144 (2001), 275–295.

[9] M. Kato, K.-S. Saito and T. Tamura, Uniform non-squareness of Ψ-direct sums of

Banach spaces X ⊕Ψ Y , Math. Inequal. Appl. 7 (2004), 429–437.

[10] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer–Verlag, Berlin

–Heidelberg–New York, 1977.

[11] L. Maligranda, Simple norm inequalities, Amer. Math. Monthly 113 (2006), 256–260.

[12] S. Prus, Some estimates for the normal structure coefficient in Banach spaces, Rend.
Circ. Math. Palermo 40 (1991), 128–135.

Manuscript received November 7, 2007

Anna Betiuk-Pilarska and Stanisław Prus
Institute of Mathematics
M. Curie-Sk lodowska University
20-031 Lublin, POLAND

E-mail address: abetiuk@golem.umcs.lublin.pl,bsprus@golem.umcs.lublin.pl

TMNA : Volume 34 – 2009 – No 1


