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ON A GENERALIZATION OF LAZER–LEACH CONDITIONS
FOR A SYSTEM OF SECOND ORDER ODE’S

Pablo Amster — Pablo De Nápoli

Abstract. We study the existence of periodic solutions for a nonlinear

second order system of ordinary differential equations. Assuming suitable
Lazer–Leach type conditions, we prove the existence of at least one solution

applying topological degree methods.

1. Introduction

We study the nonlinear system of second order differential equations for
a vector function u: [0, 2π] → RN satisfying

(1.1) u′′ + m2u + g(u) = p(t), 0 < t < 2π

under periodic boundary conditions:

(1.2) u(0) = u(2π), u′(0) = u′(2π).

We shall assume that m 6= 0 is an integer, p ∈ L2(0, 2π), and that the
nonlinearity g is continuous and bounded. Thus, (1.1)–(1.2) is a resonant prob-
lem, since the kernel of the operator Lmu := u′′ + m2u over the space of 2π-
periodic functions is non-trivial. This situation is referred in the literature as
resonance at a higher order eigenvalue: indeed, if one considers the eigenvalue
problem −u′′ = λu under periodic conditions, a simple computation shows that
λm = m2 ∈ N0. Let us recall that the case m = 0 for a scalar equation has
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a solution if one assumes the well known Landesman–Lazer conditions, which
have been firstly obtained in [2] for a resonant elliptic second order scalar equa-
tion under Dirichlet conditions (for a survey on Landesman–Lazer conditions see
e.g. [5]). Roughly speaking, these conditions state that if p (the average of p)
lies between the limits at ±∞ of the nonlinearity g, then the problem admits
at least one solution. This condition may be regarded as a degree condition
over the sphere S0 = {−1, 1}, in the following sense: if for v = ±1 we define
g±1 = g(±∞), then the function θ:S0 → S0 given by θ(v) = (gv − p)/|gv − p| is
well defined and changes sign, and in consequence it has non-zero degree.

Thus, the following result, adapted from a theorem given by Nirenberg in [6]
for elliptic systems, may be regarded as a natural extension of Landesman–Lazer
theorem:

Theorem 1.1. Assume that the radial limits gv := limr→∞ g(rv) exist uni-
formly with respect to v ∈ SN−1, the unit sphere of RN . Then (1.1)–(1.2) with
m = 0 has at least one T -periodic solution if the following conditions hold:

(a) gv 6= p := (1/T )
∫ T

0
p(t) dt for any v ∈ SN−1.

(b) The degree of the mapping θ:SN−1 → SN−1 given by

θ(v) =
gv − p

|gv − p|
is different from 0.

We remark that the average p can be regarded as the projection of the forcing
term p into the kernel of the linear operator L0, which consists in the set of
constant functions, naturally identified with RN .

In contrast with the above described case, the situation when m 6= 0 makes
it necessary to deal with a 2N -dimensional kernel, namely:

Ker(Lm) = {cos(mt)α + sin(mt)β : (α, β) ∈ R2N} := Vm.

One might expect that a Landesman–Lazer type condition corresponding to
this case can be expressed in terms of the projection of p into Vm or, equivalently,
in terms of the m-th Fourier coefficients of p. For N = 1, it has been shown by
D. E. Leach and A. Lazer that this is, indeed, the case (see [3]):

Theorem 1.2. Let N = 1 and assume that g ∈ C(R) has limits at infinity.
Moreover, let αp and βp denote the m-th Fourier coefficients of p. Then, if

(1.3)
√

α2
p + β2

p <
2
π
|g(∞)− g(−∞)|,

problem (1.1)–(1.2) admits at least one 2π-periodic solution.

The aim of this paper is to obtain a generalization of Lazer–Leach theorem
for N > 1. It is worthy to observe that some extra difficulty should be expected
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when one attempts to extend the result to a system of equations. For example,
when m = 0, it is not necessary to assume in the scalar case that the limits
g(±∞) exist; however, the same argument cannot be implemented for a system.
An interesting example has been given in [7], showing that the existence of radial
limits of g is in some sense necessary. More precisely, the authors have presented
a system for which no periodic solution exists, although the following conditions
are fulfilled for some R > 0:

(i) g(u) 6= p for |u| ≥ R.
(ii) The degree of the mapping θR:SN−1 → SN−1 given by

θR(v) =
g(Rv)− p

|g(Rv)− p|
is different from 0.

Despite this example, we shall show that the assumption on the existence of
radial limits can be replaced by a weaker condition (see condition (G1) below).

Applying topological degree methods [4], we shall obtain solutions of (1.1)–
(1.2) under appropriate conditions of Lazer–Leach type. In particular, if the
nonlinearity g has uniform radial limits at infinity, these conditions involve the
m-th Fourier coefficients of some suitable extension of g to the infinite sphere.
However, unlike in Nirenberg’s result, our condition (G1) below does not assume
that all radial limits exist: we shall assume instead the existence of upper limits,
and only in some specific directions. This kind of condition has been introduced
in [1] in the case of resonance at the first eigenvalue for a φ-Laplacian system.

2. Preliminaries

Let H be the space of absolutely continuous 2π-periodic vector functions
u: [0, 2π] → RN , namely

H = H1
per(0, 2π) := {u ∈ H1([0, 2π], RN ) : u(0) = u(2π)}

provided with the usual norm ‖u‖ := ‖u‖H1 , and let

D = H2
per(0, 2π) := {u ∈ H ∩H2([0, 2π], RN ) : u′(0) = u′(2π)}.

The operator Lm:D → L2([0, 2π], RN ) is defined as in the introduction, and its
kernel Vm may be described as

Vm := Ker(Lm) = {uw : w = (α, β) ∈ R2N},

where uw(t) := cos(mt)α + sin(mt)β. For convenience, let J : R2N → Vm denote
the isomorphism given by J(w) = uw. The m-th Fourier coefficients of a function
u ∈ L1([0, 2π], RN ) shall be denoted respectively by αu and βu, i.e.

αu =
1
π

∫ 2π

0

cos(mt)u(t) dt, βu =
1
π

∫ 2π

0

sin(mt)u(t) dt.
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Furthermore, if w(u) = (αu, βu), then the orthogonal projection P of the space
L2([0, 2π], RN ) onto Vm can be defined as Pu = J(w(u)) = uw(u).

In particular, the projection of p is given by

uw(p) = cos(mt)αp + sin(mt)βp.

A straightforward computation (or, equivalently, the fact that Lm is sym-
metric with respect to the inner product of L2) shows that the range of Lm is
the orthogonal complement of Vm, namely:

R(Lm) =
{

ϕ ∈ L2([0, 2π], RN ) :
∫ 2π

0

cos(mt)ϕ(t) dt =
∫ 2π

0

sin(mt)ϕ(t) dt = 0
}

.

Thus, we may define a right inverse K:R(L) → H of the operator Lm, given by
Kϕ = u, where u ∈ D is the unique solution of the problem{

u′′ + m2u = ϕ,

Pu = 0.

Moreover, we have the following standard estimate:

Lemma 2.1. There exists a constant c such that

‖u− Pu‖H2 ≤ c‖Lm(u)‖L2 for each u ∈ D.

Remark 2.2. From the previous lemma and the embedding H2(0, 2π) ↪→ H

it becomes immediate that K is compact.

3. Main result

In the sequel, we shall assume that the following condition is satisfied:

(G1) There exists an open covering {Uj}j=1... ,K of the unit sphere S2N−1 ⊂
R2N , and vectors wj = (αj , βj) ∈ S2N−1 such that for each w ∈ Uj the
limit

gw,j(t) := lim sup
s→∞

〈g(suw(t)), uwj
(t)〉

is upper semi-continuous in w for almost every t, where 〈 · , · 〉 denotes
the usual inner product of RN .

Under this condition, our abstract version of the Lazer–Leach result for a sys-
tem reads as follows:

Theorem 3.1. Assume that condition (G1) holds, and that:

(a) For each w ∈ S2N−1 there exists j ∈ {1, . . . , K} such that

1
π

∫ 2π

0

gw,j(t) dt < 〈αp, α
j〉+ 〈βp, β

j〉.
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(b) For every R � 0 the Brouwer degree degB(G, BR(0), 0) is different from
zero, where G: R2N → R2N is the mapping defined by

G(w) = w(p)− J−1P(g ◦ uw).

Then problem (1.1)–(1.2) admits at least one solution.

Remark 3.2. It follows from the above definitions that G may be expressed
in terms of the m-th Fourier coefficients of the function ϕ(t) = g(uw(t)), namely:

G(w) = (αp − αg◦uw
, βp − βg◦uw

).

Theorem 3.1 has an immediate consequence if we assume that radial limits
gv = lims→∞ g(sv) exist uniformly for v ∈ SN−1. Indeed, in this case, we may
define for each t ∈ [0, 2π] and each w ∈ S2N−1 the limit

(3.1) gw(t) := lim
s→∞

g(suw(t)).

Note that uw(t) might eventually be 0 for a finite number of values of t, in
which case gw(t) = g(0). However, this “singular set” of values of t does not play
any role when using the standard Lebesgue convergence theorems for the integral.
On the other hand, if uw(t) 6= 0, then gw(t) is continuous as a function of w: in
order to prove this, it suffices to fix a constant c > 0 such that |u

ew(t)| ≥ c > 0 for
w̃ in a neighbourhood W of w. Then, g(su

ew(t)) = g(s|u
ew(t)|ṽ) → g

ev as s →∞
for ṽ = u

ew(t)/|u
ew(t)|. Given ε > 0, fix s such that |g(su

ew(t)) − g
ev| < ε/3 for

w̃ ∈ W , then

|g
ew(t)− gw(t)| = |g

ev − gv| <
2ε

3
+ |g(su

ew(t))− g(suw(t))| < ε

for w̃ close enough to w. Thus, condition (G1) is clearly satisfied for any family
{(Uj , wj)}j=1,... ,K such that {Uj} covers S2N−1 and wj ∈ S2N−1. Furthermore,
the inequality in condition (a) of Theorem 3.1 is equivalent to:∫ 2π

0

〈gw(t)− p(t), uwj
(t)〉 dt < 0.

Hence, if gw − p is not orthogonal to the kernel of Lm, that is to say

(3.2) (αgw
, βgw

) 6= (αp, βp),

then there exists a vector wj ∈ S2N−1 such that the previous inequality holds in
a neighbourhood of w. By compactness, if (3.2) holds for any w ∈ S2N−1, then
condition (a) is satisfied.

In this setting, the previous theorem can be formulated, as in Nirenberg’s
result, in terms of a condition on the extension of g to the infinite sphere or,
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more precisely, in terms of the m-th Fourier coefficient of this extension. Indeed,
for w ∈ S2N−1 we have:

lim
s→∞

G(sw) = (αp − αgw , βp − βgw) 6= 0,

and thus the mapping θ:S2N−1 → S2N−1 given by

θ(w) =
(αp − αgw , βp − βgw)
|(αp − αgw

, βp − βgw
)|

is well defined. From the properties of the degree, we obtain:

Corollary 3.3. Assume that the radial limits gv exist uniformly for v ∈
SN−1, and for each w ∈ S2N−1 define the function gw(t) by (3.1). Further,
assume that:

(a) (αgw , βgw) 6= (αp, βp) for any w ∈ S2N−1.
(b) deg(θ) 6= 0.

Then (1.1)–(1.2) admits at least one solution.

Remark 3.4. In the particular case N = 1, if w = (α, β) ∈ S1 one has that
uw(t) = cos(mt− ω), where α = cos(ω) and β = sin(ω). It follows that

g(suw(t)) →

{
g(∞) if t ∈ I+

ω ,

g(−∞) if t ∈ I−ω ,

where I+
ω = {t ∈ [0, 2π] : cos(mt−ω) > 0}, I−ω = {t ∈ [0, 2π] : cos(mt−ω) < 0}.

Hence

gw(t) = g(∞)χI+
ω

(t) + g(−∞)χI−ω
(t),

except for a finite number of values of t. After computation, it follows that∫
I+

ω

eimt dt = eiω

∫
I+

ω

ei(mt−ω) dt = eiω

∫
I+
0

eimt dt = eiω

∫ π/2

−π/2

eit dt = 2eiω,

and thus ∫
I±ω

cos(mt) dt = ±2 cos(ω) = ±2α,∫
I±ω

sin(mt) dt = ±2 sin(ω) = ±2β.

Hence

lim
s→∞

G(sw) = (αp, βp)−
2
π

[g(∞)− g(−∞)](α, β),

from which the original result by Lazer and Leach is retrieved.
It is worthy to notice that Corollary 3.3 allows a natural interpretation of

Lazer–Leach Theorem in terms of a complex integral. Indeed, from the previous
computations it is clear that the degree of the function θ:S1 → S1 given by
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lims→∞G(sw)/|G(sw)| is equivalent to the index of the curve γ defined over the
complex plane by

γ(t) =
2
π

[g(∞)− g(−∞)]eit

at the point z0 = αp + iβp. From condition (1.3), it is seen that |z0| < |γ(t)|,
and hence

I(γ, z0) =
1

2πi

∫ 2π

0

γ′(t)
γ(t)− z0

dt = ±1.

4. Proof of the main result

From the classical continuation theorems in coincidence degree theory (see
e.g. [4]), it suffices to prove that the following conditions are satisfied over some
bounded domain Ω ⊂ H:

(a) Lmu 6= λ(p− g(u)) for λ ∈ (0, 1] and u ∈ ∂Ω.
(b) Fu 6= 0 for u ∈ ∂Ω ∩ Vm, where F :Vm → Vm is defined by Fu :=

P(p− g(u)).
(c) degB(F,Ω ∩ Vm, 0) 6= 0.

We shall verify the previous conditions for Ω = BR(0), with R large enough.
In order to prove that (i) holds for R � 0, let us suppose that Lm(un) =
λn(p − g(un)) for some λn ∈ (0, 1] and ‖un‖H → ∞. From Lemma 2.1, we
deduce that

‖un − Pun‖ ≤ c‖p− g(un)‖L2 ≤ C

for some constant C, whence ‖Pun‖H →∞.
Writing Pun = cos(mt)αn + sin(mt)βn = uwn(t), with wn = (αn, βn) →

∞ in R2N , and passing to a subsequence if necessary, we may assume that
wn/|wn| → w ∈ S2N−1.

Let j ∈ {1, . . . , K} be chosen as in condition (i), and let zn(t) := un(t)/|wn|.
Then we may write

zn(t) =
un(t)− Pun(t)

|wn|
+
Pun(t)
|wn|

,

and using the embedding of H1([0, 2π], RN ) into C([0, 2π], RN ) and the conti-
nuity of P, we conclude that if n → ∞, then zn(t) → uw(t). From the upper
semi-continuity of gw,j with respect to w, for almost every t we have:

lim sup
n→∞

〈g(un(t)), uwj (t)〉 = lim sup
n→∞

〈g(|wn|zn(t)), uwj (t)〉 ≤ gw,j(t).

Moreover, as Lm(un) = λn(p− g(un)),

0 =
∫ 2π

0

〈Lm(un), uwj
〉 = λn

∫ 2π

0

〈p− g(un), uwj
〉.
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This implies that

π(〈αp, α
j〉+ 〈βp, β

j〉) = lim sup
n→∞

∫ 2π

0

〈g(un), uwj
〉 ≤

∫ 2π

0

gw,j ,

a contradiction.
On the other hand, if Fun = 0 for un ∈ Vm such that ‖un‖H → ∞, then

un = uwn ∈ Vm, with wn →∞ in R2N . Using the fact that P(p− g(un)) = 0, a
contradiction yields as before. Thus, (b) is proved.

Finally, for u = uw with w ∈ R2N we have:

J−1FJ(w) = (αp, βp)− J−1P(g(uw)) = G(w).

Hence, the degree of F at 0 over Ω ∩ Vm can be identified with the Brouwer
degree of G at 0 over a large ball of R2N . In consequence, condition (c) follows
from assumption (ii), and the proof is complete. �

5. An example: a weakly coupled system

As an application of Theorem 3.1, consider the system

u′′i + m2ui + g̃i(ui) + hi(u) = pi(t), i = 1, . . . , N,

where g̃i has limits at infinity, and hi(u) → 0 uniformly as |ui| → ∞. We remark
that, in this case, radial limits of g = g̃ + h do not necessarily exist for those
v ∈ SN−1 such that vi = 0 for some i, since hi(sv) does not necessarily converge
as s →∞.

However, condition (G1) is satisfied: for w = (α, β) ∈ S2N−1, fix i such that
the i-th coordinate of α or β is different from 0. Then taking z ∈ S2N−1 ∩
span{ei, eN+i}, where ek is the k-th canonical vector of RN , it follows that

〈g(suw(t)), uz(t)〉 = cos(mt− ω)[g̃i(sui(t)) + hi(suw(t))],

with ui = αi cos(mt) + βi sin(mt) = ρi cos(mt − ωi) for some ρi > 0, and some
ω, ωi ∈ [0, 2π). As in Remark 3.4,

g̃i(sui(t)) → g̃i(∞)χI+
ωi

(t) + g̃i(−∞)χI−ωi
(t) a.e. in t

as s → ∞, and as hi(suw(t)) → 0 for almost every t, it is easy to see that
condition (G1) holds, as well as condition (a) in Theorem 3.1.

Furthermore, if w = (α, β) satisfies as before that αi 6= 0 or βi 6= 0, then

Gi(sw) → (αp)i −
2
π

[g̃i(∞)− g̃i(−∞)]αi

and

GN+i(sw) → (βp)i −
2
π

[g̃i(∞)− g̃i(−∞)]βi
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as s →∞. Thus, if we define the mapping T : R2N → R2N given by

T (w) := (αp, βp)−
2
π

N∑
i=1

[g̃i(∞)− g̃i(−∞)](αiei + βieN+i)

it follows that under the assumption√
(αp)2i + (βp)2i <

2
π
|g̃i(∞)− g̃i(−∞)| for i = 1, . . . , N ,

the homotopy h(λ, w) = λG(w)+(1−λ)T (w) does not vanish on ∂BR for R � 0.
From the product property of the degree,

degB(G, BR, 0) = degB(T,BR, 0) = ±1.

Thus, condition (b) in Theorem 3.1 is satisfied.
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