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COMPARISON RESULTS
AND EXISTENCE OF BOUNDED SOLUTIONS
TO STRONGLY NONLINEAR SECOND ORDER

DIFFERENTIAL EQUATIONS

Cristina Marcelli — Francesca Papalini

Abstract. We investigate the existence of bounded solutions on the whole

real line of the following strongly non-linear non-autonomous differential
equation

(E) (a(x(t))x′(t))′ = f(t, x(t), x′(t)) a.e. t ∈ R

where a(x) is a generic continuous positive function, f is a Caratheódory

right-hand side.
We get existence results by combining the upper and lower-solutions

method to fixed-point techniques. We also provide operative comparison

criteria ensuring the well-ordering of pairs of upper and lower-solutions.

1. Introduction

The study of differential equations governed by general nonlinear differential
operators has been a great develop in the last years, due to various applications
to physics, engineering and other fields.

Probably the most known differential operator is the p-Laplacian, to which
a lot of paper have been devoted. Several extensions of the p-Laplacian have
been studied; in general equations of the type (Φ(u′))′ = f(t, u, u′) have been
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investigated, where Φ is a monotone operator (see, e.g. [1], [4]–[9], [12], [13], [15],
[19], [20]).

Different types of nonlinear differential operators have been introduced, like
(A(u))′′, where A is a C1 strictly monotone increasing function, vanishing at 0.
This kind of differential operator appears in various relevant autonomous equa-
tions, such as reaction-diffusion equations with non-constant diffusion or the
porous media equation. Moreover, non-autonomous differential equations gov-
erned by such a type of operator model various phenomena, such as the semi-
conductor fabrication ([10]), infiltration of water from reservoirs ([16]) and the
diffusion of a dopant through a semiconductor (see [17]).

Motivated by these several applications, the study of the differential equa-
tions

(E) (A(u(t))′′ = f(t, u(t), u′(t))

with various boundary conditions had a great impulse in recent years. Equations
with right-hand side independent on u′ have been investigated by Cabada and
others ([2], [3]), moreover Papageorgiou and others carried out investigations for
equation (E) in compact intervals (see [11], [18]).

Recently, we proved results on the existence or non-existence of heteroclinic
solutions for equation (E) on the whole real line (see [14]) using fixed-point
techniques combined with the method of upper and lower-solutions.

The aim of this paper is to investigate the existence of bounded solutions
(not necessarily heteroclinic) for equation (E), which can be re-written as

(E) (a(u)u′)′ = f(t, u, u′)

where f : R3 → R is a Carathéodory function and a: R → R is a positive, contin-
uous function.

Our first goal is to prove, by using a fixed-point theorem, existence results
under the assumption of the existence of a well-ordered pair of upper and lower-
solutions (see Theorems 3.2 and 3.3 in Section 3).

When dealing with autonomous problem it is rather usual to take constant
functions as upper and lower solutions, but this is not possible in general for
non-autonomous equations. Moreover, when it is required the attainment of
boundary conditions then one needs to force the asymptotic behavior of the
solution by using non-constant upper and lower-solutions. In these situations,
it is not simple to find upper and lower-solutions and even if one can asserts
their existence, in general their analytic expression is unknown. Hence, even if
one gets the existence of a pair of upper and lower-solutions, it is not trivial to
establish if they are well-ordered.
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Actually, in literature various comparison results are available in compact
intervals, for differential equations with usual linear differential operator, but no
result seems known for equations governed by nonlinear differential operator like
that in (E), and very few results have been proved for usual differential equations
in non-compact intervals.

To this aim, we devote Section 4 to establish comparison results stating
sufficient conditions which guarantee that a pair of upper and lower-solutions is
well-ordered (see Theorems 4.1, 4.4–4.6 and Corollary 4.3).

Finally, in Section 5 we combine the above ingredients and present some con-
crete solvability results for general classes of nonlinear equations (see Corollaries
5.1 and 5.3).

2. Auxiliary results

In this section, for the convenience of the reader, we present in details some
results that we will use in the next sections. We start by considering a two points
problem for a functional differential equation in a compact interval.

Let I = [a, b] ⊂ R be a compact interval and let A:C1(I) → C(I), x 7→ Ax,
and F :C1(I) → L1(I), x 7→ Fx, be two continuous functionals. Let us consider
the following functional boundary value problem on [a, b]

(P)

{
(Au(t)u′(t))′ = Fu(t) a.e. on I,

u(a) = ν1, u(b) = ν2,

where ν1, ν2 ∈ R are given.
Assume the following hypotheses on the functionals A and F :

(F1) there exists m,M > 0 such that m ≤ Ax(t) ≤ M for every x ∈ C1(I),
t ∈ I;

(F2) A maps bounded sets of C1(I) into uniformly continuous sets in C(I),
i.e. for every bounded set D ⊂ C1(I) and every ε > 0 there exists a real
ρ = ρ(ε) > 0 such that |Ax(t1) − Ax(t2)| < ε for every x ∈ D and
t1, t2 ∈ I with |t1 − t2| < ρ;

(F3) there exists η ∈ L1
+(I) such that |Fx(t)| ≤ η(t), almost everywhere on I,

for every x ∈ C1(I).

In [14] we proved the following existence result for problem (P).

Theorem 2.1. Under the assumptions (F1)–(F3), for every ν1, ν2 ∈ R there
exists a function u ∈ C1(I) such that Au · u′ ∈ W 1,1(I) and

(P)

{
(Au(t)u′(t))′ = Fu(t) a.e. on I,

u(a) = ν1, u(b) = ν2,

i.e. u is a solution of problem (P).
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Let us now consider the equation

(E) (a(x(t))x′(t))′ = f(t, x(t), x′(t)) a.e. t ∈ R,

where f : R3 → R is a given Carathéodory function and a: R → R is a positive
continuous function.

The following result concerns the convergence of sequences of functions re-
lated, in a certain sense, to solutions of the previous equation.

For all n ∈ N let In := [−n, n] and un ∈ C1(In) be such that a(un)u′n ∈
W 1,1(In) and

(a(un(t))u′n(t))′ = f(t, un(t), u′n(t)) a.e. t ∈ In.

Consider the following sequences of functions (yn)n, (zn)n, (xn)n defined by

yn(t) :=

{
u′n(t) for t ∈ In,

0 for t 6∈ In,

zn(t) :=

{
(a(un(t))u′n(t))′ for a.e. t ∈ In,

0 elsewhere in R,

xn(t) := un(0) +
∫ t

0

yn(s) ds.

Lemma 2.2. Assume that:

(i) the sequences (un(0))n and (u′n(0))n are bounded;
(ii) there exist two functions H, γ ∈ L1

loc(R) such that |yn(t)| ≤ H(t) and
|zn(t)| ≤ γ(t) almost everywhere on R and for all n ∈ N.

Then there exist three subsequences (ynk
)k, (znk

)k, (xnk
)k and a function x ∈

C1(R), with a(x)x′ differentiable almost everywhere in R and (a(x)x′)′∈L1
loc(R),

such that

(a) xnk
→ x uniformly on compact sets of R;

(b) ynk
→ x′ pointwise on R and in the norm of L1 on the compact subsets

of R;
(c) znk

⇀ (a(x)x′)′ weakly in L1 on the compact subsets of R;
(d) (a(x(t))x′(t))′ = f(t, x(t), x′(t)) almost everywhere on R.

Proof. By applying Lemma 1 of [14] on the intervals In, n = 1, 2, . . . , and
using the diagonal process we obtain the assertion. �

Remark 2.3. If there exists L > 0 such that u′n(t) ≥ 0 for every |t| > L and
n ∈ N, then x is definitively increasing, since x′(t) ≥ 0 for every |t| > L.

Remark 2.4. If there exist α, β ∈ C(R) such that α(t) ≤ un(t) ≤ β(t) for
every t ∈ In, n ∈ N, then α(t) ≤ x(t) ≤ β(t) for every t ∈ R.
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3. Existence theorems

In this section we investigate the existence of bounded solutions for the equa-
tion (E), under very mild conditions on the right-hand side. Our approach is
based on fixed-point techniques suitably combined to the method of upper and
lower solutions, according to the following definition.

Definition 3.1. A lower (upper) solution for equation (E) is a bounded
function α ∈ C1(R) such that a(α)α′ ∈ W 1,1(R) and

(a(α(t))α′(t))′ ≥ (≤)f(t, α(t), α′(t)), for a.e. t ∈ R.

Throughout this section we will assume the existence of an ordered pair of
lower and upper solutions α, β, i.e. satisfying α(t) ≤ β(t) for every t ∈ R, and
we will adopt the following notations:

I := [inf
t∈R

α(t), sup
t∈R

β(t)], ν := |I| = sup
t∈R

β(t)− inf
t∈R

α(t)

m := min
x∈I

a(x) > 0, M := max
x∈I

a(x),

d := max{|α′(t)|+ |β′(t)| : t ∈ R}.

Note that the value d is well-defined, in fact lim|t|→∞ α′(t) = lim|t|→∞ β′(t) = 0,
since a(α)α′ ∈ W 1,1(R) and m > 0 (the same argument holds for β′).

Moreover, in what follows, x+ and x− will denote the positive and negative
part of the real number x, respectively, and we will put x ∧ y := min{x, y},
x ∨ y := max{x, y}.

The first theorem furnishes a sufficient condition for the existence of bounded
solutions to equation (E).

Theorem 3.2. Let the following assumptions hold:

(H1) there exist a pair of lower and upper solutions α, β ∈ C1(R) of the
equation (E), satisfying α(t) ≤ β(t), for every t ∈ R;

(H2) for every s > 0 there exists a function ηs ∈ L1
loc(R) such that

(3.1) |f(t, x, y)| ≤ ηs(t) for a.e. t ∈ R, every x ∈ I and |y| ≤ s;

(H3) there exist a constant H > ν/2, a continuous function θ: R+ → R+ and
a function λ ∈ Lp(R) with 1 ≤ p ≤ ∞, such that

(3.2)
∫ ∞ r1−1/p

θ(r)
dr = +∞

with the position 1/∞ = 0 and

(3.3) |f(t, x, y)| ≤ λ(t)θ(a(x)|y|) for a.e. t ∈ R, every x ∈ I, every |y| ≥ H.
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Then, there exists a function x ∈ C1(R), with a(x)x′ ∈ W 1,1
loc (R), such that{

(a(x(t))x′(t))′f(t, x(t), x′(t)) a.e. t ∈ R,

α(t) ≤ x(t) ≤ β(t) for every t ∈ R.

Finally, if there exists Λ ∈ R such that α is increasing in (−∞,−Λ) (β is in-
creasing in (Λ,∞)) and f(−t, x, y) ≥ 0 (f(t, x, y) ≤ 0) for almost every t ≥ Λ,
every x ∈ I and y ≤ 0, then the solution x is increasing in (−∞,−Λ) (increasing
in (Λ,∞)).

Proof. By (3.2), there exists a constant C > (M/m)H ≥ H such that

(3.4)
∫ mC

MH

r1−1/p

θ(r)
dr > (Mν)1−1/p‖λ‖p.

Let us fix an integer n ∈ N. Let T :W 1,1(In) → W 1,1(In) denote the truncating
operator defined by

T (x) := Tx where Tx(t) := [β(t) ∧ x(t)] ∨ α(t).

Of course, T is well-defined and T ′
x(t) = x′(t) for almost all t ∈ In such that

α(t) < x(t) < β(t), whereas T ′
x(t) = α′(t) for almost every t such that x(t) ≤

α(t), T ′
x(t) = β′(t) for almost every t such that x(t) ≥ β(t).

Set Qx(t) := −C∨[T ′
x(t)∧C], where C = (M/m)C+d. Finally, let u: R2 → R

denote the penalty function defined by

u(t, x) := [x− β(t)]+ − [x− α(t)]−.

Let us consider the following auxiliary boundary value problem on the com-
pact interval In:

(P∗n)

{
(a(Tx(t))x′(t))′ = f(t, Tx(t), Qx(t)) + arctan(u(t, x(t)) a.e. t ∈ In,

x(−n) = α(−n), x(n) = β(n).

Step 1. Let us now prove that if x ∈ C1(In) is a solution of problem (P∗n),
then α(t) ≤ x(t) ≤ β(t) for all t ∈ In, hence Tx(t) ≡ x(t) and u(t, x(t)) ≡ 0.

First we show that α(t) ≤ x(t) for every t ∈ In. If t0 is such that x(t0) −
α(t0) := min(x(t)−α(t)) < 0, then t0 belongs to a compact interval [t1, t2] ⊂ In

satisfying x(t1) − α(t1) = x(t2) − α(t2) = 0 and x(t) − α(t) < 0 for every
t ∈ (t1, t2). Hence, Tx(t) ≡ α(t) and Qx(t) ≡ α′(t) in [t1, t2], then for almost
every t ∈ (t1, t2) we have

(a(α(t))x′(t))′ = f(t, α(t), α′(t)) + arctan(x(t)− α(t)) < (a(α(t))α′(t))′.

Thus, the function a(α(t))(x′(t) − α′(t)) is strictly decreasing in (t1, t2), so we
have a(α(t))(x′(t) − α′(t)) < a(α(t0))(x′(t0) − α′(t0)) = 0 for t ∈ (t0, t2), then
also x′(t) − α′(t) < 0 in (t0, t2), a contradiction. Similarly one can show that
x(t) ≤ β(t) for every t ∈ In.



Bounded Solutions 97

Step 2. Now we prove that if x ∈ C1(In) is a solution of problem (P∗n), then
|x′(t)| ≤ (M/m)C ≤ C for every t ∈ In.

Since x ∈ C1(In) and x(In) ⊂ I, we can apply Lagrange Theorem to deduce
that for some τ0 ∈ In we have

|x′(τ0)| =
1
2n
|x(n)− x(−n)| ≤ supβ − inf α

2n
< H < C.

Assume now, by contradiction, the existence of an interval J = (τ1, τ2) ⊂ In,
such that H < |x′(t)| < C in J and |x′(τ1)| = H, |x′(τ2)| = C or viceversa. Of
course, x′(t) keeps constant sign in J ; assume now x′(t) > 0 in J (the proof will
proceed similarly if x′(t) < 0).

Since x′(t) < C for every t ∈ J , by the definition of (P ∗
n) and assumption

(3.3), for almost every t ∈ J it results

|(a(x(t))x′(t))′| = |(a(Tx(t))x′(t))′| = |f(t, x(t), x′(t))| ≤ λ(t)θ(a(x(t))x′(t)).

Therefore, by Hölder inequality, if q is the conjugate exponent of p, we deduce∫ mC

MH

r1/q

θ(r)
dr ≤

∫ τ2

τ1

(a(x(t))x′(t))1/q

θ(a(x(t))x′(t))
|(a(x(t))x′(t))′| dt

≤
∫ τ2

τ1

(a(x(t))x′(t))1/qλ(t) dt ≤
( ∫ τ2

τ1

(a(x(t))x′(t)) dt

)1/q

‖λ‖p

≤ M1/q‖λ‖p

(∫ τ2

τ1

x′(t) dt

)1/q

≤ (Mν)1/q‖λ‖p

in contradiction with (3.4). Thus, we get |x′(t)| < C ≤ (M/m)C for every t ∈ In.

Step 3. Let us now prove that problem (P ∗
n) admits solutions for every n ∈ N.

To this aim, let A:C1(In) → C(In), x 7→ Ax, and F :C1(In) → L1(In), x 7→ Fx,
be the functionals defined by

Ax(t) := a(Tx(t)), Fx(t) := f(t, Tx(t), Qx(t)) + arctan(u(t, x(t))).

As it is easy to check, by (3.1) the functionals are well-defined. Moreover, if D is
a bounded subset of C1(In), i.e. there exists S > 0 such that ‖x‖C1(I) ≤ S, then
fixed ε > 0, by the uniform continuity of a( · ) in I, there exists δ = δ(ε) > 0
such that |a(ξ1)− a(ξ2)| < ε whenever |ξ1 − ξ2| < δ. Therefore, put ρ = δ/S, if
|t1 − t2| < ρ we have

|Tx(t1)− Tx(t2)| ≤ |x(t2)− x(t1)| ≤
∣∣∣∣ ∫ t2

t1

|x′(τ)| dτ

∣∣∣∣ ≤ S|t1 − t2| < δ

for every x ∈ D and consequently |Ax(t1)−Ax(t2)| < ε for every x ∈ D, whenever
|t1 − t2| < ρ.

Therefore, the functionals A and F satisfy the hypotheses (F1)–(F3) of Theo-
rem 2.1. So, by applying such a result with ν1 = α(−n) and ν2 = β(n), we obtain
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the existence of a function un ∈ C1(In) such that a(un)u′n ∈ W 1,1(In) which
is a solution of the problem (P∗n). Moreover, taking account of the properties
proved in Steps 1 and 2, we infer that, for every n ∈ N,

(a(un(t))u′n(t))′ = f(t, un(t), u′n(t)) a.e. t ∈ In.

Observe now that the sequence of solutions (un)n satisfies all the assumptions
of Lemma 2.2, with H(t) = C and γ(t) = ηC(t), for t ∈ R. So, by assertion (d)
of such a lemma, we deduce the existence of a solution x of equation (E).

Step 4. Finally, if we assume that α is increasing in (−∞,−Λ) and f(−t, x, y)
≥ 0 for almost every t ≥ Λ, every x ∈ I and y ≤ 0, we have that if un ∈ C1(In)
is a solution of problem (P∗n) then u′n(t) ≥ 0, for every t ∈ [−n,−Λ]. In fact,
assume by contradiction u′n(t̃) < 0 for some t̃ ∈ [−n,−Λ]. Since un(−n) = α(−n)
and α(−n) ≤ α(t) ≤ un(t) in [−n,−Λ], put t∗ := inf{t ∈ [−n, t̃] : u′n(τ) <

0 in [t, t̃]}, we have −n < t∗ with u′n(t∗) = 0. By the assumptions we have
(a(un(t))u′n(t))′ ≥ 0 for almost every t ∈ [t∗, t̃], that is a(un)u′n is increasing in
[t∗, t̃], with a(un(t∗))u′n(t∗) = 0, a contradiction with the choice of t̃.

Hence, the function x obtained by Lemma 2.2 is the pointwise limit in
(−∞,Λ) of a sequence of increasing functions and this implies that also x is
increasing. The same argument holds if we suppose β is increasing in (Λ,+∞)
and f(t, x, y) ≤ 0 for almost every t ≥ Λ, every x ∈ I and y ≤ 0. �

The following result differs from the previous one since herein we require the
validity of the Nagumo condition just on a compact subset of R, but impose
a sign condition on the right-hand side f , outside this set.

Theorem 3.3. Let the assumptions (H1) and (H2) of Theorem 3.2 hold,
with α increasing in (−∞,−L), β increasing in (L,∞), for some constant L ∈ R.
Moreover, assume that

(H4) there exists a constant H > ν/(2L), a continuous function θ: R+ → R+

and a function λ ∈ Lp([−L,L]) with 1 ≤ p ≤ ∞, such that (3.2) holds
and (3.3) is satisfied just for |t| ≤ L.

Finally, suppose that

(3.5)

{
f(t, x, y) ≤ 0

f(−t, x, y) ≥ 0
for a.e. t ≥ L, every x ∈ I, y ∈ R.

Then, there exists a definitively increasing function x ∈ C1(R), with a(x)x′ ∈
W 1,1

loc (R), such that
(a(x(t))x′(t))′ = f(t, x(t), x′(t)) a.e. t ∈ R,

α(t) ≤ x(t) ≤ β(t) for every t ∈ R,

α(−∞) ≤ x(−∞), x(+∞) ≤ β(+∞).
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Proof. The proof is same to that of Theorem 3.2. It differs only in Step 2,
when proving that |x′(t)| ≤ (M/m)C for every t ∈ In for every solution x ∈
W 1,1(In) of problem (P∗n), n ≥ L.

Indeed, here inequality (3.3) holds in [−L,L]. So, we obtain that |x′(t)| ≤
C ≤ (M/m)C for every t ∈ [−L,L] and from assumption (3.5) we deduce, as in
the Step 4 of the proof of Theorem 3.2, that x′(t) ≥ 0 for every t ∈ In \ [−L,L].
In order to prove that x′(t) ≤ (M/m)C for every t ∈ In \ [−L,L], observe that
(a(x′(t))x′(t))′ = f(t, x(t), Qx(t)), almost everywhere on In\ [−L,L] and so from
(3.5) we have (a(x′(t))x′(t))′ ≤ 0, almost everywhere on [L, n], implying that

a(x′(t))x′(t) ≤ (a(x′(L))x′(L) ≤ MC, for every t ∈ [L, n]

hence x′(t) ≤ (M/m)C. The same argument holds in [−n,−L].
Steps 3 and 4 proceed as in the previous proof. �

Remark 3.4. In view of the proof of the previous results (see (3.4)), note
that condition (3.2) can be weakened as follows∫ ∞

HM

r1−1/p

θ(r)
dr > (Mν)1−1/p‖λ‖p

where ‖λ‖p is intended in R for Theorem 3.2, in [−L,L] for Theorem 3.3.

4. Comparison-type results

The key tool of the existence results stated in the previous section is the
existence of a well-ordered pair of upper and lower solutions. Usually it is rather
easy to find a pair of upper and lower solutions, but unfortunately, in general
they are not well-ordered. This is strictly linked to the monotonicity property
of the right-hand side, the presence of the non-linear differential operator a and
the unboundedness of the domain.

In this section we investigate such a matter, establishing some conditions
ensuring that any pair of lower and upper-solutions of equation (E) is well-
ordered.

Throughout the section f : R3 → R is a Carathéodory function, a: R → R
is a positive, continuous function and α, β ∈ C1(R) are a lower and an upper
solution of the equation (E) as in the Definition 3.1, from which we can deduce
the existence, in R, of the limits α(−∞), α(+∞), β(−∞), β(+∞).

However, the following result are stated for a generic open interval J =
(c, d) ⊆ R, bounded or unbounded. Moreover, in what follows

I = [min{inf α, inf β},max{supα, supβ}].
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Theorem 4.1. Let J = (c, d) ⊆ R be a given open interval. Suppose that
there exists a function h ∈ C1(J) with h′(t) ≤ 0 for every t ∈ J , such that

(4.1) f(t, x, y1)− f(t, x, y2) ≥ h(t)(y1 − y2)

for almost every t ∈ J , every x ∈ I, y1, y2 ∈ R. Moreover, assume that

(4.2) x 7→ f(t, x, y) is increasing in I for a.e. t ∈ J and every y ∈ R;

and there exists k > 0 such that

(4.3) |a(x1)− a(x2)| ≤ k|x1 − x2| for every x1, x2 ∈ I.

Then, if α(c) < β(c) and α(d) < β(d), we have α(t) ≤ β(t) for every t ∈ J .

Proof. Assume, by contradiction, the existence of an interval I = [t0, t1] ⊂
J such that α(t0) = β(t0), α(t1) = β(t1) and α(t) > β(t), for all t ∈ I.

Put ρ := maxt∈I(α(t) − β(t)) > 0, let us fix 0 < ε < ρ and define the
continuous functions γε,Γε: R → [0,+∞) by

γε(r) :=
1
k2

(
1
ε
− 1

r

)+

and Γε(r) :=
∫ r

ε

γε(s) ds.

Of course, γε(r) = Γε(r) = 0 for every r ≤ ε.
Moreover, set Tε := {t ∈ I : α(t)−β(t) > ε}, the set Tε has positive measure

and is the union of at most countably many open intervals.
From the definition of lower and upper solutions and from assumptions (4.1)

and (4.2) it follows:

(a(α(t))α′(t))′ − (a(β(t))β′(t))′ ≥ f(t, α(t), α′(t))− f(t, β(t), β′(t))

≥ f(t, β(t), α′(t))− f(t, β(t), β′(t)) ≥ h(t)(α′(t)− β′(t))

almost everywhere on Tε, so multiplying by γε(α(t)− β(t)) ≥ 0 and integrating
on Tε, we have

(4.4)
∫

Tε

(a(α(t))α′(t)− a(β(t))β′(t))′γε(α(t)− β(t)) dt

≥
∫

Tε

h(t)(α′(t)− β′(t))γε(α(t)− β(t)) dt.

Using integration by parts in each connected component of Tε, we obtain∫
Tε

(a(α(t))α′(t)− a(β(t))β′(t))′γε(α(t)− β(t))dt

= −
∫

Tε

(a(α(t))α′(t)− a(β(t))β′(t))γ′ε(α(t)− β(t))(α′(t)− β′(t)) dt,

and∫
Tε

h(t)(α′(t)− β′(t))γε(α(t)− β(t)) dt = −
∫

Tε

h′(t)Γε(α(t)− β(t)) dt ≥ 0.
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Hence, from (4.4) we deduce that

(4.5)
∫

Tε

(a(α(t))α′(t)− a(β(t))β′(t))γ′ε(α(t)− β(t))(α′(t)− β′(t)) dt ≤ 0,

and so

(4.6)
∫

Tε

a(α(t))(α′(t)− β′(t))γ′ε(α(t)− β(t))(α′(t)− β′(t)) dt

+
∫

Tε

(a(α(t))− a(β(t)))β′(t)γ′ε(α(t)− β(t))(α′(t)− β′(t)) dt ≤ 0.

We consider the two integrals separately. Firstly,

(4.7)
∫

Tε

a(α(t))(α′(t)− β′(t))2γ′ε(α(t)− β(t)) dt

≥ m̂

k2

∫
Tε

[
α′(t)− β′(t)
α(t)− β(t)

]2

dt > 0,

where m̂ = infx∈I a(x) > 0. Thus, the second integral in (4.6) is negative and
using Hölder inequality and (4.3), we deduce∣∣∣∣∫

Tε

(a(α(t))− a(β(t)))β′(t)γ′ε(α(t)− β(t))(α′(t)− β′(t)) dt

∣∣∣∣(4.8)

≤
∫

Tε

k|α(t)− β(t)||β′(t)| 1
k2(α(t)− β(t))2

|α′(t)− β′(t)| dt

≤ 1
k
‖ β′ ‖L2(I)

(∫
Tε

∣∣∣∣α′(t)− β′(t)
α(t)− β(t)

∣∣∣∣2 dt

)1/2

.

Therefore, from (4.6)–(4.8), we deduce that

(4.9)
( ∫

Tε

[
α′(t)− β′(t)
α(t)− β(t)

]2

dt

)1/2

≤ k

m̂
‖β′‖L2(I).

Put

φε(t) :=


∫ α(t)−β(t)

ε

1
s

ds for t ∈ Tε,

0 for t 6∈ Tε.

The function φε is absolutely continuous so it is differentiable for almost every
t ∈ R.

Notice that put Hε := {t ∈ I : α(t) − β(t) = ε}, we have that φ′ε(t) = 0 at
every cluster point of Hε where the derivative exists. So, we get φ′ε(t) = 0 for
almost every t ∈ Hε. Moreover, for every t such that α(t) < β(t) + ε we have
that φε(t) is locally identically null, so φ′ε(t) = 0 whenever α(t) < β(t) + ε.

Summarizing, we deduce

φ′ε(t) :=


α′(t)− β′(t)
α(t)− β(t)

for every t ∈ Tε,

0 for a.e. t 6∈ Tε,
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and inequality (4.9) can be written as follows:

‖φ′ε‖L2(I) ≤
k

m̂
‖β′‖L2(I).

Hence, since φε ∈ W 1,2
0 (I), invoking the Poincaré inequality we infer that∫

I

φ2
ε(t) dt ≤ Ĉ,

for some Ĉ > 0; but taking the limit as ε ↘ 0, the left-hand side diverges to
+∞, a contradiction. �

Remark 4.2. In view of the proof just developed, one can easily verify
that if c ∈ R (respectively d ∈ R), then the result holds even if α(c) ≤ β(c)
(α(d) ≤ β(d)).

Weak inequalities at the boundary conditions can be assumed also when the
operator a is constant, as the following Corollary states.

Corollary 4.3. Let a(t) ≡ 1 and assume that conditions (4.1) and (4.2)
holds true. Then, if α(c) ≤ β(c) and α(d) ≤ β(d), we have α(t) ≤ β(t) for every
t ∈ J .

Proof. Fixed ε > 0, let us consider the function αε(t) := α(t) − ε. As
it is easy to see, by assumption (4.2) also αε is a lower-solution and satisfies
αε(c) < β(c), αε(d) < β(d). Hence, by applying Theorem 4.1 we deduce that
αε(t) ≤ β(t) for every t ∈ J and the assertion follows by the arbitrariness of
ε > 0. �

When a is not constant, the following comparison results with non-strict
inequalities at the boundary hold.

Theorem 4.4. Under the same assumptions of Theorem 4.1 with h(t) ≥ 0
for every t ∈ J , suppose in addition that the operator a is decreasing in I and at
least one of the functions α and β be increasing in J . Then, if α(c) < β(c) and
α(d) ≤ β(d), we have α(t) ≤ β(t), for every t ∈ J .

Proof. Put η(t) := α(t)−β(t), assume, by contradiction, η(t) > 0 for some
t ∈ J . Set

τ0 := inf{t : η(s) > 0 in [t, t]}, τ1 := sup{t : η(s) > 0 in [t, t]} ≤ +∞.

By the boundary conditions, we have τ0 > c and η(τ0) = 0. Let t1 ∈ (τ0, τ1) be
such that η′(t1) = 0.

Fixed a positive real ε < η(t1), let γε and Γε be as in Theorem 4.1. Moreover,
set Tε := {t ∈ [τ0, t1) : η(t) > ε}, of course Tε is an open set such that

(4.10) supTε = t1 and η(t) = ε for every t ∈ Bd(Tε) \ {t1}
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since η(τ0) = 0 and η(t1) > ε.
From the definition of lower and upper solutions and assumptions (4.1) and

(4.2), we get

(a(α(t))α′(t))′ − (a(β(t))β′(t))′ ≥ h(t)η′(t) a.e. on [τ0, t1].

Let us multiply now by γε(η(t)) ≥ 0 and integrate on Tε. Recalling that h(t) ≥ 0,
h′(t) ≤ 0, by (4.10), the monotonicity assumptions on a and α, β, and the choice
of t1, we have∫

Tε

(a(α(t))α′(t)− a(β(t))β′(t))γ′ε(η(t))η′(t) dt

≤
∫

Tε

(a(α(t))α′(t)− a(β(t))β′(t))γ′ε(η(t))η′(t)dt

− (a(α(t1))α′(t1)− a(β(t1))β′(t1))γε(η(t1))

= −
∫

Tε

(a(α(t))α′(t)− a(β(t))β′(t))′γε(η(t)) dt

≤ −
∫

Tε

h(t)η′(t)γε(η(t)) = −h(t1)Γε(η(t1)) +
∫

Tε

h′(t)Γε(η(t)) dt ≤ 0,

that is (4.5). Now proceeding as in Theorem 4.1 we obtain that( ∫
Tε

[
η′(t)
η(t)

]2

dt

)1/2

≤ k

m̂
‖β′‖L2([τ0,t1]).

By the Hölder inequality we have∫
Tε

∣∣∣∣η′(t)η(t)

∣∣∣∣ dt ≤ k

m̂
‖β′‖L2([τ0,t1])

√
|Tε| ≤

k

m̂
‖β′‖L2([τ0,t1])

√
t1 − τ0,

a contradiction since the integral on the left side diverges to +∞ as ε → 0. �

In view of the proof of the previous theorem, we can invert the monotonicity
assumptions on the operator a and the functions α, β, obtaining the following
result.

Theorem 4.4’. Let a be increasing in I and let at least one of the func-
tions α and β be decreasing in R. Suppose that all the other assumptions of
Theorem 4.4 are satisfied. Then the same assertion of Theorem 4.4 holds.

When the first inequality of the boundary conditions is weak, the following
two results hold, whose proof is similar.

Theorem 4.5. Under the same assumptions of Theorem 4.1 with h(t) ≤ 0
for every t ∈ J , suppose in addition that a is decreasing in I and at least one of
the functions α and β be increasing in J . Then, if α(c) ≤ β(c) and α(d) < β(d),
we have α(t) ≤ β(t) for every t ∈ J .
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Theorem 4.5’. Let a be increasing in I and let at least one of the func-
tions α and β be decreasing in R. Suppose that all the other assumptions of
Theorem 4.5 are satisfied. Then the same assertion of Theorem 4.5 holds.

We conclude the section with a comparison result concerning semilinear equa-
tions (a constant) where the right-hand side f(t, x, y) is not increasing in the
variable x.

Theorem 4.6. Suppose that there exist a constant ` ≥ 0 and a function
h ∈ C1(J) with h′(t) ≤ −2`, such that

x 7→ f(t, x, y) + `x is increasing in I, for a.e. t ∈ J, every y ∈ R;

f(t, x, y1)− f(t, x, y2) ≥ h(t)(y1 − y2),(4.11)

for a.e. t ∈ J , every y1, y2 ∈ R and every x ∈ I. Then if α(c) < β(c) and
α(d) < β(d), we have α(t) ≤ β(t), for every t ∈ J .

Proof. We proceed again by contradiction and suppose the existence of a
compact interval [t1, t2], such that α(t1) = β(t1), α(t2) = β(t2) and α(t) > β(t),
for every t ∈ [t1, t2]. Using the definitions of lower and upper solutions, from our
assumptions we obtain

α′′(t)− β′′(t) + `(α(t)− β(t)) ≥ h(t)(α′(t)− β′(t)) a.e. on [t1, t2].

Multiplying the previous inequality for α(t)−β(t) > 0, and integrating on [t1, t2],
by (4.11) we obtain

−
∫ t2

t1

(α′(t)− β′(t))2 dt + `

∫ t2

t1

(α(t)− β(t))2 dt

≥ −
∫ t2

t1

h′(t)
(α(t)− β(t))2

2
dt ≥ `

∫ t2

t1

(α(t)− β(t))2 dt.

Hence, ∫ t2

t1

(α′(t)− β′(t))2 dt ≤ 0,

implying α(t) = β(t) in [t1, t2], a contradiction. �

Remark 4.7. We observe that, if one knows that both α and β are increasing
(or decreasing) in R, in all results of this section we can modify the conditions
on f(t, x, y) by assuming that they hold only for y ≥ 0 (or for y ≤ 0).

5. Applications

In this section we present some classes of equations to which it is possible
to apply our results for proving the existence of a pair of well-ordered lower and
upper solutions and consequently the existence of a bounded solution.
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Of course, the simplest method for finding upper and lower-solutions consists
in considering solutions of known equations. To this aim, let us firstly consider
the following linear equation with constant coefficients

(5.1) u′′ − cu′ − ρu + k(t) = 0

where c ∈ R, ρ > 0 and k ∈ L1
loc(R) is bounded and increasing.

Put

u(t) :=
1

α2 − α1

[
eα2t

∫ ∞

t

k(s)e−α2s ds + eα1t

∫ t

−∞
k(s)e−α1s ds

]
,

where α1 < 0 < α2 are the roots of the algebraic equation x2 − cx − ρ = 0.
Simple calculations show that u ∈ C1(R), with u′ ∈ W 1,1(R), and u is a solution
to (5.1). Moreover, u is increasing, bounded, with u(−∞) = k(−∞)/ρ and
u(+∞) = k(+∞)/ρ.

Consider now the wider class of equations having linear right-hand side with
non-constant coefficients:

(5.2) (a(u)u′)′ = c(t)u′ + ρ(t)u− k(t).

where c ∈ L∞(R) ∩ C1(R), ρ, k ∈ L∞(R).
The next result concerns the existence of bounded solutions to (5.2).

Corollary 5.1. Suppose that c(t) is decreasing, k(t) is non-negative and
increasing and inf ρ(t) > 0. Moreover, let a be a locally Lipschitz continuous
function such that

(5.3)
∫ +∞

0

a(s) ds = +∞.

Then equation (5.2) admits a bounded solution u ∈ C1(R), with a(u)u′∈W 1,1
loc (R).

Moreover, if in addition we assume ρ decreasing, then the solution u is defini-
tively monotone. Finally, if also the operator a is monotone (decreasing or in-
creasing), then the solution is monotone increasing.

Proof. Put A(y) :=
∫ y

0
a(s) ds, of course A is a strictly increasing C1-

function and also its inverse A−1 is C1 and strictly increasing. Put ρ1 := inf ρ(t),
and fixed a constant ε > 0, set

Ĩ :=
[
0,

k(+∞)
ρ1

]
, Ĩε :=

[
0,

k(+∞) + ε

ρ1

]
.

Moreover, set

ρ2 := sup ρ(t),

µ1 := min
s∈eIε

a(s) > 0, µ2 := max
s∈eIε

a(s),

λ1 := min
s∈A−1(µ2eIε)

a(s) > 0, λ2 := max
s∈A−1(µ2eIε)

a(s)
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where µ2Ĩε := {y : µ2y ∈ Ĩε}, and finally let

d1 :=

{
λ1 if c1 < 0,

λ2 if c1 ≥ 0,
and d2 :=

{
λ1 if c2 ≥ 0,

λ2 if c2 < 0,

where c1 := inf c(t) and c2 := sup c(t).
Let us consider the following linear equations with constant coefficients

u′′ =
c2

d2
u′ +

ρ2

µ1
u− k(t),(5.4)

u′′ =
c1

d1
u′ +

ρ1

µ2
u− k(t)− ε.(5.5)

By what observed at the beginning of the present section, there exists a pair of
C1 bounded, increasing functions α, β, respectively solutions to (5.4) and (5.5),
with α′, β′ ∈ W 1,1(R), such that

α(±∞) =
µ1k(±∞)

ρ2
, β(±∞) =

µ2(k(±∞) + ε)
ρ1

.

So, in particular α(−∞) < β(−∞), α(+∞) < β(+∞). Set

α̃(t) := A−1(α(t)) and β̃(t) := A−1(β(t)).

By (5.3) the previous definition is well-posed; the functions α̃ and β̃ are bounded,
increasing C1-functions, with

a(α̃(t))α̃′(t) = (A(α̃(t))′ = α′(t), a(β̃(t))β̃′(t) = (A(β̃(t))′ = β′(t)

in W 1,1(R). Moreover, since α(t)/µ1, β(t)/µ2 ∈ Ĩε for every t ∈ R, we have

A

(
α(t)
µ1

)
≥ α(t) and A

(
β(t)
µ2

)
≤ β(t),

that is

α(t)
µ1

≥ A−1(α(t)) = α̃(t),
β(t)
µ2

≤ A−1(β(t)) = β̃(t) for every t ∈ R.

Since β(t) ∈ µ2Ĩε then β̃(t) ∈ A−1(µ2Ĩε) and we get

(a(β̃(t))β̃′(t))′ = (A(β̃(t)))′′ = β′′(t)
c1

d1
β′(t) +

ρ1

µ2
β(t)− k(t)− ε

≤ c1

d1
a(β̃(t))β̃′(t) + ρ1β̃(t)− k(t) ≤ c1β̃

′(t) + ρ1β̃(t)− k(t)

≤ c(t)β̃′(t) + ρ(t)β̃(t)− k(t),

for almost every t ∈ R. Hence, β̃ is an upper-solution for equation (5.2). Simi-
larly, one can prove that α̃ is a lower-solution. Being

α̃(−∞) = A−1(α(−∞)) < A−1(β(−∞)) = β̃(−∞),

α̃(+∞) = A−1(α(+∞)) < A−1(β(+∞)) = β̃(+∞)
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we can apply Theorem 4.1 to deduce that α̃(t) ≤ β̃(t) for every t ∈ R. Moreover,
being

I = [inf α̃(t), sup β̃(t)]
[
A−1

(
µ1

ρ2
k(−∞)

)
, A−1

(
µ2

ρ1
(k(+∞) + ε)

)]
,

put

L := A−1

(
µ2

ρ1
(k(+∞) + ε)

)
,

we have

|f(t, x, y)| ≤ |c(t)||y|+ ρ2L + k(+∞), a.e. on R, for every x ∈ I, y ∈ R.

So, set ηs(t) := |c(t)|s + ρ2L + k(+∞), θ(r) := r and

λ(t) :=
1
m

(|c(t)|+ ρ2L + k(+∞)),

where m = mins∈I a(s), also conditions (H2)–(H3) of Theorem 3.2 are satisfied
(with p = +∞ and H > 1). Therefore, equation (5.2) admits a bounded solution
u ∈ C1(R), with u′ ∈ W 1,1

loc (R) such that α̃(t) ≤ u(t) ≤ β̃(t), for all t ∈ R.
Notice now that if ρ is decreasing then no bounded interval [t1, t2] can exist

satisfying u′(t1) = u′(t2) = 0 and u′(t) < 0 in (t1, t2). Indeed, in this case we
would have

0 ≤ A(u(t))′′|t=t2
= ρ(t2)u(t2)− k(t2) < ρ(t1)u(t1)− k(t1) = A(u(t))′′|t=t1

≤ 0,

a contradiction. Therefore, if the solution is strictly decreasing in some interval,
such a interval must be unbounded. This implies that the solution is definitively
monotone (increasing or decreasing).

Finally, assume that also the operator a is monotone (increasing or decreas-
ing). Firstly note that if u is decreasing in a right half-line, then there exists the
limit u′(+∞) = 0. Indeed, otherwise we would have L := lim inft→+∞u′(t) < 0
and lim supt→+∞u′(t) = 0. Choose ` ∈ (L, 0). If a is decreasing, we could find
two divergent increasing sequences (tn)n, (Tn)n, such that tn < Tn, u′(Tn) = `,
u′(tn) = `/2, and u′(t) ∈ (`, `/2) for every t ∈ (tn, Tn). Since u′ has definitively
constant sign and is summable in the right half-lines, then Tn − tn → 0 as n →
+∞. Moreover, the function t 7→ c(t)u′(t)+ ρ(t)u(t)−k(t) is bounded in the set⋃

n∈N[tn, Tn], so there exists a positive constant H such that |(a(u(t))u′(t))′| ≤ H

for every t ∈
⋃

n∈N[tn, Tn].
Put m := a(supu), we get

m
`

2
= m(u′(Tn)− u′(tn)) ≥ a(u(Tn))(u′(Tn)− u′(tn))

≥ a(u(Tn))u′(Tn)− a(u(tn))u′(tn) =
∫ Tn

tn

(a(u(t))u′(t))′ dt ≥ −H(Tn − tn),

a contradiction since ` < 0 and Tn − tn → 0.
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The reasoning in the case a is increasing is analogous (it suffices to choose
tn, Tn in such a way that u′(tn) = `, u′(Tn) = `/2). Therefore, there exists the
limit u′(+∞) = 0. Hence, there exists also the limit λ+ := limt→+∞A(u(t))′′

and it results λ+ ≥ 0. Indeed, if λ+ < 0 then the function a(u(t))u′(t) should
be definitively decreasing, with u′(+∞) = 0 and u′(t) < 0, a contradiction.

Similarly, if u is decreasing in a left half-line, one can prove that there exists
u′(−∞) = 0 and there exists also the limit λ− := limt→−∞A(u(t))′′ ≤ 0. There-
fore, if u is strictly decreasing in some unbounded (maximal) interval (τ1, τ2) ⊆ R,
we would have

0 ≤ A(u(t))′′|t=τ2
= ρ(τ2)u(τ2)− k(τ2) < ρ(τ1)u(τ1)− k(τ1) = A(u(t))′′|t=τ1

≤ 0,

a contradiction.
Summarizing, when ρ is decreasing and a is monotone (increasing or decreas-

ing), then the solution u is monotone increasing. �

Remark 5.2. In view of the previous proof, notice that the addition of the
constant −ε in equation (5.5) only serves to guarantee that α(−∞) < β(−∞),
in order to apply Theorem 4.1. One does not need this if k(−∞) 6= 0 or in
the situations where Theorem 4.5 is applicable, or if a is constant (since in this
last case one applies Corollary 4.3). Actually, note that if a and ρ are both
constant then α(±∞) = β(±∞) and so there exist u(−∞) = k(−∞)/ρ and
u(+∞)k(+∞)/ρ.

Moreover, note that when k(−∞) = 0 we have α̃(−∞) = 0, β̃(−∞) =
A−1(εµ2/ρ1) with ε > 0 arbitrarily small. So, we can find monotone bounded
solutions of (5.2) with u(−∞) arbitrarily small.

Finally, consider the general equation

(5.6) (a(u)u′)′ = f(t, u, u′)

where a: R → R is a positive, continuous function and f : R3 → R is a Carathéo-
dory function.

Corollary 5.3. Assume that

(5.7) c1(t)y + ρ1(t)x− k1(t) ≤ f(t, x, y) ≤ c2(t)y + ρ2(t)x− k2(t)

for almost every t ∈ R, and every x, y ≥ 0, where ci, ρi, ki, i = 1, 2, satisfy all the
assumptions of Corollary 5.1. Moreover, let a be a locally Lipschitz continuous
function, satisfying (5.3). Then equation (5.6) admits a bounded solution u ∈
C1(R), with a(u)u′ ∈ W 1,1

loc (R).

Proof. We give just a sketch of the proof, which is quite similar to that
developed for Corollary 5.1.
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Proceeding as in the previous proof, one can find a lower solution α̃ of the
equation (a(u)u′)′ = c2(t)u′+ρ2(t)u−k2(t) considering the analogous of equation
(5.4), and an upper solution β̃ of the other equation (a(u)u′)′c1(t)u′ + ρ1(t)u−
k1(t) considering the analogous of equation (5.5). The strict inequalities between
them at ±∞ is ensured by the relations k1(t) ≥ k2(t), ρ1(t) ≤ ρ2(t) for every
t ∈ R, deriving by the assumption (5.7) respectively taken for x = y = 0 and for
y = 0, x → +∞.

Of course, β̃ is an upper solution also for the equation (a(u)u′)′ = c2(t)u′ +
ρ2(t)u − k2(t), for which Theorem 4.1 is applicable. Hence, α̃(t) ≤ β̃(t) for
every t ∈ R and then assumption (H1) of Theorem 3.2 holds true for the general
right-hand side f(t, x, y).

Finally, since

|f(t, x, y)| ≤ (|c1(t)|+ |c2(t)|)|y|+ (|ρ1(t)|+ |ρ2(t)|)|x|+ |k1(t)|+ |k2(t)|

similarly to what we done in the proof of Corollary 5.1, it is possible to show
that also assumptions (H2), (H3) of Theorem 3.2 are satisfied. �

Example 5.4. Let a be a generic positive, locally Lipschitz continuous func-
tion and let

f(t, x, y) :=
√

(c(t)y + ρ(t)x)2 + 1− k(t),

where c, ρ, k are bounded non-negative functions, satisfying the assumptions of
Corollary 5.1 and such that k(t) ≥ 1 for every t ∈ R.

Then, being |ξ| ≤
√

1 + ξ2 ≤ 1+|ξ| for every ξ ∈ R, condition (5.7) is satisfied
for c1(t) = c2(t) := c(t), ρ1(t) = ρ2(t) := ρ(t), k1(t) := k(t) and k2(t) := k(t)−1.
Therefore, the equation

(a(u)u′)′ = c(t)y +
√

(c(t)y + ρ(t)x)2 + 1− k(t)

admits a bounded solution u ∈ C1(R), with a(u)u′ ∈ W 1,1
loc (R).
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