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NONLINEAR BOUNDARY VALUE PROBLEMS
FOR DIFFERENTIAL INCLUSIONS

WITH CAPUTO FRACTIONAL DERIVATIVE

Mouffak Benchohra — Samira Hamani

Abstract. In this paper, we shall establish sufficient conditions for the

existence of solutions for a class of boundary value problem for fractional
differential inclusions involving the Caputo fractional derivative of order

α ∈ (1, 2]. The both cases of convex valued and nonconvex valued right

hand side are considered.

1. Introduction

This paper deals with the existence of solutions for boundary value problems
(BVP for short), for fractional order differential inclusions. In Section 3 we
consider the boundary value problem

cDαy(t) ∈ F (t, y), for almost each t ∈ J = [0, T ], 1 < α ≤ 2,(1.1)

y(0) = y0, y(T ) = yT ,(1.2)

where cDα is the Caputo fractional derivative, F : J×R → P(R) is a multivalued
map (P(R) is the family of all nonempty subsets of R), y0, yT are real constants.
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Section 4 is devoted to BVP for fractional order differential inclusions with
nonlocal conditions

cDαy(t) ∈ F (t, y), for each t ∈ J = [0, T ], 1 < α ≤ 2,(1.3)

y(0) = g(y), y(T ) = yT ,(1.4)

where F , yT are as in problem (1.1)–(1.2), and g:C(J,R) → R a continuous
function. Differential equations of fractional order have recently proved to be
valuable tools in the modeling of many phenomena in various fields of science
and engineering. Indeed, we can find numerous applications in viscoelasticity,
electrochemistry, control, porous media, electromagnetic, etc. (see [13], [21], [22],
[24], [31], [32], [36], [38]). There has been a significant development in fractional
differential equations in recent years; see the monographs of Kilbas et al [27],
Miller and Ross [33], Podlubny [38], Samko et al [40] and the papers of Delbosco
and Rodino [12], Diethelm et al [13], [14], [15], El-Sayed [17]–[19], Kilbas and
Marzan [26], Mainardi [31], Momani and Hadid [34], Momani et al [35], Podlubny
et al [39], Yu and Gao [41] and the references therein. Very recently, some basic
theory for initial value problems for fractional differential equations involving
the Riemann–Liouville differential operator of order α ∈ (0, 1] was discussed
by Lakshmikantham and Vatsala [28]–[30]. In [4], [5] the authors studied the
existence and uniqueness of solutions of classes of functional differential equations
with infinite delay and fractional order α ∈ (0, 1] in Riemann–Liouville sense,
and in [3] a class of perturbed functional differential equations involving the
Caputo fractional derivative has been considered. El-Sayed and Ibrahim [20]
initiated the study of fractional multivalued differential inclusions. In the case,
where α ∈ (1, 2], existence results for fractional boundary value problem and
relaxation theorem, were studied by Ouahab [37].

Nonlocal conditions were initiated by Byszewski [6] for evolution equations
when he proved the existence and uniqueness of mild and classical solutions
of nonlocal Cauchy problems. As remarked by Byszewski [7], [8], the nonlocal
condition can be more useful than the standard initial condition to describe some
physical phenomena. For example, g(y) may be given by

g(y) =
p∑

i=1

ciy(ti),

where ci, i = 1, . . . , p, are given constants and 0 < t1 < . . . < tp < T .
In this paper we shall present two existence results for the problem (1.1)–(1.2)

and (1.3)–(1.4) when the right hand side is convex as well as nonconvex valued.
The first result relies on the nonlinear alternative of Leray–Schauder type, while
the second one is based upon a fixed point theorem for contraction multivalued
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maps due to Covitz and Nadler. These results extend to the multivalued case
some previous results in the literature.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts that
will be used in the remainder of this paper. Let C(J,R) be the Banach space of
all continuous functions from J into R with the norm

‖y‖∞ = sup{|y(t)| : 0 ≤ t ≤ T},

and we let L1(J,R) denote the Banach space of functions y: J → R that are
Lebesgue integrable with norm

‖y‖L1 =
∫ T

0

|y(t)| dt.

AC1(J,R) is the space of functions y: J → R, which are absolutely continuous
whose first derivative, y′, is absolutely continuous. Let (X, ‖ · ‖) be a Banach
space. Let Pcl(X) = {Y ∈ P(X) : Y closed}, Pb(X) = {Y ∈ P(X) : Y
bounded}, Pcp(X) = {Y ∈ P(X) : Y compact} and Pcp,c(X) = {Y ∈ P(X) : Y
compact and convex}. A multivalued map G:X → P (X) is convex (closed)
valued if G(x) is convex (closed) for all x ∈ X. G is bounded on bounded sets
if G(B) =

⋃
x∈B G(x) is bounded in X for all B ∈ Pb(X) (i.e. supx∈B{sup{|y| :

y ∈ G(x)}} < ∞). G is called upper semi-continuous (u.s.c.) on X if for each
x0 ∈ X, the set G(x0) is a nonempty closed subset of X, and if for each open set
N of X containing G(x0), there exists an open neighborhood N0 of x0 such that
G(N0) ⊆ N . G is said to be completely continuous if G(B) is relatively compact
for every B ∈ Pb(X). If the multivalued map G is completely continuous with
nonempty compact values, then G is u.s.c. if and only if G has a closed graph
(i.e. xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗)). G has a fixed point
if there is x ∈ X such that x ∈ G(x). The fixed point set of the multivalued
operator G will be denoted by FixG. A multivalued map G: J → Pcl(R) is said
to be measurable if for every y ∈ R, the function

t 7→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)}

is measurable. For more details on multivalued maps see the books of Aubin
and Cellina [1], Aubin and Frankowska [2], Deimling [11] and Hu and Papageor-
giou [23].

Definition 2.1. A multivalued map F : J × R → P(R) is said to be Cara-
théodory if

(a) t 7→ F (t, u) is measurable for each u ∈ R;
(b) u 7→ F (t, u) is upper semicontinuous for almost all t ∈ J ;
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For each y ∈ C(J,R), define the set of selections of F by

SF,y = {v ∈ L1(J,R) : v(t) ∈ F (t, y(t)) a.e. t ∈ J}.

Let (X, d) be a metric space induced from the normed space (X, |·|). Consider
Hd:P(X)× P(X) → R+ ∪ {∞} given by

Hd(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(A, b)
}
,

where d(A, b) = infa∈A d(a, b), d(a,B) = infb∈B d(a, b). Then (Pb,cl(X),Hd) is
a metric space and (Pcl(X),Hd) is a generalized metric space (see [25]).

Definition 2.2. A multivalued operator N :X → Pcl(X) is called

(a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y), for each x, y ∈ X,

(b) a contraction if and only if it is γ-Lipschitz with γ < 1.

The following lemma will be used in the sequel.

Lemma 2.3 ([10]). Let (X, d) be a complete metric space. If N :X → Pcl(X)
is a contraction, then FixN 6= ∅.

Definition 2.4 ([27], [38]). The fractional (arbitrary) order integral of the
function h ∈ L1([a, b],R+) of order α ∈ R+ is defined by

Iα
a h(t) =

∫ t

a

(t− s)α−1

Γ(α)
h(s) ds,

where Γ is the gamma function. When a = 0, we write Iαh(t) = h(t) ∗ ϕα(t),
where ϕα(t) = tα−1/Γ(α) for t > 0, and ϕα(t) = 0 for t ≤ 0, and ϕα → δ(t) as
α→ 0, where δ is the delta function.

Definition 2.5 ([27], [38]). For a function h given on the interval [a, b], the
αth Riemann–Liouville fractional-order derivative of h, is defined by

(Dα
a+h)(t) =

1
Γ(n− α)

(
d

dt

)n ∫ t

a

(t− s)n−α−1h(s) ds.

Here n = [α] + 1 and [α] denotes the integer part of α.

Definition 2.6 ([27]). For a function h given on the interval [a, b], the
Caputo fractional-order derivative of h of order α is defined by

(cDα
a+h)(t) =

1
Γ(n− α)

∫ t

a

(t− s)n−α−1h(n)(s) ds,

where n = [α] + 1.
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3. Main results

In this section, we are concerned with the existence of solutions for the prob-
lem (1.1)–(1.2) when the right hand side has convex as well as nonconvex values.
Initially, we assume that F is a compact and convex valued multivalued map.

Definition 3.1. A function y ∈ AC1(J,R) is said to be a solution of (1.1)–
(1.2), if there exists a function v ∈ L1(J,R) with v(t) ∈ F (t, y(t)), for a.e. t ∈ J ,
such that

cDαy(t) = v(t), a.e. t ∈ J, 1 < α < 2,

and the function y satisfies condition (1.2).

For the existence of solutions for the problem (1.1)–(1.2), we need the fol-
lowing auxiliary lemmas:

Lemma 3.2 ([42]). Let α > 0. Then the differential equation

cDαh(t) = 0

has solutions h(t) = c0+c1t+c2t2+. . .+cntn−1, ci ∈ R, i = 0, . . . , n, n = [α]+1.

Lemma 3.3 ([42]). Let α > 0. Then

IαcDαh(t) = c0 + c1t+ c2t
2 + . . .+ cnt

n−1 + h(t)

for some ci ∈ R, i = 0, . . . , n, n = [α] + 1.

As a consequence of Lemmas 3.2 and 3.3 we have the following result which
is useful in what follow:

Lemma 3.4. Let 1 < α ≤ 2 and let h: J → R be continuous. A function y is
a solution of the fractional integral equation

y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1h(s) ds(3.1)

− t

TΓ(α)

∫ T

0

(T − s)α−1h(s) ds−
(
t

T
− 1

)
y0 +

t

T
yT

if and only if y is a solution of the fractional BVP

cDαy(t) = h(t), t ∈ J,(3.2)

y(0) = y0, y(T ) = yT .(3.3)

Proof. Assume y satisfies (3.1), then Lemma 3.3 implies that

y(t) = c0 + c1t+
1

Γ(α)

∫ t

0

(t− s)α−1h(s) ds.
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From (3.3), a simple calculation gives c0 = y0 and

c1 =
−1

TΓ(α)

∫ T

0

(T − s)α−1h(s) ds− 1
T
y0 +

1
T
yT .

Hence we get equation (1.3). Inversely, it is clear that if y satisfies equation
(1.3), then equations (3.2)–(3.3) hold. �

Theorem 3.5. Assume the following hypotheses hold:

(H1) F : J × R → Pcp,c(R) is a Carathéodory multi-valued map;
(H2) there exist p ∈ C(J,R+) and ψ: [0,∞) → (0,∞) continuous and nonde-

creasing such that

‖F (t, u)‖P ≤ p(t)ψ(|u|) for t ∈ J and each u ∈ R;

(H3) there exists l ∈ L1(J,R+), with Iαl <∞, such that

Hd(F (t, u), F (t, u)) ≤ l(t)|u− u| for every u, u ∈ R,

and

d(0, F (t, 0)) ≤ l(t), a.e. t ∈ J ;

(H4) there exists an number M > 0 such that

(3.4)
M

ψ(M)‖Iαp‖∞ + ψ(M)(Iαp)(T ) + |y0|+ |yT |
> 1.

Then the BVP (1.1)–(1.2) has at least one solution on J .

Proof. Transform the problem (1.1)–(1.2) into a fixed point problem. Con-
sider the multivalued operator

N(y) =
{
h ∈ C(J,R) : y(t) =

1
Γ(α)

∫ t

0

(t− s)α−1v(s) ds

− t

TΓ(α)

∫ T

0

(T − s)α−1v(s) ds−
(
t

T
− 1

)
y0 +

t

T
yT , v ∈ SF,y.

}
�

Remark 3.6. Clearly, from Lemma 3.4, the fixed points of N are solutions
to (1.1)–(1.2).

We shall show that N satisfies the assumptions of the nonlinear alternative
of Leray–Schauder type [16]. The proof will be given in several steps.

Step 1. N(y) is convex for each y ∈ C(J,R).
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Indeed, if h1, h2 belong to N(y), then there exist v1, v2 ∈ SF,y such that for
each t ∈ J we have

hi(t) =
1

Γ(α)

∫ t

0

(t− s)α−1vi(s) ds

− t

TΓ(α)

∫ T

0

(T − s)α−1vi(s) ds−
(
t

T
− 1

)
y0 +

t

T
yT ,

for i = 1, 2. Let 0 ≤ d ≤ 1. Then, for each t ∈ J , we have

(dh1 + (1− d)h2)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1[dv1(s) + (1− d)v2(s)] ds

− t

TΓ(α)

∫ T

0

(T − s)α−1[dv1(s) + (1− d)v2(s)] ds−
(
t

T
− 1

)
y0 +

t

T
yT .

Since SF,y is convex (because F has convex values), we have

dh1 + (1− d)h2 ∈ N(y).

Step 2. N maps bounded sets into bounded sets in C(J,R).

Let Bη∗ = {y ∈ C(J,R) : ‖y‖∞ ≤ η∗} be bounded set in C(J,R) and
y ∈ Bη∗ . Then for each h ∈ N(y), there exists v ∈ SF,y such that

h(t) =
1

Γ(α)

∫ t

0

(t− s)α−1v(s) ds

− t

TΓ(α)

∫ T

0

(T − s)α−1v(s) ds−
(
t

T
− 1

)
y0 +

t

T
yT .

By (H2) we have, for each t ∈ J ,

|h(t)| ≤ 1
Γ(α)

∫ t

0

(t− s)α−1|v(s)| ds

+
1

Γ(α)

∫ T

0

(T − s)α−1|v(s)| ds+ |y0|+ |yT |

≤ 1
Γ(α)

∫ t

0

(t− s)α−1p(s)ψ(|y(s)|) ds

+
1

Γ(α)

∫ T

0

(T − s)α−1p(s)ψ(|y(s)|) ds+ |y0|+ |yT |

≤ψ(η∗)Iα(p)(t) + ψ(η∗)Iα(p)(T ) + |y0|+ |yT |.

Thus

‖h‖∞ ≤ ψ(η∗)‖Iα(p)‖∞ + ψ(η∗)Iα(p)(T ) + |y0|+ |yT | := `.

Step 3. N maps bound ed sets into equicontinuous sets of C(J,R).
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Let t1, t2 ∈ J , t1 < t2, Bη∗ be a bounded set of C(J,R) as in Step 2, let
y ∈ Bη∗ and h ∈ N(y). Then

|h(t2) − h(t1)| =
∣∣∣∣ 1
Γ(α)

∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]v(s) ds

+
(t2 − t1)

Γ(α)

∫ t2

t1

(t2 − s)α−1v(s) ds
∣∣∣∣ +

(t2 − t1)
T

|y0|+
(t2 − t1)

T
|yT |

≤ ‖p‖∞ψ(η∗)
Γ(α)

∫ t1

0

[(t1 − s)α−1 − (t2 − s)α−1] ds

+
(t2 − t1)|p‖∞ψ(η∗)

Γ(α)

∫ t2

t1

(t2 − s)α−1 ds+
(t2 − t1)

T
|y0|+

(t2 − t1)
T

|yT |

≤ ‖p‖∞ψ(η∗)
Γ(α+ 1)

[(t2 − t1)α + tα1 − tα2 ]

+
(t2 − t1)‖p‖∞ψ(η∗)

Γ(α+ 1)
(t2 − t1)α +

(t2 − t1)
T

|y0|+
(t2 − t1)

T
|yT |.

As t1 → t2, the right-hand side of the above inequality tends to zero. As
a consequence of Steps 1 to 3 together with the Arzelá–Ascoli theorem, we can
conclude that N :C(J,R) → P(C(J,R)) is completely continuous.

Step 4. N has a closed graph.

Let yn → y∗, hn ∈ N(yn) and hn → h∗. We need to show that h∗ ∈ N(y∗).
hn ∈ N(yn) means that there exists vn ∈ SF,yn

such that, for each t ∈ J ,

hn(t) =
1

Γ(α)

∫ t

0

(t− s)α−1vn(s) ds

− t

TΓ(α)

∫ T

0

(T − s)α−1vn(s) ds−
(
t

T
− 1

)
y0 +

t

T
yT .

We must show that there exists v∗ ∈ SF,y∗ such that, for each t ∈ J ,

h∗(t) =
1

Γ(α)

∫ t

0

(t− s)α−1v∗(s) ds

− t

TΓ(α)

∫ T

0

(T − s)α−1v∗(s) ds−
(
t

T
− 1

)
y0 +

t

T
yT .

Since F (t, · ) is upper semicontinuous, then for every ε > 0, there exist n0(ε) ≥ 0
such that, for every n ≥ n0, we have

vn(t) ∈ F (t, yn(t)) ⊂ F (t, y∗(t)) + εB(0, 1), a.e. t ∈ J.

Since F ( · , · ) has compact values, then there exists a subsequence vnm( · ) such
that

vnm
( · ) → v∗( · ) as m→∞

and
v∗(t) ∈ F (t, y∗(t)), a.e. t ∈ J.
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For every w ∈ F (t, y∗(t)), we have

|vnm
(t)− v∗(t)| ≤ |vnm

(t)− w|+ |w − v∗(t)|.

Then
|vnm

(t)− v∗(t)| ≤ d(vnm
(t), F (t, y∗(t)).

By an analogous relation, obtained by interchanging the roles of vnm
and v∗, it

follows that

|vnm(t)− v∗(t)| ≤ Hd(F (t, yn(t)), F (t, y∗(t))) ≤ l(t)‖yn − y∗‖∞.

Then

|hn(t)− h∗(t)| ≤
1

Γ(α)

∫ t

0

(t− s)α−1|vnm
(s)− v∗(s)| ds

+
1

Γ(α)

∫ T

0

(T − s)α−1|vnm
(s)− v∗(s)| ds

≤ 1
Γ(α)

∫ t

0

(t− s)α−1l(s) ds‖ynm − y∗‖∞

+
1

Γ(α)

∫ T

0

(T − s)α−1l(s) ds‖ynm − y∗‖∞.

Hence

‖hnm
− h∗‖∞ ≤ 1

Γ(α)

∫ t

0

(t− s)α−1l(s) ds‖ynm
− y∗‖∞

+
1

Γ(α)

∫ T

0

(T − s)α−1l(s) ds‖ynm
− y∗‖∞ → 0

as m→∞.

Step 5. A priori bounds on solutions.

Let y be such that y ∈ λN(y) with λ ∈ (0, 1]. Then there exists v ∈ SF,y

such that, for each t ∈ J ,

y(t) =
λ

Γ(α)

∫ t

0

(t− s)α−1v(s) ds

− λt

TΓ(α)

∫ T

0

(T − s)α−1v(s) ds− λ

(
t

T
− 1

)
y0 +

λt

T
yT .

This implies by (H2) that, for each t ∈ J , we have

|y(t)| ≤ 1
Γ(α)

∫ t

0

(t− s)α−1|v(s)| ds

+
1

Γ(α)

∫ T

0

(T − s)α−1|v(s)|+ |y0|+ |yT |

≤ 1
Γ(α)

∫ t

0

(t− s)α−1p(s)ψ(|y(s)|) ds
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+
1

Γ(α)

∫ T

0

(T − s)α−1p(s)ψ(|y(s)|) ds+ |y0|+ |yT |

≤ ψ(‖y‖∞)
Γ(α)

∫ t

0

(t− s)α−1p(s) ds

+
ψ(‖y‖∞)

Γ(α)

∫ T

0

(T − s)α−1p(s) ds+ |y0|+ |yT |

≤ψ(‖y‖∞)(Iαp)(t) + ψ(‖y‖∞)(Iαp)(T ) + |y0|+ |yT |.

Thus
‖y‖∞

ψ(‖y‖∞)‖Iαp‖∞ + ψ(‖y‖∞)(Iαp)(T ) + |y0|+ |yT |
< 1.

Then by condition (3.4), there exists M > 0 such that ‖y‖∞ 6= M .
Let U = {y ∈ C(J,R) : ‖y‖∞ < M}. The operator N :U → P(C(J,R)) is

upper semicontinuous and completely continuous. From the choice of U , there
is no y ∈ ∂U such that y ∈ λN(y) for some λ ∈ (0, 1). As a consequence of the
nonlinear alternative of Leray–Schauder type [16], we deduce that N has a fixed
point y in U which is a solution of the problem (1.1)–(1.2). This completes the
proof. �

We present now a result for the problem (1.1)–(1.2) with a nonconvex valued
right hand side. Our considerations are based on the fixed point theorem for
contraction multivalued map given by Covitz and Nadler [10].

Theorem 3.7. Assume (H3) and the following hypothesis holds:

(H5) F : J ×R −→ Pcp(R) has the property that F ( · , u): J → Pcp(R) is mea-
surable for each u ∈ R;

If

(3.5) (Iαl)(T ) <
1
2

then the BVP (1.1)–(1.2) has at least one solution on J .

Remark 3.8. For each y ∈ C(J,R), the set SF,y is nonempty since by (H5),
F has a measurable selection (see [9, Theorem III.6]).

Proof. We shall show that N satisfies the assumptions of Lemma 2.3. The
proof will be given in two steps.

Step 1. N(y) ∈ Pcl(C(J,R)) for each y ∈ C(J,R).

Indeed,let (yn)n≥0 ∈ N(y) such that yn −→ ỹ in C(J,R). Then, ỹ ∈ C(J,R)
and there exists vn ∈ SF,y such that, for each t ∈ [0, T ],

yn(t) =
1

Γ(α)

∫ t

0

(t− s)α−1vn(s) ds

− t

TΓ(α)

∫ T

0

(T − s)α−1vn(s) ds−
(
t

T
− 1

)
y0 +

t

T
yT .
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Using the fact that F has compact values and from (H3), we may pass to a sub-
sequence if necessary to get that vn converges weakly to v in L1

w(J,R) (the space
endowed with the weak topology). An application of Mazur’s theorem implies
that vn converges strongly to v and hence v ∈ SF,y. Then, for each t ∈ J ,

yn(t) → ỹ(t) =
1

Γ(α)

∫ t

0

(t− s)α−1v(s) ds

− t

TΓ(α)

∫ T

0

(T − s)α−1v(s) ds−
(
t

T
− 1

)
y0 +

t

T
yT .

So, ỹ ∈ N(y).

Step 2. There exists γ < 1 such that

Hd(N(y), N(y)) ≤ γ‖y − y‖∞ for each y, y ∈ C(J,R).

Let y, y ∈ C(J,R) and h1 ∈ N(y). Then, there exists v1(t) ∈ F (t, y(t)) such
that for each t ∈ J

h1(t) =
1

Γ(α)

∫ t

0

(t− s)α−1v1(s) ds

− t

TΓ(α)

∫ T

0

(T − s)α−1v1(s) ds−
(
t

T
− 1

)
y0 +

t

T
yT .

From (H3) it follows that

Hd(F (t, y(t)), F (t, y(t))) ≤ l(t)|y(t)− y(t)|.

Hence, there exists w ∈ F (t, y(t)) such that

|v1(t)− w| ≤ l(t)|y(t)− y(t)|, t ∈ J.

Consider U : J → P(R) given by

U(t) = {w ∈ R : |v1(t)− w| ≤ l(t)|y(t)− y(t)|}.

Since the multivalued operator V (t) = U(t)∩F (t, y(t)) is measurable (see Propo-
sition III.4 in [9]), there exists a function v2(t) which is a measurable selection
for V . So, v2(t) ∈ F (t, y(t)), and for each t ∈ J ,

|v1(t)− v2(t)| ≤ l(t)|y(t)− y(t)|.

Let us define for each t ∈ J

h2(t) =
1

Γ(α)

∫ t

0

(t− s)α−1v2(s) ds

− t

TΓ(α)

∫ T

0

(T − s)α−1v2(s) ds−
(
t

T
− 1

)
y0 +

t

T
yT .
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Then for t ∈ J

|h1(t)− h2(t)| ≤
1

Γ(α)

∫ t

0

(t− s)α−1|v1(s)− v2(s)| ds

+
1

Γ(α)

∫ T

0

(T − s)α−1|v1(s)− v2(s)| ds

≤ 1
Γ(α)

∫ t

0

(t− s)α−1l(s)|y(s)− y(s)| ds

+
1

Γ(α)

∫ T

0

(T − s)α−1l(s)|y(s)− y(s)| ds.

Thus

‖h1 − h2‖∞ ≤ 2(Iαl)(T )‖y − y‖∞.

By an analogous relation, obtained by interchanging the roles of y and y, it
follows that

Hd(N(y), N(y)) ≤ 2(Iαl)(T )‖y − y‖∞.

So, N is a contraction by (3.5) and thus, by Lemma 2.3, N has a fixed point y
which is solution to (1.1)–(1.2). The proof is complete. �

4. Nonlocal Boundary Value Problem

Let us start by defining what we mean by a solution of BVP (1.3)–(1.4).

Definition 4.1. A function y ∈ AC1(J,R) is said to be a solution of (1.3)–
(1.4), if there exists a function v ∈ L1(J,R) with v(t) ∈ F (t, y(t)), for almost
every t ∈ J , such that

cDαy(t) = v(t), a.e. t ∈ J, 1 < α ≤ 2,

and the function y satisfies condition (1.4).

Lemma 4.2. Let 1 < α ≤ 2 and let h: [0, T ] → R be continuous. A function
y is a solution of the fractional integral equation

(4.1) y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1h(s) ds

− t

TΓ(α)

∫ T

0

(T − s)α−1h(s) ds−
(
t

T
− 1

)
g(y) +

t

T
yT

if and only if y is a solution of the fractional BVP

cDαy(t) = h(t), t ∈ J,(4.2)

y(0) = g(y), y(T ) = yT .(4.3)
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Theorem 4.3. Assume (H1)–(H3), and the following conditions hold:

(H5) there exists a constant M1 > 0 with

|g(y)| ≤M1 for all y ∈ C(J,R),

(H6) there exists an number M2 > 0 such that

(4.4)
M2

ψ(M2)‖Iαp‖∞ + ψ(M2)(Iαp)(T ) +M1 + |yT |
> 1.

Then the BVP (1.3)–(1.4) has at least one solution on J .

Proof. Transform the problem (1.3)–(1.4) into a fixed point problem. Con-
sider the multivalued operator

N1(y) =
{
h ∈ C(J,R) : y(t) =

1
Γ(α)

∫ t

0

(t− s)α−1v(s) ds

− t

TΓ(α)

∫ T

0

(T − s)α−1v(s) ds−
(
t

T
− 1

)
g(y) +

t

T
yT , v ∈ SF,y.

}
.

Remark 4.4. Clearly, from Lemma 4.2, the fixed points of N are solutions
to (1.3)–(1.4).

As in Theorem 3.5 we can show thatN1 is completely continuous and “upper”
semicontinuous.

Let y be such that y ∈ λN1(y) with λ ∈ (0, 1]. Then, there exists v ∈ SF,y

such that, for each t ∈ J ,

y(t) =
λ

Γ(α)

∫ t

0

(t− s)α−1v(s) ds

− λt

TΓ(α)

∫ T

0

(T − s)α−1v∗(s) ds− λ

(
t

T
− 1

)
g(y) +

λt

T
yT .

This implies by (H2)–(H5) that, for each t ∈ J , we have

|y(t)| ≤ 1
Γ(α)

∫ t

0

(t− s)α−1|v(s)| ds

+
1

Γ(α)

∫ T

0

(T − s)α−1|v(s)|+M1 + |yT |

≤ 1
Γ(α)

∫ t

0

(t− s)α−1p(s)ψ(|y(s)|) ds

+
1

Γ(α)

∫ T

0

(T − s)α−1p(s)ψ(|y(s)|) ds+M1 + |yT |

≤ ψ(‖y‖∞)
Γ(α)

∫ t

0

(t− s)α−1p(s) ds

+
ψ(‖y‖∞)

Γ(α)

∫ T

0

(T − s)α−1p(s) ds+M1 + |yT |
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≤ψ(‖y‖∞)(Iαp)(t) + ψ(‖y‖∞)(Iαp)(T ) +M1 + |yT |.

Thus
‖y‖∞

ψ(‖y‖∞)‖Iαp‖∞ + ψ(‖y‖∞)(Iαp)(T ) +M1 + |yT |
< 1.

Then by condition (4.4), there exists M2 such that ‖y‖∞ 6= M2.
Let U1 = {y ∈ C(J,R) : ‖y‖∞ < M2}. The operator N1:U1 → P(C(J,R)) is

upper semicontinuous and completely continuous. From the choice of U1, there
is no y ∈ ∂U1 such that y ∈ λN1(y) for some λ ∈ (0, 1). As a consequence of the
nonlinear alternative of Leray–Schauder type [16], we deduce that N1 has a fixed
point y in U1 which is a solution of the problem (1.3)–(1.4). This completes the
proof. �

Theorem 4.5. Assume (H3), (H5) and the following hypothesis holds:

(H7) there exists k > 0 with such that

|g(u)− g(u)| ≤ k|u− u|, for each t ∈ J and all u, u ∈ C(J,R).

If 2(Iαl)(T ) + k < 1 then the BVP (1.3)–(1.4) has at least one solution on J .

Remark 4.6. For each y ∈ C(J,R), the set SF,y is nonempty since, by (H5),
F has a measurable selection (see [9, Theorem III.6]).

Proof. Using similar steps as in Theorem 3.7 we can show that N1 satisfies
the assumptions of Lemma 2.3. �
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