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ON A p-SUPERLINEAR NEUMANN p-LAPLACIAN EQUATION

Sergiu Aizicovici — Nikolaos S. Papageorgiou — Vasile Staicu

Abstract. We consider a nonlinear Neumann problem, driven by the p-
Laplacian, and with a nonlinearity which exhibits a p-superlinear growth

near infinity, but does not necessarily satisfy the Ambrosetti–Rabinowitz
condition. Using variational methods based on critical point theory, to-

gether with suitable truncation techniques and Morse theory, we show that

the problem has at least three nontrivial solutions, of which two have a fixed
sign (one positive and the other negative).

1. Introduction

Let Z ⊆ RN be a bounded domain with a C2 boundary ∂Z. In this paper
we study the following nonlinear elliptic problem:

(1.1)

{ −4px(z) = f(z, x(z)) a.e. on Z,
∂x

∂n
= 0 on ∂Z.

Here 4p denotes the p-Laplacian differential operator defined by

4pu(z) = div(‖Du(z)‖p−2
RN Du(z)), 1 < p <∞,

n( · ) stands for the outward unit normal on ∂Z, and f(z, x) is a nonlinear
Caratheodory function.
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Our aim is to prove a multiplicity theorem for problem (1.1), when the non-
linearity f(z, · ) exhibits a p-superlinear growth near infinity. To deal with such
a problem, in most papers, it is assumed that the nonlinearity x → f(z, x)
satisfies the so called Ambrosetti–Rabinowitz condition (AR-condition for short).

We recall that this condition says that there exist q > p and M > 0 such
that, for almost all z ∈ Z and all |x| ≥M , we have

0 < qF (z, x) ≤ f(z, x)x,

with F (z, x) =
∫ x

0
f(z, s) ds (the primitive of f(z, · )). A direct integration of

this inequality, implies that for almost all z ∈ Z and all |x| ≥ M , we have
F (z, x) ≥ η|x|q for some η > 0, which implies the strict p-superlinear growth
near infinity of the potential function F (z, · ). This condition is employed in
the works of Bartsch–Liu [10], Degiovanni–Lancelotti [14], Liu [22], and Per-
era [26], where the authors sudy the corresponding Dirichlet problem. We should
also mention that in the above papers, with the exception of Bartsch–Liu [10],
we find existence but no multiplicity results. Multiplicity results, but for the-
semilinear (i.e. p = 2) equation with a superlinear nonlinearity and Dirichlet
boundary conditions, can be found in the works of Struwe [29] and Wang [31].
The study of the corresponding problem for the Neumann p-Laplacian, in some
sense, is lagging behind. Recently there have been some multiplicity results
for Neumann p-Laplacian problems, but under different conditions which do
not cover the case of p-superlinear perturbations. We mention the works of
Anello [6], Bonanno–Candito [11], Faraci [16], Filippakis–Gasinski–Papageorgiou
[17], Motreanu–Motreanu–Papageorgiou [24], Motreanu–Papageorgiou [25], Ric-
ceri [28] and Wu–Tan [32]. In the papers of Anello [6], Bonanno–Candito [11],
Faraci [16] and Ricceri [28], it is assumed that p > N (low dimensional prob-
lems) and this allows the authors to exploit the fact that the Sobolev space
W 1,p(Z) is embedded compactly in C(Z). In these works the approach is es-
sentially similar and is based on an abstract multiplicity result of Ricceri [27]
or variants of it. Wu–Tan [32] also assume p > N , but they use variational
methods based on critical point theory. Filippakis–Gasinski–Papageorgiou [17]
and Motreanu–Papageorgiou [25] assume bounded and symmetric nonlineari-
ties and use minimax techniques based on the second deformation theorem and
the symmetric mountain pass theorem. Motreanu–Motreanu–Papageorgiou [24]
consider eigenvalue problems with a parameter λ near resonance, and they allow
nonlinearities f(z, x) which are p-linear and p-superlinear.

In our recent work [2], we consider problems with a p-superlinear nonlinearity
satisfying the AR condition, and prove multiplicity results with precise sign
information for the solutions. Our approach in [2] is purely variational and
a crucial role is played by a new variational characterization of λ1 > 0 (the first
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nonzero eigenvalue of the negative Neumann p-Laplacian) that was earlier proved
by us in [3]. Finally, we also mention the recent papers [4], [7], where related
p-Laplacian Neumann problems are discussed under different assumptions, by
using variational techniques in combination with the method of upper–lower
solutions and Morse theory [4], and respectively variational and degree theoretic
arguments [7].

In this paper, we prove a multiplicity theorem (three nontrivial solutions)
for problems with p-superlinear nonlinearities, which need not satisfy the AR-
condition. Our approach combines minimax arguments based on critical point
theory with suitable truncation techniques and methods from Morse theory.

2. Preliminaries

In this section, for the convenience of the reader, we recall some basic defini-
tions and facts from critical point theory and from Morse theory, which we will
need in the sequel. The reader is referred to [12], [18], [23] for more details.

Let (X, ‖ · ‖) be a Banach space, X∗ its topological dual, and let 〈 · , · 〉
denote the duality brackets for the pair (X∗, X). Let ϕ ∈ C1(X). We say that
ϕ satisfies the Cerami condition at the level c ∈ R (the C-condition, for short),
if every sequence {xn}n≥1 ⊆ X such that

ϕ(xn) → c and (1 + ‖xn‖)ϕ′(xn) → 0 in X∗ as n→∞

has a strongly convergent subsequence. If this condition holds at every level
c ∈ R, then we say that ϕ satisfies the C-condition.

This compactness notion plays a key role in the following minimax theorem
for the critical values of a C1-functional, known in the literature as the mountain
pass theorem; see, e.g. [8], [18].

Theorem 2.1. If (X, ‖ · ‖) is a Banach space, ϕ ∈ C1(X), x0, x1 ∈ X,
ρ > 0,

max{ϕ(x0), ϕ(x1)} < inf{ϕ(x) : ‖x− x0‖ = ρ} = η, ‖x1 − x0‖ > ρ,

Γ = {γ ∈ C([0, 1], X) : γ(0) = x0, γ(1) = x1}, c = inf
γ∈Γ

max
t∈[0,1]

ϕ(γ(t))

and ϕ satisfies the C-condition then c ≥ η and c is a critical value of ϕ, i.e. there
exists x∗ ∈ X such that ϕ′(x∗) = 0 and ϕ(x∗) = c.

Given ϕ ∈ C1(X) we introduce the following notation:

ϕc = {x ∈ X : ϕ(x) ≤ c} (the sublevel set of ϕ at c ∈ R),

K = {x ∈ X : ϕ′(x) = 0} (the critical set of ϕ),

Kc = {x ∈ K : ϕ(x) = c} (the critical set of ϕ at the level c ∈ R).
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Let Y2 ⊆ Y1 ⊆ X and let k ≥ 0 be an integer. By Hk(Y1, Y2) we denote the kth-
relative singular homology group of the pair (Y1, Y2) with integer coefficients.
Let x0 ∈ X be an isolated critical point of ϕ ∈ C1(X) and c = ϕ(x0). The
critical groups of ϕ at x0 are defined by

Ck(ϕ, x0) = Hk(ϕc ∩ U, (ϕc ∩ U) \ {x0}) for all k ≥ 0,

where U is a neighbourhood of x0 such that K ∩ ϕc ∩U = {x0} (see Chang [12]
and Mawhin–Willem [23]). By the excision property of the singular homology
theory, we see that the above definition of critical groups is independent of the
particular neighbourhood U we use.

Now suppose that ϕ ∈ C1(X) satisfies the C-condition and −∞ < inf ϕ(K).
Let c < inf ϕ(K). The critical groups of ϕ at infinity, are defined by

Ck(ϕ,∞) = Hk(X,ϕc) for all k ≥ 0

(see Bartsch–Li [9]). The deformation lemma (which is valid since ϕ satisfies the
C-condition, see Bartolo–Benci–Fortunato [8] and Gasinski–Papageorgiou [18,
p. 636]) implies that the above definition of critical groups of ϕ at infinity is
independent of the choice of c < inf ϕ(K). If K = {x0}, then

Ck(ϕ,∞) = Ck(ϕ, x0) for all k ≥ 0.

Suppose K is finite. The Morse-type numbers of ϕ are defined by

Mk =
∑
x∈K

rankCk(ϕ, x) for all k ≥ 0.

The Betti-type numbers of ϕ, are defined by

βk = rank Ck(ϕ,∞) for all k ≥ 0.

According to Morse theory (see [9], [12] and [23]) the Poincare–Hopf formula

(2.1)
∑
k≥0

(−1)kMk =
∑
k≥0

(−1)kβk,

holds if all Mk, βk are finite and the series converge.
In the analysis of problem (1.1) we will use of the following two spaces:

C1
n(Z) =

{
x ∈ C1(Z) :

∂x

∂n
= 0 on ∂Z

}
and

W 1,p
n (Z) = C1

n(Z)
‖·‖

where ‖ · ‖ denotes the W 1,p(Z)-norm. Both spaces are ordered Banach spaces,
with order cones given by

C+ = {x ∈ C1
n(Z) : x(z) ≥ 0 for all z ∈ Z},
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and respectively

W+ = {x ∈W 1,p
n (Z) : x(z) ≥ 0 a.e. on Z}.

Moreover, we know that C+ has nonempty interior, given by

intC+ = {x ∈ C+ : x(z) > 0 for all z ∈ Z}.

3. Hypotheses and auxiliary results

Throughout this section and the remainder of the paper, ‖ · ‖p denotes the
norm of Lp(R) or Lp(RN ), while ‖ · ‖ denotes the norm of W 1,p

n (Z). Also, for
any x ∈ R, we set x± = max{±x, 0}. Finally, we use w−→ to denote the weak
convergence, | · |N to designate the Lebesgue measure on RN , and χE to indicate
the characteristic function of a subset E of Z.

The hypotheses on the nonlinearity f(z, x) are the following:

(H) f :Z × R → R is a function such that f(z, 0) = 0 almost everywhere on
Z and
(a) for all x ∈ R, z → f(z, x) is measurable;
(b) for almost all z ∈ Z, x→ f(z, x) is continuous;
(c) for almost all z ∈ Z and all x ∈ R

|f(z, x)| ≤ a(z) + c|x|r−1,

with a ∈ L∞(Z)+, c > 0 and p < r < p∗, where

p∗ =

{
Np/(N − p) if p < N,

∞ if p ≥ N.

(d) if F (z, x) =
∫ x

0
f(z, s) ds, then lim|x|→∞ F (z, x)/|x|p uniformly for

almost all z ∈ Z, and there exists µ ∈ ((r− p) max{1, N/p}, r] such
that

lim inf
|x|→∞

f(z, x)x− pF (z, x)
|x|µ

> 0 uniformly for a.a. z ∈ Z;

(e) there exists δ > 0 such that F (z, x) ≤ 0 for almost all z ∈ Z, and
all |x| ≤ δ, and

lim
x→0

f(z, x)
|x|p−2x

= 0 uniformly for a.a. z ∈ Z;

(f) there exists c0 > 0 such that, for almost all z ∈ Z,

f(z, x) ≥ −c0xp−1 for all x ≥ 0,

f(z, x) ≤ c0|x|p−1 for all x ≤ 0.
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Remark 3.1. Hypothesis (H) (e) implies that the nonlinerity f(z, · ) is p-
superlinear near infinity for almost all z ∈ Z (see Costa–Magalhães [13]). How-
ever, it does not need to satisfy the AR-condition, as the example that follows
illustrates.

Example 3.2. Consider the following function F (x), x ∈ R (for the sake of
simplicity we drop the z-dependence):

F (x) =


1
q
|x|q − 1

p
|x|p if |x| ≤ 1,

ξ

p
|x|p ln |x|+ c|x| if |x| > 1,

with
1 < p < q <∞, c =

p− q

pq
< 0 and ξ =

q − p

pq
> 0.

Evidently, F ∈ C1(R) and f(x) = F ′(x) satisfies hypotheses (H). Indeed, take
r = p + ε, with ε > 0 such that Nε < p2 and µ = p. Note however that f(x)
does not satisfy the AR-condition.

Let ϕ:W 1,p
n (Z) → R be the Euler functional for problem (1.1), defined by

ϕ(x) =
1
p
‖Dx‖p

p −
∫

Z

F (z, x(z)) dz for all x ∈W 1,p
n (Z).

Clearly ϕ ∈ C1(W 1,p
n (Z)).

As we already mentioned in the Introduction, we will also use truncation
techniques. For this reason, we introduce the following truncations of the non-
linearity f(z, · ):

f+(z, x) =

{
0 if x ≤ 0,

f(z, x) if x ≥ 0,
and f−(z, x) =

{
f(z, x) if x ≤ 0,

0 if x ≥ 0.

We set F±(z, x) =
∫ x

0
f±(z, s) ds. Let 0 < ε < 1 and introduce the functionals

ϕε
±:W 1,p

n (Z) → R defined by

ϕε
±(x) =

1
p
‖Dx‖p

p +
ε

p
‖x‖p

p −
∫

Z

F±(z, x(z)) dz ∓ ε

p
‖x±‖p

p for all x ∈W 1,p
n (Z).

Evidently ϕε
± ∈ C1(W 1,p

n (Z)). In what follows, we denote by 〈 · , · 〉 the duality
brackets for the pair (W 1,p

n (Z)∗,W 1,p
n (Z)). Let A:W 1,p

n (Z) → W 1,p
n (Z)∗ be the

nonlinear map, defined by

〈A(x), u〉 =
∫

Z

‖Dx‖p−2
RN (Dx,Du)RN dz for all x, u ∈W 1,p

n (Z).

It is easy to verify (see, e.g. [2]) that A is of type (S)+, i.e. if xn
w−→ x in W 1,p

n (Z)
and

lim sup
n→∞

〈A(xn), xn − x〉 ≤ 0

then xn → x in W 1,p
n (Z).
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Also, we introduce the maps N , N±:W 1,p
n (Z) → Lr′(Z) ⊆ W 1,p

n (Z)∗ (1/r +
1/r′ = 1), defined by

N(u)( · ) = f( · , u( · )) and N±(u)( · ) = f±( · , u( · )) for all u ∈W 1,p
n (Z).

Note that

ϕ′(x) = A(x)−N(x) and (ϕε
±)′(x) = A(x) + ε|x|p−2x−N±(x)∓ ε(x±)p−1.

Proposition 3.3. If hypotheses (H) hold, then the functionals ϕε
± and ϕ

satisfy the C-condition.

Proof. We complete the proof for ϕε
+, the proofs for ϕε

− and ϕ being similar.
So, let {xn}n≥1 ⊆W 1,p

n (Z) be a sequence such that

(3.1) |ϕε
+(xn)| ≤M1, for some M1 > 0, all n ≥ 1

and

(3.2) (1 + ‖xn‖)(ϕε
+)′(xn) → 0 in W 1,p

n (Z)∗ as n→∞.

Claim. The sequence {xn}n≥1 ⊆W 1,p
n (Z) is bounded.

From (3.2), we have

|〈(ϕε
+)′(xn), u〉| ≤ εn

1 + ‖xn‖
‖u‖ for all u ∈W 1,p

n (Z), with εn ↓ 0,

hence

(3.3)
∣∣∣∣〈A(xn), u〉+ ε

∫
Z

|xn|p−2xnu dz −
∫

Z

f+(z, xn)u dz − ε

∫
Z

(x+
n )p−1u dz

∣∣∣∣
≤ εn

1 + ‖xn‖
‖u‖.

First choose u = −x−n ∈W 1,p
n (Z) in (3.3). Then

‖Dx−n ‖p
p + ε‖x−n ‖p

p ≤ εn,

therefore

(3.4) x−n → 0 in W 1,p
n (Z) as n→∞.

Next, we choose u = x+
n ∈W 1,p

n (Z) in (3.3). Then

(3.5) −‖Dx+
n ‖p

p +
∫

Z

f+(z, xn)x+
n dz ≤ εn, for all n ≥ 1.

Also, from (3.1) and (3.4), we have

(3.6) ‖Dx+
n ‖p

p −
∫

Z

pF+(z, xn) dz ≤M2 for some M2 > 0, all n ≥ 1.
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Adding (3.5) and (3.6), we obtain

(3.7)
∫

Z

(f+(z, xn)x+
n − pF+(z, xn)) dz ≤M3 for some M3 > 0, all n ≥ 1.

By virtue of hypothesis (H) (d), we can find β > 0 and M4 = M4(β) > 0 such
that

0 < β|x|µ ≤ f(z, x)x− pF (z, x) for a.a. z ∈ Z, all |x| ≥M4,

hence

(3.8) 0 < βxµ ≤ f+(z, x)x− pF+(z, x) for a.a. z ∈ Z, all x ≥M4.

On the other hand, hypothesis (H) (c) implies that for some M5 > 0

(3.9) |f+(z, x)x− pF+(z, x)| ≤M5, for a.a. z ∈ Z and all x < M4.

Combining (3.8) and (3.9) we see that

(3.10) β(x+)µ −M6 ≤ f+(z, x)x+ − pF+(z, x) for a.a. z ∈ Z, all x ∈ R

with M6 = M5 + βMµ
4 . We use (3.10) in (3.7) and obtain

β‖x+
n ‖µ

µ ≤M7 for some M7 > 0, all n ≥ 1,

hence

(3.11) {x+
n }n≥1 ⊆ Lµ(Z) is bounded.

By hypothesis (H) (d), we have µ ≤ r < p∗. Hence, we can find t ∈ [0, 1) such
that

1
r

=
1− t

µ
+

t

p∗
.

Invoking a classical interpolation inequality (see, for instance, Gasinski–Papage-
orgiou [18, p. 905]), we have

‖x+
n ‖r ≤ ‖x+

n ‖1−t
µ ‖x+

n ‖t
p∗

whence (see (3.11))

(3.12) ‖x+
n ‖r

r ≤M8‖x+
n ‖tr

p∗ for some M8 > 0, all n ≥ 1.

Recall that (cf. (3.3))

(3.13)
∣∣∣∣‖Dx+

n ‖p
p −

∫
Z

f+(z, xn)x+
n dz

∣∣∣∣ ≤ εn, for all n ≥ 1.

Note that hypotheses (H) (c) and (d) imply that given ε > 0, we can find cε > 0,
such that

|f(z, x)x| ≤ ε|x|p + cε|x|r for a.a. z ∈ Z, all x ∈ R,

hence
f+(z, x)x+ ≤ ε(x+)p + cε(x+)r for a.a. z ∈ Z, all x ∈ R.
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Using this inequality and (3.12) in (3.13), we obtain

(3.14) ‖Dx+
n ‖p

p ≤ εn + ε‖x+
n ‖p

p + ĉε‖x+
n ‖tr

p∗ for some ĉε > 0, all n ≥ 1.

Arguing by contradiction, suppose that ‖x+
n ‖ → ∞. Set

yn =
x+

n

‖x+
n ‖
, n ≥ 1.

Then ‖yn‖ = 1 for all n ≥ 1, and so we may assume that

(3.15) yn
w−→ y in W 1,p

n (Z) and yn → y in Lp(Z), y ≥ 0.

We write x+
n = yn‖x+

n ‖ in (3.14) and divide by ‖x+
n ‖p. Then

(3.16) ‖Dyn‖p
p ≤

εn

‖x+
n ‖p

+ ε‖yn‖p
p +

ĉε

‖x+
n ‖p−tr

‖yn‖tr
p∗ for all n ≥ 1.

The hypothesis µ > (r − p)max{1, N/p} (see (H) (d)) is equivalent to saying
that tr < p. So, if in (3.16), we pass to the limit as n → ∞ and we use (3.15),
we obtain

‖Dy‖p
p ≤ ε‖y‖p

p ≤ ε‖y‖p ≤ ε (since ‖y‖ = 1).

But recall that ε > 0 was arbitrary. So, we let ε ↓ 0 and obtain ‖Dy‖p = 0,
therefore y ≡ ξ ∈ R.

If ξ = 0, then from (3.16) we have Dyn → 0 in Lp(Z,Rn) hence (see (3.15)),
yn → 0 in W 1,p

n (Z), a contradiction since ‖yn‖ = 1 for all n ≥ 1.

If ξ > 0 (recall that y ≥ 0, see (3.15)), then x+
n (z) →∞ for almost all z ∈ Z.

From (3.1) we have

(3.17)
∫

Z

F+(z, xn(z))
‖x+

n ‖p
dz ≤ M1

‖x+
n ‖p

+ 1

(recall that ‖yn‖ = 1 for all n ≥ 1). On the other hand, by virtue of hypothesis
(H) (d), given θ > 0, we can find M9 = M9(θ) such that

F (z, x)
|x|p

≥ θ > 0 for a.a. z ∈ Z, all x ≥M9,

hence

(3.18)
F+(z, x)
xp

≥ θ > 0 for a.a. z ∈ Z, all |x| ≥M9,
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Using (3.18) and hypothesis (H) (c), we have

(3.19)
∫

Z

F+(z, xn(z))
‖x+

n ‖p
dz

=
∫
{x+

n≥M9}

F+(z, xn(z))
x+

n (z)p
yn(z)p dz +

∫
{x+

n <M9}

F+(z, xn(z))
‖x+

n ‖p
dz

≥
∫
{x+

n≥M9}
θyn(z)p dz +

∫
{x+

n <M9}

F+(z, xn(z))
‖x+

n ‖p
dz

≥ θ

∫
{x+

n≥M9}
yn(z)p dz − M10

‖x+
n ‖p

for some M10 > 0, all n ≥ 1. Since x+
n (z) →∞ for almost all z ∈ Z, we have

χ{x+
n≥M9}(z) → χZ(z) = 1 for a.a. z ∈ Z.

Hence, it follows that

θ

∫
{x+

n≥M9}
yn(z)p dz → θξp|Z|N .

So, if in (3.19) we pass to the limit as n→∞, we obtain

lim
n→∞

∫
Z

F+(z, xn(z))
‖x+

n ‖p
≥ θξp|Z|N .

Recall that θ > 0 was arbitrary. So, we let θ →∞ to conclude that

(3.20) lim
n→∞

∫
Z

F+(z, xn(z))
‖x+

n ‖p
= ∞.

Comparing (3.17) and (3.20), we reach a contradiction. This proves the Claim.
By virtue of the Claim, we may assume that

(3.21) xn
w−→ x in W 1,p

n (Z) and xn → x in Lr(Z).

If in (3.3) we choose u = xn − x ∈ W 1,p
n (Z) and pass to the limit as n → ∞,

using (3.21), we obtain

lim
n→∞

〈A(xn), xn − x〉 = 0.

But A is of type (S)+. So, it follows that xn → x in W 1,p
n (Z). This proves that

ϕε
+ satisfies the C-condition.

Similarly, we show that ϕε
− and ϕ satisfy the C-condition. �

Proposition 3.4. If hypotheses (H) hold, then x = 0 is a local minimizer
for the functionals ϕε

+, ϕε
− and ϕ.

Proof. Again we carry out the proof for ϕε
+, the proofs for ϕε

− and ϕ being
similar.
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Let x ∈ C1
n(Z) be such that ‖x‖C1

n(Z) ≤ δ, with δ > 0 as in hypothesis
(H) (e). Then

(3.22) F (z, x(z)) ≤ 0 a.e. on Z

(see (H) (e)). Consequently, for x ∈ C1
n(Z) with ‖x‖C1

n(Z) ≤ δ, we have

ϕε
+(x) ≥ 1

p
‖Dx‖p

p −
∫

Z

F+(z, x(z)) dz,

since ‖x+‖p ≤ ‖x‖p ≥ 0 (see (3.22)). Therefore, x = 0 is a local C1
n(Z)-minimizer

of ϕε
+. Invoking Proposition 2.5 of Motreanu–Motreanu–Papageorgiou [24] (see

also [2, Proposition 3] when p ≥ 2) we infer that x = 0 is also a local W 1,p
n (Z)-

minimizer of ϕε
+.

Similarly, we show that x = 0 is a local minimizer of ϕε
− and ϕ, too. �

Proposition 3.5. If hypotheses (H) hold, then problem (1.1) has two solu-
tions of constant sign x0 ∈ intC+ and v0 ∈ −intC+.

Proof. By virtue of Proposition 3.5 and arguing as in Aizicovici–Papage-
orgiou–Staicu [5] (see the proof of Proposition 10), we can find ρ > 0 small such
that

(3.23) 0 = ϕε
+(0) < inf{ϕε

+(x) : ‖x‖ = ρ} =: γ+
ρ .

On account of hypothesis (H) (d), it is clear that

(3.24) ϕε
+(σ) = −

∫
Z

F+(z, σ) dz → −∞ as σ →∞.

Then, Proposition 3.4 together with (3.23) and (3.24) enables us to use the
mountain pass theorem (see Theorem 2.1). So, we obtain x0 ∈ W 1,p

n (Z) such
that

(3.25) 0 = ϕε
+(0) < γ+

ρ ≤ ϕε
+(x0)

and

(3.26) (ϕε
+)′(x0) = 0.

By (3.25) it is clear that x0 6= 0. From (3.26), we have

A(x0) + ε|x0|p−2x0 = N+(x0) + ε(x+
0 )p−1.

We act with −x−0 ∈W 1,p
n (Z) on the above relation and obtain ε‖x−0 ‖ = 0, hence

x0 ∈W+, x0 6= 0.
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Moreover, using the nonlinear Green identity, as in Motreanu–Papageorgiou
[25], we show that x0 ∈W+ is a solution of problem (1.1). In addition, the non-
linear regularity theory (see, for example, Gasinski–Papageorgiou [18]) implies
that x0 ∈ C+. By virtue of hypothesis (H) (f) , we have

−4px0(z) = f(z, x0(z)) ≥ −c0x0(z)p−1 a.e. on Z,

hence
4px0(z) ≤ c0x0(z)p−1 a.e. on Z.

Invoking the nonlinear strong maximum principle of Vazquez [30], we conclude
that x0 ∈ intC+. Similarly, working this time with the finctional ϕε

−, we obtain
a second constant sign solution v0 ∈ −intC+. �

Proposition 3.6. If hypotheses (H) hold, then Ck(ϕ,∞) = 0 for all k ≥ 0.

Proof. Hypotheses (H) (c), (d) imply that given any θ > 0, we can find
M11 = M11(θ) > 0 such that

F (z, x) ≥ θ

p
|x|p −M11 for a.a. z ∈ Z, all x ∈ R.

Hence, if u ∈ ∂B1 = {u ∈W 1,p
n (Z) : ‖u‖ = 1} and t > 0, then

ϕ(tu) =
tp

p
‖Du‖p

p −
∫

Z

F (z, tu) dz(3.27)

≤ tp

p
− θtp

p
‖u‖p

p +M11|Z|N =
tp

p
(1− θ‖u‖p

p) +M11|Z|N .

So, if we choose θ > 1/‖u‖p
p, then from (3.27) it is clear that

(3.28) ϕ(tu) → −∞ as t→∞.

Also, because of hypothesis (H) (d), we can find β > 0 and M12 > 0, such that

f(z, x)x− pF (z, x) ≥ β|x|µ for a.a. z ∈ Z, all |x| ≥M12.

Hence, for any v ∈W 1,p
n (Z), we have∫

Z

pF (z, v) dz −
∫

Z

f(z, v)v dz(3.29)

=
∫
{|v|≥M12}

pF (z, v) dz +
∫
{|v|<M12}

pF (z, v) dz

−
∫
{|v|≥M12}

f(z, v)v dz −
∫
{|v|<M12}

f(z, v)v dz

≤ −
∫
{|v|≥M12}

β|x|µ dz + c1,

where c1 = ξM12|Z|N (p+ 1), with ξ = ess sup{|f(z, x)| : z ∈ Z, |x| < M12}.
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Let c2 = c1 + 1 and pick λ < −c2. Then by virtue of (3.28), for t > 0 large
and u ∈ ∂B1, we have

ϕ(tu) =
1
p

(
tp‖Du‖p

p −
∫

Z

pF (z, tu) dz
)
≤ λ.

In view of (3.28) and of the fact that ϕ(0) = 0, we infer that there exists t∗ > 0
such that ϕ(t∗u) = λ. Then

d

dt
ϕ(tu) = 〈ϕ′(tu), u〉 = tp−1‖Du‖p

p −
∫

Z

f(z, tu)u dz

=
1
t

(
tp‖Du‖p

p −
∫

Z

f(z, tu)tu dz
)

≤ 1
t

(
tp‖Du‖p

p −
∫

Z

pF (z, tu) dz + c1) (see (3.29))

≤ 1
t
(λ+ c1) < 0

(recall λ < −c2 = −(c1 + 1)), for all t ≥ t∗.
It follows that there exists a unique τ(u) > 0, such that

ϕ(τ(u)u) = λ for all u ∈ ∂B1.

Moreover, the implicit function theorem guarantees that τ ∈ C(∂B1).
For u 6= 0, we set τ̂(u) = (1/‖u‖)τ(u/‖u‖). Evidently τ̂ ∈ C(W 1,p

n (Z) \ {0})
and

ϕ(τ̂(u)u) = λ for all u ∈W 1,p
n (Z) \ {0}.

Moreover, if ϕ(u) = λ, then τ̂(u) = 1. We define

τ̂0(u) =

{
1 if ϕ(u) ≤ λ,

τ̂(u) if ϕ(u) ≥ λ.

From the above, it is clear that τ̂0 ∈ C(W 1,p
n (Z) \ {0}). We introduce the map

h: [0, 1]× (W 1,p
n (Z) \ {0}) →W 1,p

n (Z) \ {0}, defined by

h(t, u) = (1− t)u+ tτ̂0(u)u.

The continuity of τ̂0 implies that h is continuous, too. Also, we have

h(0, u) = u, h(1, u) ∈ ϕλ for all u ∈W 1,p
n (Z) \ {0}

and if u ∈ ϕλ, then h(t, u) = u for all t ∈ [0, 1]. These properties imply that
ϕλ is a strong deformation retract of W 1,p

n (Z) \ {0}. Clearly, ∂B1 is a retract
of W 1,p

n (Z) \ {0} (consider the radial retraction). Therefore, choosing λ < inf
ϕ(K), we conclude that

ϕλ is homotopy equivalent to ∂B1
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(see Dugundji [15, pp. 325, 365]). Hence

Hk(W 1,p
n (Z), ϕλ) = Hk(W 1,p

n (Z), ∂B1) for all k ≥ 0

(see Granas–Dugundji [19, p. 387]), therefore

Ck(ϕ,∞) = 0 for all k ≥ 0

(see Granas–Dugundji [19] and recall that ∂B1 is contractible in itself). �

Proposition 3.7. If hypotheses (H) hold, then Ck(ϕε
±,∞) = 0 for all k ≥ 0.

Proof. We present the proof for ϕε
+, the proof for ϕε

− being similar.
By virtue of hypotheses (H) (c), (d), given θ > 0, we can find M13 =

M13(θ) > 0 such that

(3.30) F+(z, x) ≥ θ

p
(x+)p −M13 for a.a. z ∈ Z, all x ∈ R.

We consider the set S+ = {u ∈ ∂B1 : u+ 6= 0}. Then, for u ∈ S+ and t > 0, we
have

ϕε
+(tu) ≤ tp

p
(1 + ε)− tp

p
(θ + ε)‖u+‖p

p +M13|Z|N(3.31)

=
tp

p
(1 + ε− (θ + ε)‖u+‖p

p) +M13|Z|N

(see (3.30)) and recall that ‖u‖ = 1). Since θ > 0 is arbitrary, from (3.31), we
infer that

(3.32) ϕε
+(tu) → −∞ as t→∞.

Also, by hypothesis (H) (d), we can find β > 0 and M14 > 0, such that

(3.33) f+(z, x)x− pF+(z, x) ≥ βxµ for a.a. z ∈ Z, all x ≥M14.

Recalling that f+(z, x) = F+(z, x) = 0 for almost all z ∈ Z and all x ≤ 0,
for any v ∈W 1,p

n (Z), we have

(3.34)
∫

Z

pF+(z, v) dz −
∫

Z

f+(z, v)v dz ≤ −
∫
{v≥M14}

βvµ dz + c3,

where c3 = ξ̂M14|Z|N (p + 1), with ξ̂ = ess sup{|f(z, x)| : z ∈ Z, 0 ≤ x < M14}
(see (3.33) and the proof of Proposition 3.7).

Let c4 = c3 + 1 and pick λ < −c4. Because of (3.32), for t > 0 large and
u ∈ S+, we have

(3.35) ϕε
+(tu) =

1
p

(
tp‖Du‖p

p + ε‖u−‖p
p −

∫
Z

pF+(z, tu) dz
)
≤ λ.

Recalling (3.32) and the fact that ϕε
+(0) = 0, we infer that there exists t̂ > 0

such that ϕε
+(t̂u) = λ.
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Then, as before (see the proof of Proposition 3.7)

d

dt
ϕε

+(tu) = 〈(ϕε
+)′(tu), u〉

=
1
t

(
tp‖Du‖p

p + εtp‖u‖p
p −

∫
Z

f+(z, tu)tu dz − εtp‖u+‖p
p

)
≤ 1
t

(
tp‖Du‖p

p + εtp‖u−‖p
p −

∫
Z

pF+(z, tu) dz + c3

)
(see (3.34))

≤ 1
t
(λ+ c3) (see (3.35))

< 0 (recall λ < −(c3 + 1)), for all t ≥ t̂.

Thus, by the implicit function theorem, we can find a unique τ+ ∈ C(S+) such
that ϕ(τ+(u)u) = λ for all u ∈ S+.

Let D+ = {x ∈W 1,p
n (Z) : x+ 6= 0}. We define

τ̂+(u) =
1
‖u‖

τ+

(
u

‖u‖

)
for all u ∈ D+.

Clearly τ̂+ ∈ C(D+) and ϕε
+(τ̂+(u)u) = λ for all u ∈ D+. Moreover, if ϕε

+(u) =
λ, then τ̂+(u) = 1. We define

(3.36) τ̂+
0 (u) =

{
1 if ϕε

+(u) ≤ λ,

τ̂+(u) if ϕε
+(u) ≥ λ.

Then τ̂+
0 ∈ C(D+). We introduce the map h+: [0, 1]×D+ → D+, defined by

h+(t, u) = (1− t)u+ tτ̂+
0 (u)u.

The continuity of τ̂+
0 implies the continuity of h+. In addition, we have

h+(0, u) = u, h+(1, u) ∈ (ϕε
+)λ for all u ∈ D+

and if u ∈ (ϕε
+)λ then h+(t, u) = u for all t ∈ [0, 1] (see (3.36)). Hence, we infer

that (ϕε
+)λ is a strong deformation retract of D+.

Next, we show that D+ is contractible in itself. To this end, let u0 ∈ intC+

be the Lp-normalized principal eigenvalue of (−4p,W
1,p
n (Z)). Consider the map

ĥ: [0, 1]×D+ → D+, defined by

ĥ(t, u) =
(1− t)u+ u0

‖(1− t)u+ u0‖
.

Note that [(1−t)u+u0]+ 6= 0, and so ĥ is well defined. Evidently ĥ is continuous
and ĥ(1, u) = u0/‖u0‖ ∈ D+. Therefore, D+ is contractible in itself. Then,
reasoning as in the proof of Proposition 3.7, we conclude that

Ck(ϕε
+,∞) = 0 for all k ≥ 0.
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In a similar way, we show that

Ck(ϕε
−,∞) = 0 for all k ≥ 0,

using this time the set D− = {x ∈W 1,p
n (Z) : x− 6= 0}. �

4. Main result

In this section, we prove a multiplicity (three solutions) theorem for problem
(1.1).

Theorem 4.1. If hypotheses (H) hold, then problem (1.1) has at least three
nontrivial solutions x0 ∈ intC+, v0 ∈ −intC+ and u0 ∈ intC1

n(Z).

Proof. From Proposition 3.6, we already have two solutions x0 ∈ intC+

and v0 ∈ −intC+.
Suppose that {0, x0, v0} are the only critical points of ϕ, or otherwise we

have a third nontrivial critical point, hence a third nontrivial solution of (1.1)
(belonging to C1

n(Z) by nonlinear regularity theory), and we are done.

Claim 1. Ck(ϕε
+, x0) = Ck(ϕε

−, v0) = δk,1Z for all k ≥ 0.

We complete the proof for the pair (ϕε
+, x0), the proof for the pair (ϕε

−, v0)
being similar. Note that the critical points of ϕε

+ belong to C+, and so are the
critical points of ϕ, too. Since we have assumed that {0, x0, v0} are the only
critical points of ϕ, we see that {0, x0} are the only critical points of ϕε

+. We
choose λ, ξ ∈ R such that

λ < 0 = ϕε
+(0) < ξ < ϕε

+(x0).

Then, we consider the following triple of sets

(ϕε
+)λ ⊆ (ϕε

+)ξ ⊆W 1,p
n (Z) =: W.

We have the following long exact sequence

(4.1) . . .Hk(W, (ϕε
+)λ)

j∗−→ Hk(W, (ϕε
+)ξ) ∂−→ Hk−1((ϕε

+)ξ, (ϕε
+)λ) . . .

where j∗ is the homomorphism induced by the inclusion

(W, (ϕε
+)λ)

j−→ (W, (ϕε
+)ξ)

and ∂ is the boundary homomorphism. From the choice of the levels λ and ξ

and since {0, x0} are the only critical points of ϕε
+, we have

(4.2) Hk(W, (ϕε
+)λ) = Ck(ϕε

+,∞) = 0 for all k ≥ 0

(see Proposition 3.7),

(4.3) Hk(W, (ϕε
+)ξ) = Ck(ϕε

+, x0) for all k ≥ 0
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and

(4.4) Hk−1((ϕε
+)ξ, (ϕε

+)λ) = Ck−1(ϕε
+, 0) = δk−1,0Z = δk,1Z for all k ≥ 0

(see Proposition 3.5). The exactness of (4.1) together with (4.2) implies that the
boundary homomorphism is an isomorphism between the groups in (4.3) and
(4.4). This proves Claim 1.

Claim 2. Ck(ϕ, x0) = Ck(ϕε
+, x0) and Ck(ϕ, v0) = Ck(ϕε

−, v0) for all k ≥ 0.

We do the proof for the pair (ϕε
+, x0), since the proof for the pair (ϕε

−, v0) is
similar.

Consider the homotopy

ψ(t, x) = tϕε
+(x) + (1− t)ϕ(x) for all (t, x) ∈ [0, 1]×W 1,p

n (Z).

We show that, without loss of generality, we can say that for some r > 0, x0

is the only critical point of ψ(t, · ) in Br(x0) = {x ∈ W 1,p
n (Z) : ‖x − x0‖ < r},

for all t ∈ [0, 1]. Indeed, if this is not the case, we can find {tn}n≥1 ⊆ [0, 1] and
{xn}n≥1 ⊆ W 1,p

n (Z) such that tn → t, xn → x in W 1,p
n (Z) and ψ

′

x(tn, xn) = 0.
Then

A(xn) + tnε|xn|p−2xn = tnN+(xn) + (1− tn)N(xn) + (1− tn)ε(x+
n )p−1,

therefore
−4pxn(z) = tnf+(z, xn(z)) + (1− tn)f(z, xn(z))

+(1− tn)ε(x+
n (z))p−1 + εtn[(x−n (z))p−1 − (x+

n (z))p−1] a.e. on Z,
∂xn

∂n
= 0 on ∂Z.

The nonlinearity on the right hand side of the above Neumann problem has
subcritical growth. Hence by L∞(Z)-regularity (see Ladyzhenskaya–Ural’tse-
va [20]) we can find an M15 > 0 such that ‖xn‖∞ ≤ M15 for all n ≥ 1. Then
(see [21]) we can find α ∈ [0, 1] and M16 > 0, both independent of n ≥ 1, such
that

(4.5) xn ∈ C1,α
n (Z) and ‖xn‖C1,α

n (Z) ≤M16 for all n ≥ 1.

From (4.5) and the compact embedding of C1,α
n (Z) into C1

n(Z) (see, for example
Adams [1, p. 11]), we have that {xn}n≥1 ⊆ C1,α

n (Z) is relatively compact, hence
we may assume that

xn → x0 in C1
n(Z).

Since x0 ∈ intC+, it folows that we can find an integer n0 ≥ 1 such that
xn ∈ intC+ for all n ≥ n0. Then

f+(z, xn(z)) = f(z, xn(z)) for all n ≥ n0,

and so, all xn with n ≥ n0 are solutions of (1.1), and we are done.
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Therefore, we may assume that, for some r > 0, x0 is the only critical point
in Br(x0) of ψ(t, · ), for all t ∈ [0, 1]. Invoking the homotopy invariance property
of singular homology, we have

Ck(ψ(0, · ), x0) = Ck(ψ(1, · ), x0) for all k ≥ 0,

hence
Ck(ϕ, x0) = Ck(ϕε

+, x0) for all k ≥ 0.

Similarly, we show that

Ck(ϕ, v0) = Ck(ϕε
−, v0) for all k ≥ 0.

This proves Claim 2.
Recall that, because of Proposition 3.5, we have

(4.6) Ck(ϕ, 0) = δk,0Z for all k ≥ 0

(see Chang [12, p. 33] and Mawhin–Willem [23, p. 175]).
Then from Propositions 3.6, 3.7, Claims 1, 2, (4.6) and the Poincare–Hopf

formula (see (2.1)) we have

(−1)0 + 2(−1)1 = 0,

a contradiction. This means that ϕ has a third nontrivial critical point u0 ∈
W 1,p

n (Z), which solves (1.1) and belongs to C1
n(Z) (by the nonlinearity regularity

theory). �

Remark 4.2. When p = 2 (semilinear problems), Theorem 4.1 extends
to Neumann problems the work of Wang [31], where the boundary condition
is of Dirichlet type. However, note that in contrast with Wang [31], where
f(z, x) = f(x), we do not assume that f is of class C1 and we do not use the
AR-condition.
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