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ABELIANIZED OBSTRUCTION FOR FIXED POINTS
OF FIBER-PRESERVING MAPS OF SURFACE BUNDLES

Daciberg Lima Gonçalves — Dirceu Penteado — João Peres Vieira

Abstract. Let f : M →M be a fiber-preserving map where S →M → B

is a bundle and S is a closed surface. We study the abelianized obstruction,
which is a cohomology class in dimension 2, to deform f to a fixed point

free map by a fiber-preserving homotopy. The vanishing of this obstruc-

tion is only a necessary condition in order to have such deformation, but
in some cases it is sufficient. We describe this obstruction and we prove

that the vanishing of this class is equivalent to the existence of solution of

a system of equations over a certain group ring with coefficients given by
Fox derivatives.

1. Introduction

Fixed point theory of fiber-preserving maps of a bundle, has been studied
for the past 40 years. One approach for this problem was developed by A. Dold
in [3]. There, an index was defined as an element of a generalized cohomology
theory. That index is a stable invariant (an element of the cohomotopy group
of the disjoint union of the base with a point) and the dimension of the fiber
plays no rôle. Another approach for the problem was developed by E. Fadell and
S. Husseini in [5] using classical obstruction theory a la Steenrod. In [5] the fiber
bundles are assumed to have as a fiber a manifold of dimension greater or equal
to 3. This restriction leaves out the situation where the fiber is a closed surface
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or a circle. The case of S1-fiber bundles has been considered in [9]. The purpose
of this work is to provide some machinery to study fixed point of fiber-preserving
maps of surface bundles. We will define a type of index for a fiber-preserving map
f of a surface bundle which is going to be the primary abelianized obstruction to
lift a map to a fibration. This type of index has already been considered in [6]
for the usual case, i.e. the case where the base is a point. Then we will show how
to decide when this obstruction vanishes or not, in terms of solution of a certain
system of equations over a group ring Z[π] where the coefficients of the system
are obtained using Fox calculus. This invariant is not expected in general to be
a full invariant, in the sense that if it vanishes then one can deform the map by
a fiber-preserving homotopy to a fixed point free map. Nevertheless, the works
[10] and [11] show some cases where this invariant is indeed a full invariant.

Here we explain in more details how to define this index, which is a primary
abelianized obstruction, for a fiber-preserving map of an arbitrary surface bundle.
Also we will see how relevant it is for the fixed point problem of fiber-preserving
maps on surface bundles, if the surface S is different from S2 (the 2-sphere)
and RP 2 (the projective plane). For some particular surface bundles there are
simpler ways to obtain the index and we will describe them in Section 4, which
is the section where we have a brief exposition of the recent applications of this
index. Let F → M → B be a bundle and f :M → M be a fiber-preserving
map over B. When is f deformable over B to a fixed point free map g by
a fiberwise homotopy over B? E. Fadell and S. Husseini in [5] considered this
problem in the case where the fiber F , the base space B and the total space
M are closed manifolds. They considered the fiber square M ×B M → M ,
i.e. the pullback fiber bundle of p:M → B by p:M → B. Then the inclusion
M ×B M −∆ → M ×B M , where ∆ is the diagonal in M ×B M , is replaced by
the fiber bundle q:EB(M) → M×BM , whose fiber is denoted by F . So we have
the following diagram:

(1.1)

F

��

F

��

EB(f)

qf

��

// EB(M)

q

��

M

σ
<<x

x
x

x 1 // M
(1,f)

// M ×B M

where qf :EB(f) → M is the induced fiber bundle from q by (1, f). From [5] we
have

Theorem 1.1. The map f is deformable to a fixed point free map g over B

if and only if there exists a lift σ in diagram (1.1).
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Observe that the existence of σ is equivalent to the existence of a lift M →
EB(M) of the map (1, f), since EB(f) is the pullback.

Let F be a closed surface different from S2 (the 2-sphere) and RP 2 (the
projective plane). As result of the Remarks 1.1 from [10, Section 1], we can
conclude:

Remark 1.2.

(a) The fiber F has homotopy groups

πj−1(F) ∼= πj(M×BM,M×BM −∆) ∼= πj(F, F − x)

where x is a point in F . So these groups are trivial for j > 2.
(b) To construct a cross section of the bundle above, it suffices to construct

a cross section over the 2-skeleton.

The remarks above show in our case how relevant is to decide when there
is a cross section over the 2-skeleton. It is worth to mention that this question
in many cases is equivalent to an algebraic question, as a consequence of The-
orem 4.3.1, p. 265 in [1], (see also [10, Proposition 1.6]). More specifically, let
V → W → Y be a bundle where V is connected and f :X → Y a map. Suppose
that π1(V ) → π1(W ) is injective. Then the map f can be lifted to W over the
2-skeleton of X if and only if there is a lift Γ of fπ:

π1(V )

��

π1(W )

q

��

π1(X)

Γ

::u
u

u
u

u

fπ

// π1(Y )

where fπ is the homomorphism induced by f . To solve this algebraic problem
is not an easy task, by all means. So a cohomology class with local coefficients
system in H2(X; {H1(V )}), which is also called the abelianized obstruction to lift
f over the 2-skeleton, is going to be defined. In general to decide if this obstruc-
tion vanish or not, is simpler than to decide if the lift Γ on the above diagram
exists or not. The existence of a lift implies the vanishing of the abelianized
obstruction, but the converse does not hold in general.

The manuscript is divided into 3 sections besides the introduction. In Section
2 we provide the general definition of the abelianized obstruction to deform a map
into a subspace. In Section 3 we show how to decide if the abelianized obstruction
vanishes in terms of the existence of solution of a system of equations. This is our
main result. In Section 4 we apply and comment how to perform such calculation
in some cases.
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2. Generalities about obstruction (abelianized)

Let X be a connect CW-complex and Y a path connected space. Suppose
that Y0 ⊂ Y is a path connected subspace such that π1(Y, Y0) has cardinality
one.

In this section we will describe the abelianized obstruction to deform a map
f :X → Y to Y0 ⊂ Y . The two main references are [13] and [18].

We assume that f(X1) ⊂ Y0. We will see that a cochain which represents
the abelianized obstruction is given by

H2(X2, X1)
(ρab)−1

// π2
ab(X2, X1)

pab
π // πab

2 (X2, X1)
fπ // πab

2 (Y, Y0) = H1(F) .

Moreover, this cochain representing the obstruction can be interpreted as the
following homomorphism C: we represent an element of H2(X2, X1) as the class
of a σ: (I2, ∂I2) → (X2, X1) and let C([σ]) = [fp(σ)] ∈ πab

2 (Y, Y0) = H1(F).

We begin replacing the inclusion Y0 → Y by a fibration and we obtain
F(Y0) → E(Y0) → Y , where the fiber is connected. To simplify the notation
we denote E = E(Y0) and F = F(Y0). It is well known that the fundamental
group of the base of the fibration, π1(Y ), acts on the abelian group H1(F). By
means of the homomorphism fπ, we obtain that H1(F) becomes a Z[π1(X)]-
module. Let Xn be the n-skeleton of X. Since X1 and the fiber F are connected
there is a lifting g1:X1 → E so q ◦ g1 = f|X1 , where q: E → Y is the fibration.
Following [13], we define a 2-cocycle as follows: given a 2-cell eβj

, the attaching
map from the boundary of the 2-cell into X1 composite with the lifting g1 is
a loop in E which projects to a loop homotopically trivial in the base Y . So it
can be deformed to a loop in the fiber and then we consider the element of H1(F)
defined by such element. This cocycle depends on many choices but it determines
a well defined 2-dimensional cohomology class A(f) ∈ H2(X; {H1(F)}).

We will follow [18] in order to describe a cocycle which determines the
abelianized obstruction A(ϕ) defined above. This description is suitable for
our purpose and has been used in [17]. For this we consider:

(a) Let p: X̃ → X be the universal covering of X and denote Xn = p−1(Xn).
(b) Let g1:X1 → E be a lifting on the 1-skeleton X1.
(c) Let G be a group and Gab the abelianized group of G.
(d) Let ρab:π2

ab(X2, X1) → H2(X2, X1) be the induced homomorphism of
the Hurewicz homomorphism ρ:π2(X2, X1) → H2(X2, X1). Note that
ρab is an isomorphism.

(e) Let pab
π :π2

ab(X2, X1) → πab
2 (X2, X1) be the abelianized homomorphism

induced by pπ.
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According to Lemma 5.3, page 293 and in light of the Theorem 4.9, page 288,
Chapter VI of [18], a cocycle which represents the primary abelianized obstruc-
tion A(f) ∈ H2(X; {H1(F)}) is given by the following composition:

H2(X2, X1)
(ρab)−1

// π2
ab(X2, X1)

pab
π // πab

2 (X2, X1)
fπ // πab

2 (Y, Y0) = H1(F)

We finish this section with some comments.
(a) The description of the abelianized obstruction that we are going to give

below it is the same given for some particular fibrations in [17]. In [17] the
description was given for spaces which arises from the study of fixed points of
maps on certain T(Torus)-principal fibrations.

(b) The isomorphism π1(F) ' π2(Y, Y0) induces an isomorphism H1(F) '
πab

2 (Y, Y0) as π1(Y )-module. We recall that the action of π1(Y ) on H1(F) cames
from the fibration and the action of π1(Y ) on πab

2 (Y, Y0) came from the action
of π1(Y0) and because π1(Y0) → π1(Y ) is surjective. So the primary abelianized
obstruction A(f) lies in H2(X; {πab

2 (Y, Y0)}).
(c) From this, when we look at the diagram (1.1), it is convenient to separate

into two cases. The first case is when the homotopy group π2(Y, Y0) is abelian.
The second case is when it is not.

The first case happens when we consider a surface bundle where the fiber is
the sphere S2 or the projective space RP 2. In these cases the local coefficient
system becomes, Z or Z+Z, respectively. Then the vanishing of this obstruction
class implies that we have a lift over the 2-skeleton. Nevertheless, potentially
there are higher obstructions in order to find a lift σ.

The second case is when π2(Y, Y0) is not abelian. This is the case where the
fiber is a closed surface different from S2 and from RP 2.

3. The vanishing of the abelianized obstruction

As before let X be a connected CW-complex. Therefore, we can assume that
the CW structure of X has one 0-cell and consequently the 1-skeleton is a wedge
of circles.

In the previous section we defined cocyles which represent the abelianized
obstruction to factorize a map f :X → Y into Y0 ⊂ Y up to the 2-skeleton of X.
We will obtain an equivalent condition for the class determined by this cocycle
to be trivial. This condition is given in terms of solution of a system of equations
over a group ring of the fundamental group of X where the entries are obtained
using Fox calculus.

As in the previous section let p: X̃ → X be the universal covering, denote by
Xn the n-skeleton of X and by Xn = p−1(Xn).
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Consider the following commutative diagram where the maps have been al-
ready defined in the previous section or they are self-explanatory.

(3.1)

H2(X2, X1)

∂2

��

π2
ab(X2, X1)

pab
π

'
//

ρab

'
oo πab

2 (X2, X1)
fπ // H1F

H1(X1)

j

��

H1(X1, X0)

Ψ

55jjjjjjjjjjjjjjjjjjjjj

Observe that the composite of the maps in the horizontal line is a cocycle
which represents exactly the abelianized obstruction A(f) as we have seen in the
previous section. It is zero if and only if there is an equivariant homomorphism
Ψ as in the diagram (3.1) which makes the entire diagram commutative.

The homomorphism

C = fπ ◦ pab
π ◦ (ρab)−1 ∈ Homπ1(X)(Γ∗(X̃);H1(F))

is a cocycle which is an equivariant homomorphism on the equivariant cellular
chain complex denoted by Γ∗(X̃).

Let 〈α1, . . . , αn | β1, . . . , βm〉 be a presentation of the group π1(X). Because
X1 is a wedge of S1 and for each 2-cell eβj

of X2 it has the attaching map given by
the relation βj , we choose the generators of H1(X1, X0) and H2(X2, X1) which
are bases as free π1(X)-module and we choose the specific lifting g1. Explicitly
we have the following considerations:

(A) We note that (g1)π(βj) ∈ π1(E) is mapped by the homomorphism
π1(E) → π1(Y ) to zero; so we have (g1)π(βj) ∈ π1(F). We denote
this element in H1(F) by (g1)ab

π (βj) ∈ H1(F).
(B) Let c(αi): (∆1, ∂∆1) → (X1, X0) be a lifting of the generator αi ∈

π1(X) starting in x0 and let xαi be its endpoints. These paths define
a set of elements in H1(X1, X0) which form a basis of H1(X1, X0) as
a free π1(X)-module. By abuse of notation we denote the elements also
by c(αi).

(C) Let δ:π2(X2, X1) → π1(X1) be the connecting homomorphism. Take
eβj

∈ H2(X2, X1) generators such that δ ◦ pπ ◦ ρ−1(eβj
) = βj ∈ π1(X1),

the relations in π1(X). These generators define a basis of H2(X2, X1)
as a free π1(X)-module.

(D) If A is a matrix with entries aij ∈ R, and ϕ:R → S is a homomorphism
of rings then Aϕ means the matrix with entries ϕ(aij).

With these generators and notations we have:
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Theorem 3.1.

(a) C(eβj ) = (g1)ab
π (βj), j = 1, . . . , m.

(b) j ◦ ∂2(eβj
) =

∑n
i=1[∂βj/∂αi] · c(αi), j = 1, . . . , m where ∂/∂αi are the

free derivatives with respect to αi in the sense of [8] and the symbol “ · ”
denotes the product using the π1(X)-module structure on H1(X1, X0).

(c) There is an equivariant homomorphism Ψ in diagram (3.1), i.e. A(f) =
0 if and only if there exists a solution for the following matricial equation
on Z(π1(X)):

∂β1

∂α1

∂β1

∂α2
. . .

∂β1

∂αn

∂β2

∂α1

∂β2

∂α2
. . .

∂β2

∂αn
...

...
. . .

...
∂βm

∂α1

∂βm

∂α2
. . .

∂βm

∂αn



Z[(g1)π ]

·


x1

x2
...

xn

 =


(g1)ab

π (β1)
(g1)ab

π (β2)
...

(g1)ab
π (βm).



Proof. (a) It follows from the definition of the abelianized obstruction and
the consideration (A).

(b) This is classical. Recall that H1(X,X0) is the homology of the complexes
Hi(Xi, Xi−1) and for our purpose it suffices to consider X of dimension 2. The
calculation of the boundary homomorphism in question is exactly described in
[2, Chapter 9, Section A], for the purpose of to show Proposition 9.2. As result
of section B in [2, Chapter 9], we have that the derivations in part A in [2,
Chapter 9] are the Fox derivations. So the result follows.

(c) Suppose that the system has a solution (x1, . . . , xn). Define

Ψ:H1(X1, X0) → H1F by Ψ(c(αi)) = xi.

This defines an equivariant homomorphism and using (b) one can see that we
have a commutative diagram. Finally, suppose that we have an equivariant
homomorphism Ψ which makes the diagram commutative. Let xi = Ψ(c(αi)).
From the commutative of the diagram and using (b) we obtain that

(g1)ab
π (βj) =

n∑
i=1

[
∂βj

∂αi

]
·Ψ(c(αi)) =

n∑
i=1

Z[(g1)π]
(

∂βj

∂αi

)
· xi.

But these equations as j runs from 1 to n is the system given in the matricial
form in (c) and the result follows. �

4. Special cases and the general case

In this section we consider the following examples: (1) An arbitrary surface
bundle over a space B; (2) Torus bundles over the circle; (3) T -principal bundles
where T is the torus.
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Case 1. Let S → E → B be a S-bundle (S a closed surface) over a space B

and f :E → E be a fiber-preserving map. In this case the fixed point free problem
is equivalent to the problem of deforming the map (1, f):M → M ×B M into
M ×B M −∆ (see [5]). Then, we want to find a lift g for the diagram

F(M ×M −∆)

��

E(M ×M −∆)

q

��

M

g
88qqqqqq

(1,f)
// M ×B M

The primary abelianized obstruction can be studied using Theorem 3.1. In
order to apply Theorem 3.1 we have that the local coefficient system here is given
by the formula given in Corollary 3.4 in [5]. Further, we can use the formula
given by Proposition 3.5 in [5] since in the fibration above the fundamental group
of the fiber injects in the fundamental group of the total space. Although in our
case the fiber dimension is smaller than 3, the proof given in [5] can be adapted
to find the action of the fundamental group of the base on H1(F ), by making
the obvious adjustments. Compare also with [6]. For the specific case where the
base is S1 and the fiber is the Klein bottle the abelianized primary obstruction
has been studied in detail in [11]. From the results one can read that in many
cases the vanishing of abelianized obstruction suffices for the existence of the lift,
therefore we are able to deform the map fiberwise to a fixed point free map. But
it is not clear yet if this happens in all cases. See last section.

Case 2. Let T → MA → S1 be a T -bundle over S1 and f :MA → MA

be a fiber-preserving map. The space MA is obtained from [0, 1]× S1 when we
identify (0, x) ∼ (1, A(x)) and A is a unimodular matrix with coefficients in Z. In
this case the fixed point free problem is equivalent to the problem of deforming
a certain map g:MA → MA into MA − S1 (see [10]). Then we want to find
a lift g for the diagram

F(MA− S1)

��

E(MA− S1)

q

��

MA

g
88q

q
q

q
q

g
// MA
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The primary abelianized obstruction can be studied using Theorem 3.1. It
has been studied in detail in [10]. The action of π1(MA) on π1(F(MA− S1) '
Π2(T, T − 1) is given by Theorem 2.2, item 2 in [10]. After a long calculation
solving all cases, one can read from the results that the cases where one can find
a lift are exactly the ones where the abelianized obstruction vanish.

Case 3. Let T → M → B be a T -principal bundle over a base B and
f :M → M be a fiber-preserving map. In this case the fixed point free problem
is equivalent to the problem of deforming a certain map g:M → T into T − x0

(see [17]). Then we want to find a lift g for the diagram

F(T − x0)

��

E(T − x0)

q

��

M

g
::t

t
t

t
t

g
// T

The primary abelianized obstruction can be studied using Theorem 3.1. It
has been studied in detail in [17]. The action of π1(T ) on H1(F) ' Z[π1(T )] is the
left multiplication αβ where α ∈ π1(T ), it is viewed in the base of the fibration
and β ∈ π1(T ) ⊂ H1(F) ' Z[π1(T )]. By means of g it induces a structure
of Z[π1(M)]-module on Z[π1(T )]. In [17] several results are obtained for fixed
point of T -principal bundles. We conclude by remark that in [17] is given an
example of a T -principal bundle where the abelianized obstruction is trivial but
one cannot lift the map over the 2-skeleton. Nevertheless if the bundle is over S1

then the bundle is trivial and this phenomenon does not happens. We reproduce
the example.

Example 4.1. From [17] we will write an example of a map f :M → T such
that the abelianized obstruction to deform the map into T − {x0} is trivial but
the map cannot be deformed, where T is the torus. Let M be an orientable
closed manifold with

π1(M) = 〈γ1, γ2; [[γ1, γ2], γ2[γ1, γ2]γ−1
2 ]〉.

So we have only one relation and using previous notation for the presentation of
a group we have β1 = [[γ1, γ2], γ2[γ1, γ2]γ−1

2 ].
Let f :M → T be a map such that fπ(γ1) = a and fπ(γ2) = b where a, b

are generators of π1(T ). From the definition of the homomorphism (g1)ab
π follows

that (g1)ab
π (β1) is trivial. Therefore from Theorem 3.1 the abelianized obstruction

vanish. But we cannot find a lifting for fπ, consequently for f . A lifting for
fπ would have image a free group of rank 1, which is a contradiction. It is
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straighforward, using the map f , construct an example on the trivial principal
bundles M × T in terms of the fixed point of fiber-preserving maps.

5. The Klein bottle case

In this last section we would like to state the results obtained from [11].
The details will appear elsewhere. Let φ be a homeomorphism of the Klein
bottle and M(φ) be the quotient space K× [0, 1], where we are identifying (x, 0)
with (φ(x), 1). Consider all maps f :M(φ) → M(φ) over S1, i.e. p ◦ f = p,
where p:M(φ) → S1 is the projection, such that when restricted to the fiber
can be deformed to fixed point free map. There are four isotopy classes of
homeomorphisms of K. The induced homomorphisms on the fundamental group
of K by the four homeomorphisms φ above are φp(1, η):α → α, β → αpβη for
p ∈ {0, 1}, η ∈ {±1}. Here α, β denote the generators of the Klein bottle under
the relation αβαβ−1.

Case I (I.1) fs(r, 1, 0, 2k): α → αr,

φ0(1, 1) β → αsβ,

c0 → β2kc0, r, s, k ∈ Z
(I.2) fs(0, 1, s, 2k + 1): α → 1,

β → αsβ,

c0 → αsβ2k+1c0, s, k ∈ Z

Case II fs(2r + 1, 1, r, 2k): α → α2r+1,

φ1(1, 1) β → αsβ,

c0 → αrβ2kc0, r, s, k ∈ Z

Case III (III.1) fs(r, 1, 0, 2k): α → αr,

φ0(1,−1) β → αsβ,

c0 → β2kc0, r, s, k ∈ Z
(III.2) fs(0, 1, s, 2k + 1): α → 1,

β → αsβ,

c0 → αsβ2k+1c0, s, k ∈ Z

Case IV fs(2r + 1, 1, r, 2k): α → α2r+1,

φ1(1,−1) β → αsβ,

c0 → αrβ2kc0, r, s, k ∈ Z

Table 1
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Case I fs(r, 1, 0, 0): α → αr,

φ0(1, 1) β → αsβ,

c0 → c0 r, s ∈ Z

Case II fs(2r+1, 1, r, 0): α → α2r+1,

φ1(1, 1) β → αsβ,

c0 → αrc0, r, s ∈ Z

Case III f2s+1(1, 1, 0, 4k): α → α,

φ0(1,−1) β → α2s+1β,

c0 → β4kc0, s, k ∈ Z
f2s+1(−1, 1, 0, 4k+2): α → α−1,

β → α2s+1β,

c0 → β4k+2c0, s, k ∈ Z
fs(0, 1, s, 2k+1): α → 1,

β → αsβ,

c0 → αsβ2k+1c0, s, k ∈ Z

Case IV f2s(4l+3, 1, 2l+1, 4k): α → α4l+3,

φ1(1,−1) β → α2sβ,

c0 → α2l+1β4kc0, s, k, l ∈ Z
f2s(4l+1, 1, 2l, 4k+2): α → α4l+1,

β → α2sβ,

c0 → α2lβ4k+2c0, s, k, l ∈ Z
f2s+1(4l+3, 1, 2l+1, 4k+2): α → α4l+3,

β → α2s+1β,

c0 → α2l+1β4k+2c0, s, k ∈ Z
f2s+1(4l+1, 1, 2l, 4k): α → α4l+1,

β → α2s+1β,

c0 → α2lβ4kc0, s, k, l ∈ Z

Table 2

The fundamental group of M(φp(1, η)), where by abuse of notation φp(1, η)
also denotes the homeomorphism which induces homomorphism above, have
a presentation

π1(M(φp(1, η)),0)) = 〈α, β, c0 | αβαβ−1 = 1, c0αc0
−1 = α, c0βc0

−1 = αpβη〉
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For any homeomorphism φ:K → K, M(φ) is homeomorphic over S1 to
M(φp(1, η)) where φp(1, η) is given above. From Theorem 2.4 in [11] we have

Theorem 5.1. Let f :M(φq(1, η)) → M(φq(1, η)) be a map over S1, where
q ∈ {0, 1} and η = ±1. If the Nielsen number of f restricted to the fiber is zero
then fπ:π1(M(φq(1, η))) → π1(M(φq(1, η))) is given by the Table 1.

For all the maps above mentioned we can decide which ones can be deformed
over S1 to fixed point free. This is the main result in [11, Theorem 6.26]. From
there we can say:

Theorem 5.2. Let φ be a homeomorphism of K, where K denotes the Klein
bottle and let M(φ) be the quotient space K×[0, 1] where we are identifying (x, 0)
with (φ(x), 1). Then M(φ) is a fiber bundle over the circle S1, where the fiber
is K, and let f :M(φ) → M(φ) be a fiber-preserving map over S1. If f belongs
to one of the cases of the previous theorem then it can be deformed to a fixed
point free map g by a fiberwise homotopy over S1 if and only if f belongs to the
correspondent case on the Table 2.
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