LARGE TIME REGULAR SOLUTIONS TO THE NAVIER-STOKES EQUATIONS IN CYLINDRICAL DOMAINS

Joanna Renceawowicz - Wojciech M. Zajączkowski

Abstract

We prove the large time existence of solutions to the NavierStokes equations with slip boundary conditions in a cylindrical domain. Assuming smallness of L_{2}-norms of derivatives of initial velocity with respect to variable along the axis of the cylinder, we are able to obtain estimate for velocity in $W_{2}^{2,1}$ without restriction on its magnitude. Then existence follows from the Leray-Schauder fixed point theorem.

1. Introduction

We consider the following initial-boundary value problem

$$
\begin{array}{ll}
v_{t}+v \cdot \nabla v-\operatorname{div} \mathbb{T}(v, p)=f & \text { in } \Omega^{T}=\Omega \times(0, T), \\
\operatorname{div} v=0 & \text { in } \Omega^{T}, \\
v \cdot \bar{n}=0 & \text { on } S^{T}=S \times(0, T), \\
\bar{n} \cdot \mathbb{T}(v, p) \cdot \bar{\tau}_{\alpha}=0, \quad \alpha=1,2, & \text { on } S^{T}, \\
\left.v\right|_{t=0}=v(0) & \text { in } \Omega,
\end{array}
$$

where $\Omega \subset \mathbb{R}^{3}$ is a cylindrical domain, $S=\partial \Omega, v$ is the velocity of the fluid motion with $v(x, t)=\left(v_{1}(x, t), v_{2}(x, t), v_{3}(x, t)\right) \in \mathbb{R}^{3}, p=p(x, t) \in \mathbb{R}^{1}$ denotes

[^0]Key words and phrases. Navier-Stokes equations, motions in cylindrical domains, boundary slip conditions, global existence of regular solutions, large data.

Research partially supported by MNiSW grant no 1/P03A/021/30 and EC FP6 Marie Curie ToK programme SPADE2.
the pressure, $f=f(x, t)=\left(f_{1}(x, t), f_{2}(x, t), f_{3}(x, t)\right) \in \mathbb{R}^{3}$ - the external force field, \bar{n} is the unit outward vector normal to the boundary S and $\bar{\tau}_{\alpha}, \alpha=1,2$ are tangent vectors to S and • denotes the scalar product in \mathbb{R}^{3}.

We define the stress tensor $\mathbb{T}(v, p)$ as

$$
\mathbb{T}(v, p)=\nu \mathbb{D}(v)-p \mathbb{I}
$$

where ν is the constant viscosity coefficient, \mathbb{I} - the unit matrix and $\mathbb{D}(v)$ is the dilatation tensor of the form

$$
\mathbb{D}(v)=\left\{v_{i, x_{j}}+v_{j, x_{i}}\right\}_{i, j=1,2,3}
$$

By $x=\left(x_{1}, x_{2}, x_{3}\right)$ we denote the Cartesian coordinates. $\Omega \subset \mathbb{R}^{3}$ is a cylindrical type domain parallel to the axis x_{3} with arbitrary cross section. We assume that $S=S_{1} \cup S_{2}$ where S_{1} is the part of the boundary which is parallel to the axis x_{3} and S_{2} is perpendicular to x_{3}. Hence

$$
S_{1}=\left\{x \in \mathbb{R}^{3}: \varphi_{0}\left(x_{1}, x_{2}\right)=c_{0},-a<x_{3}<a\right\}
$$

and

$$
S_{2}=\left\{x \in \mathbb{R}^{3}: \varphi_{0}\left(x_{1}, x_{2}\right)<c_{0}, x_{3} \text { is equal to either }-a \text { or } a\right\}
$$

where a, c_{0} are positive given numbers and $\varphi_{0}\left(x_{1}, x_{2}\right)=c_{0}$ describes a sufficiently smooth closed curve in the plane $x_{3}=$ const.

Let us denote $g=f,{ }_{x_{3}}, h=v, x_{3}, \chi=(\operatorname{rot} v)_{3}$ and define

$$
\begin{aligned}
K_{1}= & \left\|f_{3}\right\|_{L_{2}\left(\Omega^{t}\right)}+\|g\|_{L_{2}\left(\Omega^{t}\right)}+\left\|F_{3}\right\|_{L_{2}\left(0, T ; L_{6 / 5}(\Omega)\right)} \\
& +\|h(0)\|_{L_{2}(\Omega)}+\|\chi(0)\|_{L_{2}(\Omega)} \\
K_{2}= & K_{1}+d_{1}+d_{2}+\|f\|_{L_{2}\left(\Omega^{T}\right)}+\|v(0)\|_{H^{1}(\Omega)} \\
K_{3}= & \|g\|_{L_{\sigma}\left(\Omega^{T}\right)}+\|h(0)\|_{W_{\sigma}^{2-2 / \sigma}(\Omega)} \\
d(T)= & \|g\|_{L_{2}\left(\Omega^{T}\right)}+\left\|f_{3}\right\|_{L_{2}\left(S_{2}^{T}\right)}+\|h(0)\|_{L_{2}(\Omega)}
\end{aligned}
$$

where d_{1}, d_{2} are introduced in lemma 2.3.
We prove the following result:

Theorem 1.1.

(a) Let $f \in L_{\infty}\left(0, T ; L_{6 / 5}(\Omega)\right) \cap L_{2}\left(\Omega^{T}\right), f_{3} \in L_{2}\left(S_{2}^{T}\right), F_{3}=(\operatorname{rot} f)_{3} \in$ $L_{2}\left(0, T ; L_{6 / 5}(\Omega)\right), g=f_{, x_{3}} \in L_{2}\left(\Omega^{T}\right) \cap L_{\sigma}\left(\Omega^{T}\right), \sigma>5 / 3$.
(b) Assume that $v(0), h(0)=v_{, x_{3}}(0), \chi(0)=(\operatorname{rot} v)_{3}(0)$ belong to $L_{2}(\Omega)$, and $v(0) \in H^{1}(\Omega), h(0) \in W_{\sigma}^{2-2 / \sigma}(\Omega), 20 / 7<\sigma \leq 10 / 3$.
Then there exists a solution to problem (1.1) such that $v \in W_{2}^{2,1}\left(\Omega^{T}\right), \nabla p \in$ $L_{2}\left(\Omega^{T}\right)$. Moreover, if $q=p, x_{3}$ and $5 / 3<\sigma<3$,

$$
\begin{align*}
& \|h\|_{W_{\sigma}^{2,1}\left(\Omega^{T}\right)}+\|\nabla q\|_{L_{\sigma}\left(\Omega^{T}\right)}<A, \\
& \|v\|_{W_{2}^{2,1}\left(\Omega^{T}\right)}+\|\nabla p\|_{L_{2}\left(\Omega^{T}\right)} \leq \varphi\left(A, K_{2}\right), \tag{1.2}
\end{align*}
$$

where A is a constant chosen for a given T so that, for an increasing function φ, sufficiently small constant $d(T)$ and some constants K_{i} involving the above norms,

$$
\varphi\left(A, K_{2}\right) d(T)+c K_{3} \leq A \quad \text { and } \quad A>c K_{3},
$$

where an absolute constant c depends on imbedding only.
The main goal of the paper is to simplify the proof of [5]. Namely, the result of [5] is generalized by weakening its assumptions. In [5], the existence of solutions to problem (1.1) has been proved in Besov spaces. Therefore, we needed much more complicated techniques and estimates, i.e. the solvability of the Stokes problem in Besov spaces and also different imbeddings and interpolation in Besov spaces.

2. Preliminaries

This part of the paper is devoted to the results that have been previously shown in [5]. For the convenience of the reader, we quote them, splitting the considerations into propositions on basic estimates on the weak solutions and then examining some useful quantities.
2.1. Notation. The following function spaces will be used in the sequel:

- isotropic and anisotropic Lebesgue spaces:

$$
\begin{array}{llr}
L_{p}(Q), & Q \in\left\{\Omega^{T}, S^{T}, \Omega, S\right\}, & p \in[1, \infty], \\
L_{q}\left(0, T ; L_{p}(Q)\right), & Q \in\{\Omega, S\}, & p, q \in[1, \infty] ;
\end{array}
$$

- Sobolev spaces:

$$
W_{q}^{s, s / 2}\left(Q^{T}\right), \quad Q \in\{\Omega, S\}, \quad s \in \mathbb{Z}_{+} \cup\{0\}, q \in[1, \infty]
$$

with the norm

$$
\|u\|_{W_{q}^{s, s / 2}\left(Q^{T}\right)}=\left(\sum_{|\alpha|+2 a \leq s} \int_{Q^{T}}\left|D_{x}^{\alpha} \partial_{t}^{a} u\right|^{q} d x d t\right)^{1 / q}
$$

where

$$
D_{x}^{\alpha}=\partial_{x_{1}}^{\alpha_{1}} \partial_{x_{2}}^{\alpha_{2}} \partial_{x_{3}}^{\alpha_{3}}, \quad|\alpha|=\alpha_{1}+\alpha_{2}+\alpha_{3}, \quad a, \alpha_{i} \in \mathbb{Z}_{+} \cup\{0\} .
$$

In the special case $q=2$,

$$
H^{s}(Q)=W_{2}^{s}(Q), \quad Q \in\{\Omega, S\}, \quad s \in \mathbb{Z}_{+} \cup\{0\}, \quad q \in[1, \infty]
$$

with the norm

$$
\|u\|_{H^{s}(Q)}=\left(\sum_{|\alpha| \leq s} \int_{Q}\left|D_{x}^{\alpha} u\right|^{2} d x\right)^{1 / 2} .
$$

We define a space natural for the study of the weak solutions to the NavierStokes equations:

$$
\begin{aligned}
& V_{2}^{k}\left(\Omega^{T}\right) \\
& =\left\{u:\|u\|_{V_{2}^{k}\left(\Omega^{T}\right)}=\operatorname{ess} \sup _{t \in(0, T)}\|u\|_{H^{k}(\Omega)}+\left(\int_{0}^{T}\|\nabla u\|_{H^{k}(\Omega)}^{2} d t\right)^{1 / 2}<\infty\right\}
\end{aligned}
$$

with $k \in \mathbb{N}$ and L_{2} replacing H^{0} in definition of V_{2}^{0}.

2.2. Weak solutions.

Definition 2.1. By a weak solution to problem (1.1) we mean $v \in V_{2}^{0}\left(\Omega^{T}\right)$ such that $\operatorname{div} v=0,\left.v \cdot \bar{n}\right|_{S}=0$, satisfying the integral identity

$$
\begin{aligned}
\int_{\Omega^{T}}\left(-v \cdot \varphi_{, t}+\nu \mathbb{D}(v)\right. & \cdot \mathbb{D}(\varphi)+v \cdot \nabla v \cdot \varphi) d x d t \\
& +\left.\int_{\Omega} v \cdot \varphi\right|_{t=T} d x-\left.\int_{\Omega} v(0) \cdot \varphi\right|_{t=0} d x=\int_{\Omega^{T}} f \cdot \varphi d x d t
\end{aligned}
$$

which holds for any $\varphi \in W_{2}^{1,1}\left(\Omega^{T}\right)$ such that $\operatorname{div} \varphi=0,\left.\varphi \cdot \bar{n}\right|_{S}=0$.
For the weak solutions we have the Korn inequality.
Lemma 2.2. Assume that

$$
E_{\Omega}(v)=|\mathbb{D}(v)|_{L_{2}(\Omega)}^{2}<\infty,\left.\quad v \cdot \bar{n}\right|_{S}=0, \quad \operatorname{div} v=0
$$

Assume that Ω is not axially symmetric. Then there exists a constant c_{1} such that

$$
\|v\|_{H^{1}(\Omega)}^{2} \leq c_{1} E_{\Omega}(v)
$$

If Ω is axially symmetric, $\eta=\left(-x_{2}, x_{1}, 0\right), \alpha=\int_{\Omega} v \cdot \eta$, then there exists a constant c_{2} such that

$$
\|v\|_{H^{1}(\Omega)}^{2} \leq c_{2}\left(E_{\Omega}(v)+|\alpha|^{2}\right)
$$

Now we formulate energy type estimates for weak solutions of (1.1).
Lemma 2.3 (see [4]). Let $f \in L_{\infty}\left(0, \infty ; L_{6 / 5}(\Omega)\right), \int_{\Omega^{t}} f \cdot \eta d x d t^{\prime} \in L_{\infty}(0, \infty)$, $v(0) \in L_{2}(\Omega)$. Let $T>0$ be given. Assume that there exist constants a_{1}, a_{2} such that

$$
a_{1} \equiv \sup _{t}|f(t)|_{L_{6 / 5}(\Omega)}<\infty, \quad a_{2} \equiv \sup _{t}\left|\int_{\Omega^{t}} f \cdot \eta d x d t^{\prime}\right|<\infty
$$

Then there exist constants

$$
\begin{aligned}
d_{1}^{2} & =\frac{c}{\nu_{1}} a_{1}^{2}+|v(0)|_{L_{2}(\Omega)}^{2} \\
d_{2}^{2} & =\left(\min \left(1, \nu_{2}\right)\right)^{-1} e^{\nu_{1} T}\left(\frac{c}{\nu_{1}} a_{1}^{2}+d_{1}^{2}\right) \\
d_{3}^{2} & =\frac{c}{\nu_{1}}\left(a_{1}^{2}+a_{2}^{2}+\left|\alpha^{2}(0)\right|\right)+|v(0)|_{L_{2}(\Omega)}^{2} \\
d_{4}^{2} & =\left(\min \left(1, \nu_{2}\right)\right)^{-1} e^{\nu_{1} T}\left[\frac{c}{\nu_{1}}\left(a_{1}^{2}+a_{2}^{2}+\left|\alpha^{2}(0)\right|\right)+d_{3}^{2}\right]
\end{aligned}
$$

which do not depend on $k_{0}=k T, k \in \mathbb{N}$, and $\nu=\nu_{1}+\nu_{2}$ such that in the non-axially symmetric case we have

$$
\begin{align*}
&|v(t)|_{L_{2}(\Omega)} \leq d_{1} \quad \text { for any } t \geq 0 \\
&\|v\|_{V_{2}^{0}(\Omega \times(k T, t))} \leq d_{2} \quad \text { for } t \in(k T,(k+1) T), k \in \mathbb{N} \tag{2.1}
\end{align*}
$$

and in the axially symmetric case

$$
\begin{aligned}
|v(t)|_{L_{2}(\Omega)} \leq d_{3} \quad \text { for any } t \geq 0 \\
\|v\|_{V_{2}^{0}(\Omega \times(k T, t))} \leq d_{4} \quad \text { for } t \in(k T,(k+1) T), k \in \mathbb{N} .
\end{aligned}
$$

From the above lemma by an application of the Galerkin method and the considerations from [2, Chapter 6] we have

Lemma 2.4. Let the assumptions of Lemma 2.3 hold. Then there exists a weak solution to problem (1.1) in any interval $(k T,(k+1) T), k \in \mathbb{N}$, satisfying

$$
\|v\|_{V_{2}^{0}(\Omega \times(k T,(k+1) T)} \leq d_{i},
$$

where $i=2$ for non-axially symmetric and $i=4$ for axially symmetric domain.
2.3. Auxiliary problems. We note that in the paper the non-axially symmetric case is examined. We distinguish the direction x_{3}. In order to derive estimates for derivatives in direction x_{3} we introduce the quantities

$$
h=v_{, x_{3}}, \quad q=p_{, x_{3}}, \quad g=f_{, x_{3}}
$$

These functions are solutions to the problems that we list in the section.
Lemma 2.5 (see [5]). The pair of functions (h, q) is a solution to the problem

$$
\begin{array}{ll}
h_{, t}-\operatorname{div} \mathbb{T}(h, q)=-v \cdot \nabla h-h \cdot \nabla v+g & \text { in } \Omega^{T}, \\
\operatorname{div} h=0 & \text { in } \Omega^{T}, \\
h \cdot \bar{n}=0, \quad \bar{n} \cdot \mathbb{D}(h) \cdot \bar{\tau}_{\alpha}=0, \quad \alpha=1,2 & \text { on } S_{1}^{T}, \tag{2.2}\\
h_{i}=0, \quad i=1,2, \quad h_{3, x_{3}}=0 & \text { on } S_{2}^{T}, \\
\left.h\right|_{t=0}=h(0) & \text { in } \Omega .
\end{array}
$$

We will use the following estimates for h obtained in [5] and [6]:

Lemma 2.6. Assume that v is a weak solution to problem (1.1) satisfying (2.1). Assume that $h \in L_{\infty}\left(0, T ; L_{3}(\Omega)\right), g \in L_{2}\left(\Omega^{T}\right), f_{3} \in L_{2}\left(S_{2}^{T}\right), h(0) \in$ $L_{2}(\Omega)$. Then
(2.3) $\|h(t)\|_{V_{2}^{0}\left(\Omega^{t}\right)}^{2} \leq c d_{2}^{2}\|h\|_{L_{\infty}\left(0, t ; L_{3}(\Omega)\right)}^{2}+c\left(\left|f_{3}\right|_{L_{2}\left(S_{2}^{t}\right)}^{2}+|g|_{L_{2}\left(\Omega^{t}\right)}^{2}+|h(0)|_{L_{2}(\Omega)}^{2}\right)$, where $t \leq T$.

Lemma 2.7. With $g, f_{3}, h(0)$ as in the previous lemma and $\nabla v \in L_{2}(0, t$; $\left.L_{3}(\Omega)\right)$, for the weak solution to (1.1)

$$
\|h(t)\|_{L_{2}(\Omega)} \leq c \exp \left(c\|\nabla v\|_{L_{2}\left(0, t ; L_{3}(\Omega)\right)}^{2}\right)\left[\|g\|_{L_{2}\left(\Omega^{t}\right)}+\left\|f_{3}\right\|_{L_{2}\left(S_{2}^{t}\right)}+\|h(0)\|_{L_{2}(\Omega)}\right],
$$

for $t \leq T$, and

$$
\begin{align*}
\|h\|_{L_{2}\left(\Omega^{t}\right)} \leq c\left[\|\nabla v\|_{L_{2}\left(0, t ; L_{3}(\Omega)\right)}\right. & \left.\exp \left(c\|\nabla v\|_{L_{2}\left(0, t ; L_{3}(\Omega)\right)}^{2}\right)+1\right] \tag{2.4}\\
\cdot & {\left[\|g\|_{L_{2}\left(\Omega^{t}\right)}+\left\|f_{3}\right\|_{L_{2}\left(S_{2}^{t}\right)}+\|h(0)\|_{L_{2}(\Omega)}\right] }
\end{align*}
$$

for $t \leq T$, hold.
Lemma 2.8. Let q and f_{3} be given. Then $w=v_{3}$ is a solution to the problem

$$
\begin{array}{ll}
w_{, t}+v \cdot \nabla w-\nu \Delta w=q+f_{3} & \text { in } \Omega^{T}, \\
w_{, n}=0 & \text { on } S_{1}^{T} \\
w=0 & \text { on } S_{2}^{T} \\
\left.w\right|_{t=0}=w(0) & \text { in } \Omega,
\end{array}
$$

where $\partial_{n}=\bar{n} \cdot \nabla$ and \bar{n} is the normal vector to S_{1}.
Lemma 2.9. Let $F_{3}=(\operatorname{rot} f)_{3}, h, v$ and w be given. Then $\chi=(\operatorname{rot} v)_{3}$ is a solution to the problem

$$
\begin{array}{ll}
\chi_{, t}+v \cdot \nabla \chi-h_{3} \chi+h_{2} w_{, x_{1}}-h_{1} w_{, x_{2}}-\nu \Delta \chi=F_{3} & \text { in } \Omega^{T}, \\
\chi=v_{i}\left(n_{i, x_{j}} \tau_{1 j}+\tau_{1 i, x_{j}} n_{j}\right)+v \cdot \bar{\tau}_{1}\left(\tau_{12, x_{1}}-\tau_{11, x_{2}}\right) \equiv \chi_{*} & \text { on } S_{1}^{T}, \\
\chi_{, x_{3}}=0 & \text { on } S_{2}^{T}, \tag{2.5}\\
\left.\chi\right|_{t=0}=\chi(0) & \text { in } \Omega,
\end{array}
$$

where tangent and normal vectors to S_{1} are defined as follows

$$
\begin{aligned}
\left.\bar{n}\right|_{S_{1}} & =\frac{\nabla \varphi}{|\nabla \varphi|}=\frac{1}{|\nabla \varphi|}\left(\varphi_{, x_{1}}, \varphi_{, x_{2}}, 0\right) \\
\left.\bar{\tau}_{1}\right|_{S_{1}} & =\frac{\nabla^{\perp} \varphi}{|\nabla \varphi|}=\frac{1}{|\nabla \varphi|}\left(-\varphi_{, x_{2}}, \varphi_{, x_{1}}, 0\right),\left.\quad \bar{\tau}_{2}\right|_{S_{1}}=(0,0,1) \\
\left.\bar{n}\right|_{S_{2}} & =(0,0,1),\left.\quad \quad \bar{\tau}_{1}\right|_{S_{2}}=(1,0,0),\left.\quad \bar{\tau}_{2}\right|_{S_{2}}=(0,1,0) .
\end{aligned}
$$

3. Estimates

Let us introduce the function $\widetilde{\chi}$ as a solution to the problem

$$
\begin{array}{ll}
\widetilde{\chi}_{, t}-\nu \Delta \widetilde{\chi}=0 & \text { in } \Omega^{T} \\
\widetilde{\chi}=\chi_{*} & \text { on } S_{1}^{T}, \\
\widetilde{\chi}_{, x_{3}}=0 & \text { on } S_{2}^{T}, \\
\widetilde{\chi}_{t=0}=0 & \text { in } \Omega .
\end{array}
$$

Then the new function $\chi^{\prime}=\chi-\tilde{\chi}$, is a solution to the following problem

$$
\begin{array}{ll}
\chi_{, t}^{\prime}+v \cdot \nabla \chi^{\prime}-h_{3} \chi^{\prime}+h_{2} w_{, x_{1}}-h_{1} w_{, x_{2}}-\nu \Delta \chi^{\prime} & \\
& =F_{3}-v \cdot \nabla \widetilde{\chi}+h_{3} \widetilde{\chi} \\
& \text { in } \Omega^{T} \tag{3.1}\\
\chi^{\prime}=0 & \text { on } S_{1}^{T} \\
\chi_{, x_{3}}^{\prime}=0 & \text { on } S_{2}^{T} \\
\left.\chi^{\prime}\right|_{t=0}=\chi(0) & \text { in } \Omega
\end{array}
$$

Lemma 3.1. Assume that $h \in L_{\infty}\left(0, t ; L_{3}(\Omega)\right), \chi(0) \in L_{2}(\Omega), v^{\prime}=\left(v_{1}, v_{2}\right) \in$ $L_{\infty}\left(0, t ; W_{9 / 5}^{1}(\Omega) \cap H^{1 / 2+\varepsilon}(\Omega)\right) \cap W_{2}^{1,1 / 2}\left(\Omega^{t}\right), F_{3} \in L_{2}\left(0, t ; L_{6 / 5}(\Omega)\right)$. Let the assumptions of Lemma 2.3 be satisfied. Then solutions of problem (2.5) satisfy

$$
\begin{align*}
\|\chi\|_{V_{2}^{0}\left(\Omega^{t}\right)}^{2} \leq & c d_{2}^{2}\left(\|h\|_{L_{\infty}\left(0, t ; L_{3}(\Omega)\right)}^{2}+\left\|v^{\prime}\right\|_{L_{\infty}\left(0, t ; W_{9 / 5}^{1}(\Omega)\right)}^{2}\right) \tag{3.2}\\
& +c\left(\left\|F_{3}\right\|_{L_{2}\left(0, t: L_{6 / 5}(\Omega)\right)}^{2}+\|\chi(0)\|_{L_{2}(\Omega)}^{2}\right. \\
& \left.+\left\|v^{\prime}\right\|_{L_{\infty}\left(0, t ; H^{1 / 2+\varepsilon}(\Omega)\right)}^{2}+\left\|v^{\prime}\right\|_{W_{2}^{1,1 / 2}\left(\Omega^{t}\right)}^{2}\right)
\end{align*}
$$

for $t \leq T$, where $\varepsilon>0$.
Proof. Multiplying (3.1) ${ }_{1}$ by χ^{\prime}, integrating over Ω, using the boundary conditions $(3.1)_{2,3}$ and $(1.1)_{3}$ we obtain

$$
\begin{array}{r}
\frac{1}{2} \frac{d}{d t}\left\|\chi^{\prime}\right\|_{L_{2}(\Omega)}^{2}+\nu\left\|\nabla \chi^{\prime}\right\|_{L_{2}(\Omega)}^{2}=\int_{\Omega} h_{3} \chi^{\prime 2} d x-\int_{\Omega}\left(h_{2} w,_{x_{1}}-h_{1} w, x_{2}\right) \chi^{\prime} d x \tag{3.3}\\
+\int_{\Omega} F_{3} \chi^{\prime} d x-\int_{\Omega} v \cdot \nabla \widetilde{\chi} \chi^{\prime} d x+\int_{\Omega} h_{3} \widetilde{\chi} \chi^{\prime} d x
\end{array}
$$

Now we estimate the terms on the r.h.s. of the above inequality. The first term can be bounded by

$$
\begin{aligned}
\int_{\Omega} h_{3} \chi^{\prime 2} d x & \leq \varepsilon_{1}\left\|\chi^{\prime}\right\|_{L_{6}(\Omega)}^{2}+\frac{c}{\varepsilon_{1}}\left\|\chi^{\prime}\right\|_{L_{2}(\Omega)}^{2}\|h\|_{L_{3}(\Omega)}^{2} \\
& \leq \varepsilon_{1}\left\|\chi^{\prime}\right\|_{L_{6}(\Omega)}^{2}+\frac{c}{\varepsilon_{1}}\left(\|\chi\|_{L_{2}(\Omega)}^{2}+\|\widetilde{\chi}\|_{L_{2}(\Omega)}^{2}\right)\|h\|_{L_{3}(\Omega)}^{2}
\end{aligned}
$$

The second term on the r.h.s. of (3.3) can be estimated by

$$
\frac{\varepsilon_{2}}{2}\left\|\chi^{\prime}\right\|_{L_{6}(\Omega)}^{2}+\frac{1}{2 \varepsilon_{2}}\|h\|_{L_{3}(\Omega)}^{2}\left\|w, x_{x^{\prime}}\right\|_{L_{2}(\Omega)}^{2}
$$

the third by:

$$
\frac{\varepsilon_{3}}{2}\left\|\chi^{\prime}\right\|_{L_{6}(\Omega)}^{2}+\frac{1}{2 \varepsilon_{3}}\left\|F_{3}\right\|_{L_{6 / 5}(\Omega)}^{2}
$$

and the fourth we express in the form

$$
\int_{\Omega} v \cdot \nabla \chi^{\prime} \widetilde{\chi} d x
$$

and estimate as follows

$$
\frac{\varepsilon_{4}}{2}\left\|\nabla \chi^{\prime}\right\|_{L_{2}(\Omega)}^{2}+\frac{1}{2 \varepsilon_{4}} \int_{\Omega} v^{2}|\widetilde{\chi}|^{2} d x \leq \frac{\varepsilon_{4}}{2}\left\|\nabla \chi^{\prime}\right\|_{L_{2}(\Omega)}^{2}+\frac{1}{2 \varepsilon_{4}}\|v\|_{L_{6}(\Omega)}^{2}\|\widetilde{\chi}\|_{L_{3}(\Omega)}^{2}
$$

Finally, the last term on the r.h.s. of (3.3) can be bounded by

$$
\frac{\varepsilon_{5}}{2}\left\|\chi^{\prime}\right\|_{L_{6}(\Omega)}^{2}+\frac{1}{2 \varepsilon_{5}}\|h\|_{L_{12 / 7}(\Omega)}^{2}\|\widetilde{\chi}\|_{L_{4}(\Omega)}^{2}
$$

Using the above estimates in (3.3), assuming that $\varepsilon_{1}, \ldots, \varepsilon_{5}$ are sufficiently small and integrating the result with respect to time we obtain

$$
\begin{aligned}
& \left\|\chi^{\prime}(t)\right\|_{L_{2}(\Omega)}^{2}+\nu \int_{0}^{t}\left\|\nabla \chi^{\prime}\left(t^{\prime}\right)\right\|_{L_{2}(\Omega)}^{2} d t^{\prime} \leq c \int_{0}^{t} d t^{\prime}\left\|\chi^{\prime}\right\|_{L_{2}(\Omega)}^{2} \sup _{t}\|h\|_{L_{3}(\Omega)}^{2} \\
& \quad+c \sup _{t}\|h\|_{L_{3}(\Omega)}^{2} \int_{0}^{t}\left\|w, x_{x^{\prime}}\right\|_{L_{2}(\Omega)}^{2} d t^{\prime}+c \sup _{t}\|\widetilde{\chi}\|_{L_{3}(\Omega)}^{2} \int_{0}^{t}\left\|v\left(t^{\prime}\right)\right\|_{L_{6}(\Omega)}^{2} d t^{\prime} \\
& \quad+c \sup _{t}\|h(t)\|_{L_{12 / 7}(\Omega)}^{2} \int_{0}^{t}\|\widetilde{\chi}\|_{L_{4}(\Omega)}^{2} d t^{\prime}+c\left\|F_{3}\right\|_{L_{2}\left(0, t ; L_{6 / 5}(\Omega)\right)}^{2}+\|\chi(0)\|_{L_{2}(\Omega)}^{2}
\end{aligned}
$$

Now, applying the energy estimate (2.1) we have

$$
\begin{align*}
\left\|\chi^{\prime}\right\|_{V_{2}^{0}\left(\Omega^{T}\right)}^{2} \leq & c \sup _{t}\|h\|_{L_{3}(\Omega)}^{2} \int_{0}^{t}\|\widetilde{\chi}\|_{L_{2}(\Omega)}^{2} \tag{3.4}\\
& +c d_{2}^{2}\left(\sup _{t}\|h(t)\|_{L_{3}(\Omega)}^{2}+\sup _{t}\|\widetilde{\chi}(t)\|_{L_{3}(\Omega)}^{2}\right) \\
& +c \sup _{t}\|h(t)\|_{L_{12 / 7}(\Omega)}^{2} \int_{0}^{t}\|\widetilde{\chi}\|_{L_{4}(\Omega)}^{2} d t^{\prime} \\
& +c\left\|F_{3}\right\|_{L_{2}\left(0, t ; L_{6 / 5}(\Omega)\right)}^{2}+\|\chi(0)\|_{L_{2}(\Omega)}^{2} .
\end{align*}
$$

Next, we will use the following relations

$$
\begin{aligned}
\int_{0}^{t}\|\widetilde{\chi}\|_{L_{4}(\Omega)}^{2} d t^{\prime} & \leq c \int_{0}^{t}\left\|v^{\prime}\right\|_{L_{4}\left(S_{1}\right)}^{2} d t^{\prime} \leq c \int_{0}^{t}\left\|v^{\prime}\right\|_{H^{1}(\Omega)}^{2} d t^{\prime} \leq c d_{2}^{2} \\
\|\widetilde{\chi}\|_{L_{\infty}\left(0, t ; L_{3}(\Omega)\right)} & \leq c\left\|v^{\prime}\right\|_{L_{\infty}\left(0, t ; L_{3}\left(S_{1}\right)\right)} \leq c\left\|v^{\prime}\right\|_{L_{\infty}\left(0, t ; W_{9 / 5}^{1}(\Omega)\right)} \\
\int_{0}^{t}\|\widetilde{\chi}\|_{L_{2}(\Omega)}^{2} d t^{\prime} & \leq c \int_{0}^{t}\|v\|_{W_{2}^{1}(\Omega)}^{2} d t^{\prime} \leq c d_{2}^{2}
\end{aligned}
$$

and the transformation $\chi^{\prime}=\chi-\widetilde{\chi}$ to obtain from (3.4) the inequality

$$
\begin{align*}
& \|\chi\|_{V_{2}^{0}\left(\Omega^{T}\right)}^{2} \leq c d_{2}^{2}\left(\|h\|_{L_{\infty}\left(0, t ; L_{3}(\Omega)\right)}^{2}+\left\|v^{\prime}\right\|_{L_{\infty}\left(0, t ; W_{9}^{1} /(\Omega)\right)}^{2}\right) \tag{3.5}\\
& \quad+c\left\|F_{3}\right\|_{L_{2}\left(0, t ; L_{6 / 5}(\Omega)\right)}^{2}+\|\chi(0)\|_{L_{2}(\Omega)}^{2}+\|\widetilde{\chi}\|_{V_{2}^{0}\left(\Omega^{t}\right)}^{2},
\end{align*}
$$

where

$$
\begin{aligned}
&\|\widetilde{\chi}\|_{V_{2}^{0}\left(\Omega^{t}\right)}^{2} \leq\|\widetilde{\chi}\|_{L_{\infty}\left(0, t ; L_{2}(\Omega)\right)}^{2}+\int_{0}^{t}\|\widetilde{\chi}\|_{H^{1}(\Omega)}^{2} d t^{\prime} \\
& \leq c\left\|v^{\prime}\right\|_{L_{\infty}\left(0, t ; H^{1 / 2+\varepsilon}\right)}^{2}+c\left\|v^{\prime}\right\|_{W_{2}^{1,1 / 2}\left(\Omega^{t}\right)}^{2}
\end{aligned}
$$

Therefore, we obtain from (3.5) the inequality (3.2). This concludes the proof. \square
Let us consider the problem

$$
\begin{array}{ll}
v_{1, x_{2}}-v_{2, x_{1}}=\chi & \text { in } \Omega^{\prime}, \\
v_{1, x_{1}}+v_{2, x_{2}}=-h_{3} & \text { in } \Omega^{\prime}, \tag{3.6}\\
v^{\prime} \cdot \bar{n}^{\prime}=0 & \text { on } S_{1}^{\prime},
\end{array}
$$

where $\Omega^{\prime}=\Omega \cap\left\{\right.$ plane : $x_{3}=$ const $\left.\in(-a, a)\right\}, S_{1}^{\prime}=S_{1} \cap\left\{\right.$ plane $x_{3}=$ const \in $(-a, a)\}$, and x_{3}, t are treated as parameters.

Lemma 3.2. Let the assumptions of Lemmas 3.1 and 2.6 be satisfied. Let

$$
\begin{aligned}
& K_{1}(t)=\left\|f_{3}\right\|_{L_{2}\left(\Omega^{t}\right)}+\|g\|_{L_{2}\left(\Omega^{t}\right)}+\left\|F_{3}\right\|_{L_{2}\left(0, t ; L_{6 / 5}(\Omega)\right)} \\
& +\|h(0)\|_{L_{2}(\Omega)}+\|\chi(0)\|_{L_{2}(\Omega)} .
\end{aligned}
$$

Then
(3.7) $\left\|v^{\prime}\right\|_{V_{2}^{1}\left(\Omega^{t}\right)}^{2} \leq c\left\|v^{\prime}\right\|_{L_{2}\left(\Omega ; H^{1 / 2}(0, T)\right)}^{2}+c d_{2}^{2}\|h\|_{L_{\infty}\left(0, t ; L_{3}(\Omega)\right)}^{2}+c K_{1}^{2}+c\left(d_{1}^{2}+d_{2}^{2}\right)$.

Proof. In view of (3.2) and (2.3) we obtain for solutions to problem (3.6) the estimate

$$
\begin{align*}
&\left\|v^{\prime}\right\|_{V_{2}^{1}\left(\Omega^{t}\right)}^{2} \leq c\left(d_{2}^{2}\left\|v^{\prime}\right\|_{L_{\infty}\left(0, t ; W_{9 / 5}^{1}(\Omega)\right)}^{2}+\left\|v^{\prime}\right\|_{L_{\infty}\left(0, t ; H^{1 / 2+\varepsilon}(\Omega)\right)}^{2}\right. \tag{3.8}\\
&\left.+\left\|v^{\prime}\right\|_{W_{2}^{1,1 / 2}\left(\Omega^{t}\right)}^{2}\right)+c d_{2}^{2}\|h\|_{L_{\infty}\left(0, t ; L_{3}(\Omega)\right)}^{2}+c K_{1}^{2}
\end{align*}
$$

By interpolation inequalities we have

$$
\begin{align*}
\left\|v^{\prime}\right\|_{L_{\infty}\left(0, t ; H^{1 / 2+\varepsilon}(\Omega)\right)}^{2} & \leq \varepsilon\left\|v^{\prime}\right\|_{L_{\infty}\left(0, t ; H^{1}(\Omega)\right)}^{2}+c(1 / \varepsilon) d_{1}^{2}, \tag{3.9}\\
\left\|v^{\prime}\right\|_{L_{2}\left(0, t ; H^{1}(\Omega)\right)}^{2} & \leq \varepsilon\left\|v^{\prime}\right\|_{L_{2}\left(0, t ; H^{2}(\Omega)\right)}^{2}+c(1 / \varepsilon) d_{2}^{2}
\end{align*}
$$

and

$$
\begin{equation*}
\left\|v^{\prime}\right\|_{L_{\infty}\left(0, t ; L_{3}\left(s_{1}\right)\right)} \leq \varepsilon\left\|v^{\prime}\right\|_{L_{\infty}\left(0, t ; H^{1}(\Omega)\right)}+c(1 / \varepsilon) d_{2} \tag{3.10}
\end{equation*}
$$

Assuming that ε is sufficiently small we obtain from (3.8)-(3.10) the inequality (3.7). This concludes the proof.

Let us consider problem (1.1) in the form

$$
\begin{array}{ll}
v_{, t}-\operatorname{div} \mathbb{T}(v, p)=-v^{\prime} \cdot \nabla v-w h+f & \text { in } \Omega^{T} \\
\operatorname{div} v=0 & \text { in } \Omega^{T} \\
v \cdot \bar{n}=0, \quad \bar{n} \cdot \mathbb{T}(v, p) \cdot \bar{\tau}_{\alpha}=0, \quad \alpha=1,2 & \text { on } S^{T} \tag{3.11}\\
\left.v\right|_{t=0}=v(0) & \text { in } \Omega
\end{array}
$$

Lemma 3.3. Let the assumptions of Lemmas 3.1, 3.2 and 2.6 be satisfied. Let $h \in L_{10 / 3}\left(\Omega^{T}\right), f \in L_{2}\left(\Omega^{T}\right), v(0) \in H^{1}(\Omega)$. Then for solutions of (3.11) we obtain the inequality
(3.12) $\|v\|_{W_{2}^{2,1}\left(\Omega^{t}\right)}+\|\nabla p\|_{L_{2}\left(\Omega^{t}\right)} \leq c\left(d_{2} H_{1}+K_{2}\right)^{2}+c\left(\|f\|_{L_{2}\left(\Omega^{t}\right)}+\|v(0)\|_{H^{1}(\Omega)}\right)$,
for $t \leq T$, where K_{2} and H_{1} are defined by (3.15)-(3.16) below.
Proof. In view of [6, Lemma 3.7] we have that

$$
\left\|v^{\prime}\right\|_{L_{10}\left(\Omega^{T}\right)} \leq c\left\|v^{\prime}\right\|_{V_{2}^{1}\left(\Omega^{T}\right)}
$$

Hence

$$
\begin{aligned}
\left\|v^{\prime} \nabla v\right\|_{L_{5 / 3}\left(\Omega^{T}\right)} & \leq\left\|v^{\prime}\right\|_{L_{10}\left(\Omega^{T}\right)}\|\nabla v\|_{L_{2}\left(\Omega^{T}\right)} \leq d_{2}\left\|v^{\prime}\right\|_{L_{10}\left(\Omega^{T}\right)} \leq c d_{2}\left\|v^{\prime}\right\|_{V_{2}^{1}\left(\Omega^{T}\right)}, \\
\|w h\|_{L_{5 / 3}\left(\Omega^{T}\right)} & \leq\|w\|_{L_{10 / 3}\left(\Omega^{T}\right)}\|h\|_{L_{10 / 3}\left(\Omega^{T}\right)} \leq c d_{2}\|h\|_{L_{10 / 3}\left(\Omega^{T}\right)}
\end{aligned}
$$

Summarizing the above estimates we have

$$
\begin{align*}
&\|v\|_{W_{5 / 3}^{2,1}\left(\Omega^{T}\right)} \leq c d_{2}\left(\left\|v^{\prime}\right\|_{V_{2}^{1}\left(\Omega^{T}\right)}+\|h\|_{L_{10 / 3}\left(\Omega^{T}\right)}\right) \tag{3.13}\\
&+c\left(\|f\|_{L_{5 / 3}\left(\Omega^{T}\right)}+\|v(0)\|_{W_{5 / 3}^{4 / 5}(\Omega)}\right)
\end{align*}
$$

Applying (3.7) in (3.13) and using the interpolation

$$
\left\|v^{\prime}\right\|_{L_{2}\left(\Omega ; H^{1 / 2}(0, T)\right)} \leq \varepsilon\left\|v^{\prime}\right\|_{W_{5 / 3}^{2,1}\left(\Omega^{T}\right)}+c(1 / \varepsilon) d_{2},
$$

we obtain

$$
\begin{equation*}
\|v\|_{W_{5 / 3}^{2,1}\left(\Omega^{T}\right)} \leq c d_{2}\left(\|h\|_{L_{\infty}\left(0, T ; L_{3}(\Omega)\right)}+\|h\|_{L_{10 / 3}\left(\Omega^{T}\right)}\right)+c K_{2}, \tag{3.14}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{2}=K_{1}+d_{1}+d_{2}+\|f\|_{L_{2}\left(\Omega^{T}\right)}+\|v(0)\|_{H^{1}(\Omega)} . \tag{3.15}
\end{equation*}
$$

Let

$$
\begin{equation*}
H_{1}=\|h\|_{L_{\infty}\left(0, t ; L_{3}(\Omega)\right)}+\|h\|_{L_{10 / 3}\left(\Omega^{t}\right)} . \tag{3.16}
\end{equation*}
$$

Then (3.14) and (3.7) take the form

$$
\|v\|_{W_{5 / 3}^{2,1}\left(\Omega^{T}\right)}+\left\|v^{\prime}\right\|_{V_{2}^{1}\left(\Omega^{t}\right)} \leq c\left(d_{2} H_{1}+K_{2}\right)^{2}
$$

since

$$
\begin{aligned}
\left\|v^{\prime} \nabla v\right\|_{L_{2}\left(\Omega^{T}\right)} & \leq\left\|v^{\prime}\right\|_{L_{10}\left(\Omega^{T}\right)}\|\nabla v\|_{L_{5 / 2}\left(\Omega^{T}\right)} \\
& \leq\left\|v^{\prime}\right\|_{V_{2}^{1}\left(\Omega^{T}\right)}\|v\|_{W_{5 / 3}^{2,1}\left(\Omega^{T}\right)} \leq c\left(d_{2} H_{1}+K_{2}\right)^{2} \\
\|w h\|_{L_{2}\left(\Omega^{T}\right)} & \leq\|w\|_{L_{5}\left(\Omega^{T}\right)}\|h\|_{L_{10 / 3}\left(\Omega^{T}\right)} \\
& \leq c\|v\|_{W_{5 / 3}^{2,1}\left(\Omega^{T}\right)}\|h\|_{L_{10 / 3}\left(\Omega^{T}\right)} \leq c\left(d_{2} H_{1}+K_{2}\right) H_{1} .
\end{aligned}
$$

In view of the above estimates we obtain for solutions to problem (3.11) the inequality (3.12). This concludes the proof.

Let us consider now the problem (2.2).
LEmmA 3.4. Assume that $\left.v \in W_{2}^{2,1}\left(\Omega^{T}\right)\right), h \in L_{2}\left(\Omega^{T}\right), g \in L_{\sigma}\left(\Omega^{T}\right)$ and $h(0) \in W_{\sigma}^{2-2 / \sigma}(\Omega)$. Then for solutions of problem (2.2) the following inequality holds

$$
\begin{align*}
&\|h\|_{W_{\sigma}^{2,1}\left(\Omega^{T}\right)}+\|\nabla q\|_{L_{\sigma}\left(\Omega^{T}\right)} \leq \varphi\left(\|v\|_{W_{2}^{2,1}\left(\Omega^{T}\right)}\right)\|h\|_{L_{2}\left(\Omega^{T}\right)} \tag{3.17}\\
&+c\left(\|g\|_{L_{\sigma}\left(\Omega^{T}\right)}+\|h(0)\|_{W_{\sigma}^{2-2 / \sigma}(\Omega)}\right)
\end{align*}
$$

with $\varphi(a)=c a^{4}$.
Proof. For solutions of problem (2.2) we have the inequality

$$
\begin{align*}
&\|h\|_{W_{\sigma}^{2,1}\left(\Omega^{T}\right)}+\|\nabla q\|_{L_{\sigma}\left(\Omega^{T}\right)} \leq c\left(\|v \nabla h\|_{L_{\sigma}\left(\Omega^{T}\right)}+\|h \cdot \nabla v\|_{L_{\sigma}\left(\Omega^{T}\right)}\right. \tag{3.18}\\
&\left.+\|g\|_{L_{\sigma}\left(\Omega^{T}\right)}+\|h(0)\|_{W_{\sigma}^{2-2 / \sigma}(\Omega)}\right)
\end{align*}
$$

Let us use the interpolation results

$$
\begin{aligned}
\|v \nabla h\|_{L_{\sigma}\left(\Omega^{T}\right)} & \leq\|v\|_{L_{\sigma \lambda_{1}}\left(\Omega^{T}\right)}\|\nabla h\|_{L_{\sigma \lambda_{2}}\left(\Omega^{T}\right)} \\
& \leq\|v\|_{L_{10}\left(\Omega^{T}\right)}\left(\varepsilon_{1}^{1-\kappa_{1}}\|h\|_{W_{\sigma}^{2,1}\left(\Omega^{T}\right)}+c \varepsilon_{1}^{-\kappa_{1}}\|h\|_{L_{2}\left(\Omega^{T}\right)}\right) \equiv I_{1},
\end{aligned}
$$

where

$$
\kappa_{1}=\left(\frac{5}{\sigma}-\frac{5}{\sigma \lambda_{2}}+1\right) \frac{1}{2}=\left(\frac{5}{\sigma \lambda_{1}}+1\right) \frac{1}{2}=\frac{3}{4} \quad \text { because } \sigma \lambda_{1}=10 .
$$

Hence

$$
I_{1} \leq \varepsilon_{2}^{1 / 4}\|h\|_{W_{\sigma}^{2,1}\left(\Omega^{T}\right)}+c \varepsilon_{2}^{-3 / 4}\|v\|_{L_{10}\left(\Omega^{T}\right)}^{4}\|h\|_{L_{2}\left(\Omega^{T}\right)}
$$

Similarly

$$
\begin{aligned}
\|h \nabla v\|_{L_{\sigma}\left(\Omega^{T}\right)} & \leq\|h\|_{L_{\sigma \lambda_{1}}\left(\Omega^{T}\right)}\|\nabla v\|_{L_{\sigma \lambda_{2}}\left(\Omega^{T}\right)} \\
& \leq\|\nabla v\|_{L_{10 / 3}\left(\Omega^{T}\right)}\left(\varepsilon_{3}^{1-\kappa_{2}}\|h\|_{W_{\sigma}^{2,1}\left(\Omega^{T}\right)}+c \varepsilon_{3}^{-\kappa_{2}}\|h\|_{L_{2}\left(\Omega^{T}\right)}\right) \equiv I_{2},
\end{aligned}
$$

where

$$
\kappa_{2}=\left(\frac{5}{\sigma}-\frac{5}{\sigma \lambda_{1}}\right) \frac{1}{2}=\frac{5}{2 \sigma \lambda_{2}}=\frac{3}{4} \quad \text { because } \sigma \lambda_{2}=\frac{10}{3} .
$$

Hence

$$
I_{2} \leq \varepsilon_{4}^{1 / 4}\|h\|_{W_{\sigma}^{2,1}\left(\Omega^{T}\right)}+c \varepsilon_{4}^{-3 / 4}\|\nabla v\|_{L_{10 / 3}\left(\Omega^{T}\right)}^{4}\|h\|_{L_{2}\left(\Omega^{T}\right)}
$$

holds. In view of the above estimates we obtain from (3.18) the inequality (3.17).
This concludes the proof.

Lemma 3.5. With the assumptions of the Lemma 3.4, for $5 / 3<\sigma<3$, there exists a sufficiently large constant A such that

$$
\begin{equation*}
\|h\|_{W_{\sigma}^{2,1}\left(\Omega^{T}\right)}+\|\nabla q\|_{L_{\sigma}\left(\Omega^{T}\right)} \leq A \tag{3.19}
\end{equation*}
$$

Proof. Since

$$
\|\nabla v\|_{L_{2}\left(0, T ; L_{3}(\Omega)\right)} \leq c\|v\|_{W_{2}^{2,1}\left(\Omega^{T}\right)}
$$

and by imbedding

$$
\begin{equation*}
H_{1} \leq c\|h\|_{W_{\sigma}^{2,1}\left(\Omega^{T}\right)} \quad \text { for } \sigma>\frac{5}{3} \tag{3.20}
\end{equation*}
$$

we obtain from the inequalities $(2.4),(3.12),(3.17)$ and (3.20)

$$
\|h\|_{W_{\sigma}^{2,1}\left(\Omega^{T}\right)}+\|\nabla q\|_{L_{\sigma}\left(\Omega^{T}\right)} \leq \varphi\left(\|h\|_{W_{\sigma}^{2,1}\left(\Omega^{T}\right)}, K_{2}\right) d(T)+c K_{3}
$$

where

$$
\begin{aligned}
d(T) & =\|g\|_{L_{2}\left(\Omega^{T}\right)}+\left\|f_{3}\right\|_{L_{2}\left(S_{2}^{T}\right)}+\|h(0)\|_{L_{2}(\Omega)} \\
K_{3} & =\|g\|_{L_{\sigma}\left(\Omega^{T}\right)}+\|h(0)\|_{W_{\sigma}^{2-2 / \sigma}(\Omega)}
\end{aligned}
$$

For sufficiently small $d(T)$ there exists a constant A such that

$$
\varphi\left(A, K_{2}\right) d(T)+c K_{3} \leq A \quad \text { and } \quad A>c K_{3}
$$

Hence the estimate (3.19) holds.

4. Existence

To prove the existence of solutions we consider the problem

$$
\begin{array}{ll}
h_{t}-\operatorname{div} \mathbb{T}(h, q)=-\lambda[v(\widetilde{h}, \bar{v}) \cdot \nabla \widetilde{h}+\widetilde{h} \cdot \nabla v(\widetilde{h}, \bar{v})]+g & \text { in } \Omega^{T}, \\
\operatorname{div} h=0 & \text { in } \Omega^{T}, \\
h \cdot \bar{n}=0, \quad \bar{n} \cdot \mathbb{D}(h) \cdot \bar{\tau}_{\alpha}=0, \quad \alpha=1,2, & \text { on } S_{1}^{T} \tag{4.1}\\
h_{i}=0, \quad i=1,2, \quad h_{3, x_{3}}=0 & \text { on } S_{2}^{T}, \\
\left.h\right|_{t=0}=h(0) & \text { in } \Omega,
\end{array}
$$

where $\lambda \in[0,1]$. Let $\mathfrak{M}\left(\Omega^{T}\right)=\left\{h:\|h\|_{L_{\infty}\left(0, T ; W_{\eta}^{1}(\Omega)\right)}<\infty\right\}$.
The problem (4.1) implies the mapping $\Phi: \mathfrak{M}\left(\Omega^{T}\right) \rightarrow W_{\sigma}^{2,1}\left(\Omega^{T}\right) \hookrightarrow \mathfrak{M}\left(\Omega^{T}\right)$ where the last imbedding and so the mapping Φ is compact for $20 / 7<\sigma<10 / 3$, $\eta>4$. We show the continuity of the mapping Φ.

Lemma 4.1. The mapping Φ is uniformly continuous in the product $\mathfrak{M}\left(\Omega^{T}\right) \times$ $[0,1]$ where $\mathfrak{M}\left(\Omega^{T}\right)$ is defined as above and $20 / 7<\sigma \leq 10 / 3, \eta>4$.

Proof. Uniform continuity with respect to $\lambda \in[0,1]$ is evident. Therefore we examine the uniform continuity with respect to elements of $\mathfrak{M}\left(\Omega^{T}\right)$ for any
$\lambda \in[0,1]$. Since dependence on λ is very simple we omit λ in the considerations below because it does not change the proof.

To have compact Φ we need compactness of imbedding

$$
\text { if } \quad W_{\sigma}^{2,1}\left(\Omega^{T}\right) \hookrightarrow L_{\infty}\left(0, T ; W_{\eta}^{1}(\Omega)\right) \quad \text { then } \quad \frac{5}{\sigma}-\frac{3}{\eta}-\frac{2}{\infty}<1, \quad \sigma<\eta .
$$

Let $\widetilde{h}_{s} \in \mathfrak{M}\left(\Omega^{T}\right), s=1,2, i=1,2$, be two elements. Therefore, we consider the following problems

$$
\begin{array}{ll}
h_{s, t}-\operatorname{div} \mathbb{T}\left(h_{s}, q_{s}\right)=-v_{s} \cdot \nabla \widetilde{h}_{s}-\widetilde{h}_{s} \cdot \nabla v_{s}+g & \text { in } \Omega^{T}, \\
\operatorname{div} h_{s}=0 & \text { in } \Omega^{T}, \\
h_{s} \cdot \bar{n}=0, \quad \bar{n} \cdot \mathbb{D}\left(h_{s}\right) \cdot \bar{\tau}_{\alpha}=0, \quad \alpha=1,2 & \text { on } S_{1}^{T}, \tag{4.2}\\
h_{s i}=0, \quad i=1,2, \quad h_{s 3, x_{3}}=0 & \text { on } S_{2}^{T}, \\
\left.h_{s}\right|_{t=0}=h(0) & \text { in } \Omega,
\end{array}
$$

where $s=1,2$;

$$
\begin{array}{ll}
\chi_{s, t}+v_{s} \cdot \nabla \chi_{s}-\widetilde{h}_{s 3} \chi_{s}+\widetilde{h}_{s 2} w_{s, x_{1}}-\widetilde{h}_{s 1} w_{s, x_{2}}-\nu \Delta \chi_{s}=F_{3} & \text { in } \Omega^{T}, \\
\chi_{s}=\chi_{s *} & \text { on } S_{1}^{T}, \\
\chi_{s}=0 & \text { on } S_{2}^{T}, \\
\left.\chi_{s}\right|_{t=0}=\chi(0) & \text { on } \Omega,
\end{array}
$$

where $s=1,2$, and $\chi_{s *}$ is defined as in (2.5);

$$
\begin{array}{ll}
v_{s 2, x_{1}}-v_{s 1, x_{2}}=\chi_{s} & \text { in } \Omega^{\prime}, \\
v_{s 1, x_{1}}+v_{s 2, x_{2}}=-h_{s 3} & \text { in } \Omega^{\prime}, \\
v_{s}^{\prime} \cdot \bar{n}^{\prime}=0 & \text { on } S_{1}^{\prime},
\end{array}
$$

where $s=1,2, \Omega^{\prime}$ nad S_{1}^{\prime} are cross-sections of Ω and S_{1} with a plane perpendicular to axis x_{3}.

First we examine the problem on χ. Let us introduce the function $\widetilde{\chi}_{s}$ as a solution to the problem

$$
\begin{array}{ll}
\widetilde{\chi}_{s, t}-\nu \Delta \widetilde{\chi}_{s}=0 & \text { in } \Omega^{T}, \\
\widetilde{\chi}_{s}=\chi_{s *} & \text { on } S_{1}^{T}, \\
\widetilde{\chi}_{s, x_{3}}=0 & \text { on } S_{2}^{T}, \\
\left.\widetilde{\chi}_{s}\right|_{t=0}=0 & \text { in } \Omega,
\end{array}
$$

where $s=1,2$. Introducing the new function $\chi_{s}^{\prime}=\chi_{s}-\widetilde{\chi}_{s}, s=1,2$, we see that it is a solution to the problem

$$
\begin{array}{ll}
\begin{array}{l}
\chi_{s, t}^{\prime}+v_{s} \cdot \nabla \chi_{s}^{\prime}-\widetilde{h}_{s 3} \chi_{s}^{\prime}+\widetilde{h}_{s 2} w_{s, x_{1}}-\widetilde{h}_{s 1} w_{s, x_{2}} \\
\\
\quad-\nu \Delta \chi_{s}^{\prime}=F_{3}-v_{s} \cdot \nabla \widetilde{\chi}_{s}+\widetilde{h}_{s 3} \widetilde{\chi}_{s}
\end{array} & \text { in } \Omega^{T}, \\
\chi_{s}^{\prime}=0 & \text { on } S_{1}^{T}, \\
\chi_{s, x_{3}}^{\prime}=0 & \text { on } S_{2}^{T}, \\
\left.\chi_{s}^{\prime}\right|_{t=0}=\chi_{s}(0) & \text { in } \Omega .
\end{array}
$$

The problem for v_{s} reads:

$$
\begin{array}{ll}
v_{s, t}-\operatorname{div} \mathbb{T}\left(v_{s}, p_{s}\right)=-v_{s}^{\prime} \cdot \nabla^{\prime} v_{s}-w_{s} \widetilde{h}_{s}+f & \text { in } \Omega^{T}, \\
\operatorname{div} v_{s}=0 & \text { in } \Omega^{T}, \\
v_{s} \cdot \bar{n}=0, \quad \bar{n} \cdot \mathbb{T}\left(v_{s}, p_{s}\right) \cdot \bar{\tau}_{\alpha}=0, \quad \alpha=1,2 & \text { on } S^{T}, \tag{4.3}\\
\left.v_{s}\right|_{t=0}=v(0) & \text { in } \Omega .
\end{array}
$$

For v_{s} we have the estimate of the form (3.12), i.e.

$$
\left\|v_{s}\right\|_{W_{2}^{2,1}\left(\Omega^{t}\right)} \leq c\left(d_{2} H_{1}+K_{2}\right)^{2}+c\left(\|f\|_{L_{2}\left(\Omega^{t}\right)}+\|v(0)\|_{H^{1}(\Omega)}\right)
$$

with H_{1}, K_{2} defined as in (3.15)-(3.16) as dependent on \widetilde{h}_{s} instead of h_{s}. Therefore, since $\mathfrak{M}\left(\Omega^{T}\right) \hookrightarrow L_{\infty}\left(0, T ; L_{3}(\Omega)\right)$ and $\mathfrak{M}\left(\Omega^{T}\right) \hookrightarrow L_{10 / 3}\left(\Omega^{T}\right)$, we can replace this relation with

$$
\begin{equation*}
\left\|v_{s}\right\|_{W_{2}^{2,1}\left(\Omega^{t}\right)} \leq c\left(d_{2}\left\|\widetilde{h}_{s}\right\|_{\mathfrak{M}\left(\Omega^{t}\right)}+K_{2}\right)^{2}+c\left(\|f\|_{L_{2}\left(\Omega^{t}\right)}+\|v(0)\|_{H^{1}(\Omega)}\right) \tag{4.4}
\end{equation*}
$$

For problem (4.2) and the functions h_{s} we have

$$
\begin{align*}
& \left\|h_{s}\right\|_{W_{r}^{2,1}\left(\Omega^{T}\right)}+\left\|\nabla q_{s}\right\|_{L_{\sigma}\left(\Omega^{T}\right)} \tag{4.5}\\
& \leq c\left\|v_{s} \nabla \tilde{h}_{s}\right\|_{L_{\sigma}\left(\Omega^{t}\right)}+\left\|\tilde{h}_{s} \nabla v_{s}\right\|_{L_{\sigma}\left(\Omega^{t}\right)}+\|g\|_{L_{\sigma}\left(\Omega^{t}\right)}+\left\|h_{s}(0)\right\|_{L_{\sigma}\left(\Omega^{t}\right)} \\
& \quad \equiv I_{1}+I_{2}+\|g\|_{L_{\sigma}\left(\Omega^{t}\right)}+\left\|h_{s}(0)\right\|_{L_{\sigma}\left(\Omega^{t}\right)} .
\end{align*}
$$

Note, that we can not apply directly the results analogous to Lemma 3.4 and instead, we need to estimate the r.h.s. of (4.5) in different way.

The first term on the r.h.s. of (4.5) we split into:

$$
I_{1} \equiv\left\|v_{s} \nabla \widetilde{h}_{s}\right\|_{L_{\sigma}\left(\Omega^{t}\right)} \leq\left\|v_{s}\right\|_{L_{\sigma \lambda_{1}}\left(\Omega^{t}\right)}\left\|\nabla \widetilde{h}_{s}\right\|_{L_{\sigma \lambda_{2}}\left(\Omega^{t}\right)}
$$

with $1 / \lambda_{1}+1 / \lambda_{2}=1$.
We estimate I_{1} under assumptions that $v \in W_{2}^{2,1}\left(\Omega^{t}\right) \hookrightarrow L_{\sigma \lambda_{1}}\left(\Omega^{t}\right)$ and $\nabla \widetilde{h}_{s} \in L_{\eta}(\Omega)$. Therefore, we have the following relations:

$$
\frac{5}{2}-\frac{5}{\sigma \lambda_{1}} \leq 2, \quad \sigma \lambda_{2} \leq \eta
$$

Let $\sigma \lambda_{2}=\eta$. Then

$$
\frac{1}{2} \leq \frac{5}{\sigma}-\frac{5}{\eta}
$$

We combine this relations with the compactness condition to get

$$
\frac{1}{2}+\frac{2}{\eta} \leq \frac{5}{\sigma}-\frac{3}{\eta}<1
$$

and we deduce $\eta>4$ and $\sigma>20 / 7$.
The second term on the r.h.s. of (4.5) is estimated by

$$
I_{2} \equiv\left\|\nabla v_{s} \tilde{h}_{s}\right\|_{L_{\sigma}\left(\Omega^{t}\right)} \leq\left\|\nabla v_{s}\right\|_{L_{\sigma \mu_{1}}\left(\Omega^{t}\right)}\left\|\widetilde{h}_{s}\right\|_{L_{\sigma \mu_{2}}\left(\Omega^{t}\right)}
$$

with $1 / \mu_{1}+1 / \mu_{2}=1$. Since $\widetilde{h}_{s} \in L_{\infty}\left(0, T ; W_{\eta}^{1}(\Omega)\right)$ with $\eta>4$ we have $\widetilde{h}_{s} \in$ $L_{\infty}\left(0, T ; L_{\rho}(\Omega)\right)$ with arbitrary $\rho \leq \infty$. Then we set $\mu_{2}=\infty$ and then $\mu_{1}=1$. Consequently, for $v_{s} \in W_{2}^{2,1}\left(\Omega^{T}\right) \hookrightarrow L_{\sigma}\left(0, T ; W_{\sigma}^{1}(\Omega)\right)$ we have the relation

$$
\frac{5}{2}-\frac{5}{\sigma} \leq 1
$$

Hence $\sigma \leq 10 / 3$.
Summarizing estimates for I_{1} and I_{2} and applying to (4.5) we infer

$$
\begin{align*}
& \left\|h_{s}\right\|_{W_{\sigma}^{2,1}\left(\Omega^{T}\right)}+\left\|\nabla q_{s}\right\|_{L_{\sigma}\left(\Omega^{T}\right)} \tag{4.6}\\
& \quad \leq c\left\|v_{s}\right\|_{W_{2}^{2,1}\left(\Omega^{t}\right)}+c\left\|\widetilde{h}_{s}\right\|_{\mathfrak{M}\left(\Omega^{t}\right)}+c\left(\|g\|_{L_{\sigma}\left(\Omega^{t}\right)}+\|h(0)\|_{W_{\sigma}^{2-2 / \sigma}(\Omega)}\right)
\end{align*}
$$

Next, we use also the estimate on v_{s}, i.e. (4.4) to infer the inequality

$$
\begin{equation*}
\left\|h_{s}\right\|_{\mathfrak{M}\left(\Omega^{T}\right)} \leq \varphi\left(\left\|\widetilde{h}_{s}\right\|_{\mathfrak{M}\left(\Omega^{t}\right)}, K_{4}\right)+c K_{3} \tag{4.7}
\end{equation*}
$$

where φ is an increasing positive function and $K_{4}=K_{2}+d_{2}+\|f\|_{L_{2}\left(\Omega^{t}\right)}+$ $\|v(0)\|_{H^{1}(\Omega)}$.

This proves that bounded sets in $\mathfrak{M}\left(\Omega^{t}\right)$ are transformed into bounded sets in $\mathfrak{M}\left(\Omega^{t}\right)$.

To show the continuity, we formulate the problems for the differences:

$$
H=h_{1}-h_{2}, \quad Q=q_{1}-q_{2}, \quad V=v_{1}-v_{2}, \quad i=1,2 .
$$

Thus, H satisfies

$$
\begin{array}{ll}
H_{, t}-\operatorname{div} \mathbb{T}(H, Q)=-V \cdot \nabla \widetilde{h}_{1}-v_{2} \cdot \nabla \widetilde{H}-\widetilde{H} \cdot \nabla v_{1}-\widetilde{h}_{2} \cdot \nabla V & \text { in } \Omega^{T}, \\
\operatorname{div} H=0 & \text { in } \Omega^{T}, \\
H \cdot \bar{n}=0, \quad \bar{n} \cdot \mathbb{D}(H) \cdot \bar{\tau}_{\alpha}=0, \quad \alpha=1,2, & \text { on } S_{1}^{T} \\
H_{i}=0, \quad i=1,2, \quad H_{3, x_{3}}=0 & \text { on } S_{2}^{T}, \\
\left.H\right|_{t=0}=0 & \text { in } \Omega .
\end{array}
$$

For solutions of (4.8) we have

$$
\begin{aligned}
\|H\|_{W_{\sigma}^{2,1}\left(\Omega^{t}\right)}+\|\nabla Q\|_{L_{\sigma}\left(\Omega^{t}\right)} \leq c(\| V \cdot & \nabla \widetilde{h}_{1}\left\|_{L_{\sigma}\left(\Omega^{t}\right)}+\right\| v_{2} \cdot \nabla \widetilde{H} \|_{L_{\sigma}\left(\Omega^{t}\right)} \\
& \left.+\left\|\widetilde{H} \cdot \nabla v_{1}\right\|_{L_{\sigma}\left(\Omega^{t}\right)}+\left\|\widetilde{h}_{2} \cdot \nabla V\right\|_{L_{\sigma}\left(\Omega^{t}\right)}\right)
\end{aligned}
$$

This we can estimate with

$$
\begin{align*}
& \|H\|_{W_{\sigma}^{2,1}\left(\Omega^{t}\right)}+\|\nabla Q\|_{L_{\sigma}\left(\Omega^{t}\right)} \tag{4.9}\\
& \leq c\left(\|V\|_{L_{\sigma \alpha_{1}}\left(\Omega^{t}\right)}\left\|\nabla \widetilde{h}_{1}\right\|_{L_{\sigma \alpha_{2}}\left(\Omega^{t}\right)}+\left\|v_{2}\right\|_{L_{\sigma \beta_{1}}\left(\Omega^{t}\right)}\|\nabla \widetilde{H}\|_{L_{\sigma \beta_{2}}\left(\Omega^{t}\right)}\right. \\
& \left.\quad+\|\tilde{H}\|_{L_{\sigma \gamma_{1}}\left(\Omega^{t}\right)}\left\|\nabla v_{1}\right\|_{L_{\sigma \gamma_{2}}\left(\Omega^{t}\right)}+\left\|\widetilde{h}_{2}\right\|_{L_{\sigma \delta_{1}}\left(\Omega^{t}\right)}\|\nabla V\|_{L_{\sigma \delta_{2}}\left(\Omega^{t}\right)}\right)
\end{align*}
$$

Note that first two terms on the r.h.s. of (4.9) can be estimated similarly as I_{1} in (4.5) while third and fourth - with use of imbeddings applied to I_{2}. Then, with $20 / 7<\sigma<10 / 3, \eta>4$ we obtain

$$
\|H\|_{W_{\sigma}^{2,1}\left(\Omega^{t}\right)}+\|\nabla Q\|_{L_{\sigma}\left(\Omega^{t}\right)} \leq\|V\|_{W_{2}^{2,1}\left(\Omega^{t}\right)}\|\widetilde{h}\|_{\mathfrak{M}\left(\Omega^{t}\right)}+\|v\|_{W_{2}^{2,1}\left(\Omega^{t}\right)}\|\widetilde{H}\|_{\mathfrak{M}\left(\Omega^{t}\right)}
$$

Assume that $\widetilde{h}_{s}, s=1,2$, belong to a bounded set in $\mathfrak{M}\left(\Omega^{T}\right)$. Hence, there exists a constant A such that

$$
\begin{equation*}
\left\|\widetilde{h}_{s}\right\|_{\mathfrak{M}\left(\Omega^{T}\right)} \leq A, \quad\left\|v_{s}\right\|_{W_{2}^{2,1}\left(\Omega^{T}\right)} \leq \varphi(A) \tag{4.10}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\|H\|_{W_{\sigma}^{2,1}\left(\Omega^{t}\right)}+\|\nabla Q\|_{L_{\sigma}\left(\Omega^{t}\right)} \leq c(A)\|V\|_{W_{2}^{2,1}\left(\Omega^{t}\right)}+\varphi(A)\|\tilde{H}\|_{\mathfrak{M}\left(\Omega^{t}\right)} \tag{4.11}
\end{equation*}
$$

Thus, to show the continuity of the transformation Φ we should find an estimate for $\|V\|_{W_{2}^{2,1}\left(\Omega^{t}\right)}$. For this purpose we consider the problem

$$
\begin{array}{ll}
V_{, t}-\operatorname{div} \mathbb{T}(V, Q)=-V^{\prime} \cdot \nabla v_{1}-v_{2}^{\prime} \cdot \nabla V-W h_{1}-w_{2} H & \text { in } \Omega^{T} \\
\operatorname{div} V=0 & \text { in } \Omega^{T} \\
V \cdot \bar{n}=0, \quad \bar{n} \cdot \mathbb{T}(V, Q) \cdot \bar{\tau}_{\alpha}=0, \quad \alpha=1,2, & \text { on } S^{T} \tag{4.12}\\
\left.V\right|_{t=0}=0 & \text { in } \Omega
\end{array}
$$

where $V^{\prime}=\left(V_{1}, V_{2}\right), W=V_{3}, v_{s}^{\prime}=\left(v_{s 1}, v_{s 2}\right), w_{s}=v_{s 3}$.
For solutions of (4.12) we have

$$
\begin{align*}
\|V\|_{W_{2}^{2,1}\left(\Omega^{t}\right)}+\| \nabla & Q \|_{L_{2}\left(\Omega^{t}\right)} \leq c\left(\left\|V^{\prime} \cdot \nabla v_{1}\right\|_{L_{2}\left(\Omega^{t}\right)}\right. \tag{4.13}\\
& \left.+\left\|v_{2}^{\prime} \cdot \nabla V\right\|_{L_{2}\left(\Omega^{t}\right)}+\left\|W h_{1}\right\|_{L_{2}\left(\Omega^{t}\right)}+\left\|w_{2} H\right\|_{L_{2}\left(\Omega^{t}\right)}\right)
\end{align*}
$$

We bound the first term on the r.h.s. of (4.13) by

$$
c\|V\|_{L_{5}\left(\Omega^{t}\right)}\left\|v_{1}\right\|_{W_{2}^{2,1}\left(\Omega^{t}\right)} \equiv I_{1}
$$

By interpolation we get

$$
I_{1} \leq \varepsilon_{1}\|V\|_{W_{2}^{2,1}\left(\Omega^{t}\right)}+c\left(1 / \varepsilon_{1}\right) \varphi\left(\left\|v_{1}\right\|_{W_{2}^{2,1}\left(\Omega^{t}\right)}\right)\|V\|_{L_{2}\left(\Omega^{t}\right)}
$$

Similarly, we estimate the second term on the r.h.s. of (4.13) by

$$
c\|\nabla V\|_{L_{5 / 2}\left(\Omega^{t}\right)}\left\|v_{2}\right\|_{W_{2}^{2,1}\left(\Omega^{t}\right)} \equiv I_{2}
$$

and

$$
I_{2} \leq \varepsilon_{2}\|V\|_{W_{2}^{2,1}\left(\Omega^{t}\right)}+c\left(1 / \varepsilon_{2}\right) \varphi\left(\left\|v_{2}\right\|_{W_{2}^{2,1}\left(\Omega^{t}\right)}\right)\|V\|_{L_{2}\left(\Omega^{t}\right)}
$$

By the Hölder inequality the third term on the r.h.s. of (4.13) is bounded by

$$
c\|W\|_{L_{\sigma_{1}}\left(\Omega^{t}\right)}\left\|h_{1}\right\|_{L_{\sigma_{2}}\left(\Omega^{t}\right)} \equiv I_{3},
$$

where $5 / 2-5 / \sigma_{1} \leq 2, \sigma_{2} \leq \infty, 1 / \sigma_{1}+1 / \sigma_{2}=1 / 2$, which are satisfied for $\sigma_{1}<10$. Since $5 / 2-5 / \sigma_{1}<2$, we apply the interpolation inequality to the first factor in I_{3}. Hence we get

$$
I_{3} \leq \varepsilon_{3}\|V\|_{W_{2}^{2,1}\left(\Omega^{t}\right)}+c\left(1 / \varepsilon_{3}\right) \varphi\left(\left\|h_{1}\right\|_{\mathfrak{M}\left(\Omega^{t}\right)}\right)\|V\|_{L_{2}\left(\Omega^{t}\right)}
$$

Finally, by the Hölder inequality, the fourth term on the r.h.s. of (4.13) is estimated by

$$
c\left\|w_{2}\right\|_{L_{\varrho_{1}}\left(\Omega^{t}\right)}\|H\|_{L_{\varrho_{2}}\left(\Omega^{t}\right)} \equiv I_{4}
$$

where $1 / \varrho_{1}+1 / \varrho_{2}=1 / 2,5 / 2-5 / \varrho_{1} \leq 2$, so we can take $\varrho_{2}=5 / 2$. Hence,

$$
I_{4} \leq c\left\|v_{2}\right\|_{W_{2}^{2,1}\left(\Omega^{t}\right)}\|H\|_{L_{5 / 2}\left(\Omega^{t}\right)}
$$

Utilizing the above estimates in (4.13) and assuming that $\varepsilon_{1}, \ldots, \varepsilon_{3}$ are sufficiently small we obtain

$$
\begin{align*}
& \|V\|_{W_{2}^{2,1}\left(\Omega^{t}\right)}+\|\nabla Q\|_{L_{2}\left(\Omega^{t}\right)} \tag{4.14}\\
& \quad \leq \varphi\left(\left\|v_{1}, v_{2}\right\|_{W_{2}^{2,1}\left(\Omega^{t}\right)},\left\|h_{1}\right\|_{W_{\sigma}^{2,1}\left(\Omega^{t}\right)}\right) \cdot\left(\|V\|_{L_{2}\left(\Omega^{t}\right)}+\|H\|_{L_{5 / 2}\left(\Omega^{t}\right)}\right)
\end{align*}
$$

Utilizing (4.4), (4.7) and (4.10) in (4.14) implies

$$
\begin{equation*}
\|V\|_{W_{2}^{2,1}\left(\Omega^{t}\right)}+\|\nabla Q\|_{L_{2}\left(\Omega^{t}\right)} \leq \varphi(A)\left(\|V\|_{L_{2}\left(\Omega^{t}\right)}+\|H\|_{L_{5 / 2}\left(\Omega^{t}\right)}\right) \tag{4.15}
\end{equation*}
$$

Finally we estimate the r.h.s. of (4.15). We multiply (4.8) ${ }_{1}$ by H and integrate over Ω. In particular,

$$
\int_{\Omega} v_{2} \cdot \nabla \widetilde{H} \cdot H d x=-\int_{\Omega} v_{2} \nabla H \cdot \widetilde{H} d x \leq\left\|v_{2}\right\|_{L_{6}(\Omega)}\|\widetilde{H}\|_{L_{3}(\Omega)}\|\nabla H\|_{L_{2}(\Omega)}
$$

Then (4.8) ${ }_{1}$ yields

$$
\begin{aligned}
\frac{d}{d t}\|H\|_{L_{2}(\Omega)}^{2} & +\nu\|H\|_{H^{1}(\Omega)}^{2} \leq c\left(\left\|V \cdot \nabla \widetilde{h}_{1}\right\|_{L_{6 / 5}(\Omega)}^{2}\right. \\
& \left.+\left\|v_{2}\right\|_{L_{6}(\Omega)}^{2}\|\widetilde{H}\|_{L_{3}(\Omega)}^{2}+\left\|\widetilde{H} \cdot \nabla v_{1}\right\|_{L_{6 / 5}(\Omega)}^{2}+\left\|\widetilde{h}_{2} \cdot \nabla V\right\|_{L_{6 / 5}(\Omega)}^{2}\right)
\end{aligned}
$$

By the Hölder inequality, this implies

$$
\begin{aligned}
& \frac{d}{d t}\|H\|_{L_{2}(\Omega)}^{2}+\nu\|H\|_{H^{1}(\Omega)}^{2} \leq c\left(\|V\|_{L_{2}(\Omega)}^{2}\left\|\nabla \widetilde{h}_{1}\right\|_{L_{3}(\Omega)}^{2}\right. \\
& \left.\quad+\left\|v_{2}\right\|_{L_{6}(\Omega)}^{2}\|\widetilde{H}\|_{L_{3}(\Omega)}^{2}+\sup _{t}\left\|\widetilde{h}_{2}\right\|_{L_{3}(\Omega)}^{2}\|\nabla V\|_{L_{2}(\Omega)}^{2}\right)+\|\widetilde{H}\|_{L_{2}(\Omega)}^{2}\left\|\nabla v_{1}\right\|_{L_{3}(\Omega)}^{2}
\end{aligned}
$$

Using that, in view of (4.10), the third expression on the r.h.s. of the above inequality is estimated by $c \varphi(A)\|V\|_{H^{1}(\Omega)}^{2}$ we obtain

$$
\begin{align*}
& \frac{d}{d t}\|H\|_{L_{2}(\Omega)}^{2}+\nu\|H\|_{H^{1}(\Omega)}^{2} \leq c\left(\varphi(A)\|V\|_{H^{1}(\Omega)}^{2}+\left\|v_{2}\right\|_{L_{6}(\Omega)}^{2}\|\widetilde{H}\|_{L_{3}(\Omega)}^{2}\right. \tag{4.16}\\
&\left.+\|V\|_{L_{2}(\Omega)}^{2}\left\|\nabla \widetilde{h}_{1}\right\|_{L_{3}(\Omega)}^{2}+\|\widetilde{H}\|_{L_{2}(\Omega)}^{2}\left\|\nabla v_{1}\right\|_{L_{3}(\Omega)}^{2}\right)
\end{align*}
$$

Multiplying (4.12) $)_{1}$ by V and integrating over Ω, it follows that
(4.17) $\quad \frac{d}{d t}\|V\|_{L_{2}(\Omega)}^{2}+\nu\|V\|_{H^{1}(\Omega)}^{2}$

$$
\leq c\|V\|_{L_{2}(\Omega)}^{2}\left(\left\|\nabla v_{1}\right\|_{L_{3}(\Omega)}^{2}+\left\|h_{1}\right\|_{L_{3}(\Omega)}^{2}\right)+c\left\|w_{2}\right\|_{L_{3}(\Omega)}^{2}\|H\|_{L_{2}(\Omega)}^{2}
$$

Multiplying (4.17) by a constant c_{*} such that $\nu c_{*}-c \varphi(A) \geq \nu$ and adding to (4.16), we get

$$
\begin{aligned}
& \frac{d}{d t}\left(c_{*}\|V\|_{L_{2}(\Omega)}^{2}+\|H\|_{L_{2}(\Omega)}^{2}\right)+\nu\left(\|V\|_{H^{1}(\Omega)}^{2}+\|H\|_{H^{1}(\Omega)}^{2}\right) \\
& \quad \leq c c_{*}\|V\|_{L_{2}(\Omega)}^{2}\left(\left\|\nabla v_{1}\right\|_{L_{3}(\Omega)}^{2}+\left\|h_{1}\right\|_{L_{3}(\Omega)}^{2}\right)+c c_{*}\left\|w_{2}\right\|_{L_{3}(\Omega)}^{2}\|H\|_{L_{2}(\Omega)}^{2} \\
& \quad+c\left(\left\|v_{2}\right\|_{L_{6}(\Omega)}^{2}\|\widetilde{H}\|_{L_{3}(\Omega)}^{2}+\left\|\nabla v_{1}\right\|_{L_{3}(\Omega)}^{2}\|\widetilde{H}\|_{L_{2}(\Omega)}^{2}+\|V\|_{L_{2}(\Omega)}^{2}\left\|\nabla \widetilde{h}_{1}\right\|_{L_{3}(\Omega)}^{2}\right)
\end{aligned}
$$

Integrating this inequality with respect to time yields

$$
\begin{equation*}
\|V(t)\|_{L_{2}(\Omega)}^{2}+\|H(t)\|_{L_{2}(\Omega)}^{2}+\nu \int_{0}^{t}\left(\left\|V\left(t^{\prime}\right)\right\|_{H^{1}(\Omega)}^{2}+\left\|H\left(t^{\prime}\right)\right\|_{H^{1}(\Omega)}^{2}\right) d t^{\prime} \tag{4.18}
\end{equation*}
$$

$$
\begin{aligned}
& \leq c \exp c \int_{0}^{t}\left(\left\|\nabla v_{1}\left(t^{\prime}\right)\right\|_{L_{3}(\Omega)}^{2}+\left\|h_{1}\left(t^{\prime}\right)\right\|_{L_{3}(\Omega)}^{2}+\left\|w_{2}\left(t^{\prime}\right)\right\|_{L_{3}(\Omega)}^{2}+\left\|\nabla \widetilde{h}_{1}\left(t^{\prime}\right)\right\|_{L_{3}(\Omega)}^{2}\right) d t^{\prime} \\
& \quad\left(\left\|v_{2}\right\|_{L_{2}\left(0, t ; L_{6}(\Omega)\right)}^{2}\|\widetilde{H}\|_{L_{\infty}\left(0, t ; L_{3}(\Omega)\right)}^{2}+\left\|\nabla v_{1}\right\|_{L_{2}\left(0, T ; L_{3}(\Omega)\right)}^{2}\|\widetilde{H}\|_{L_{\infty}\left(0, T ; L_{2}(\Omega)\right)}\right) \equiv J
\end{aligned}
$$

By the imbedding results we get

$$
\begin{aligned}
& J \leq c \exp c\left(\left\|v_{1}\right\|_{W_{r}^{2,1}\left(\Omega^{t}\right)}^{2}+\|h\|_{W_{\delta}^{2,1}\left(\Omega^{t}\right)}^{2}\right)\left(\left\|v_{2}\right\|_{L_{2}\left(0, t ; L_{6}(\Omega)\right)}^{2}\|\widetilde{H}\|_{L_{\infty}\left(0, t ; L_{3}(\Omega)\right)}^{2}\right. \\
&\left.+\left\|\nabla v_{1}\right\|_{L_{2}\left(0, T ; L_{3}(\Omega)\right)}^{2}\|\widetilde{H}\|_{L_{\infty}\left(0, T ; L_{2}(\Omega)\right)}\right) \equiv J_{1}
\end{aligned}
$$

By (4.4), (4.7) and (4.10) we obtain

$$
J_{1} \leq \varphi(A)\left(\|\tilde{H}\|_{L_{\infty}\left(0, T ; L_{3}(\Omega)\right)}^{2}+\|\tilde{H}\|_{L_{\infty}\left(0, T ; L_{2}(\Omega)\right)}^{2}\right)
$$

Therefore, (4.18) takes the form
(4.19) $\|V\|_{V_{2}^{0}\left(\Omega^{t}\right)}+\|H\|_{V_{2}^{0}\left(\Omega^{t}\right)} \leq \varphi(A)\left(\|\widetilde{H}\|_{L_{\infty}\left(0, T ; L_{3}(\Omega)\right)}+\|\widetilde{H}\|_{L_{\infty}\left(0, T ; L_{2}(\Omega)\right)}\right)$.

Utilizing (4.19) in (4.15) and the result in (4.11) we obtain

$$
\|H\|_{\mathfrak{M}\left(\Omega^{T}\right)} \leq \varphi(A)\|\tilde{H}\|_{\mathfrak{M}\left(\Omega^{T}\right)}
$$

which implies the uniform continuity of mapping Φ and ends the proof.

Proof of Theorem 1.1. Since Φ is uniformly continuous and compact for $20 / 7<\sigma \leq 10 / 3$, the Leray-Schauder fixed point theorem yields the existence result. Moreover, for $5 / 3<\sigma<3$, by (3.20), Lemmas 3.5 and 3.3, we have estimates of the form (1.2). This concludes the proof.

References

[1] O. V. Besov, V. P. Il'in and S. M. Nikol'skĭ̌, Integral Representation of Functions and Imbedding Theorems, Nauka, Moscow, 1975. (in Russian)
[2] O. A. Ladyzhenskaya, Mathematical Theory of Viscous Incompressible Flow, Nauka, Moscow, 1970. (in Russian)
[3] V. A. Solonnikov and V. E. Shchadilov, On a boundary value problem for a stationary system of the Navier-Stokes equations, Trudy Mat. Inst. Steklov 125 (1973), 196-210 (in Russian); English transl. in Proc. Steklov Inst. Math. 125 (1973), 186-199.
[4] W. M. ZająCZKowski, Global existence of axially symmetric solutions to Navier-Stokes equations with large angular component of velocity, Colloq. Math. 100 (2004), 243-263.
[5] , Long time existence of regular solutions to Navier-Stokes equations in cylindrical domains under boundary slip conditions, Studia Math. 169 (2005), no. 3, 243-285.
[6] , Global special regular solutions to the Navier-Stokes equations in a cylindrical domain without the axis of symmetry, Topol. Methods Nonlinear Anal. 24 (2004), 69105.

Joanna Renceawowicz
Institute of Mathematics
Polish Academy of Sciences
Śniadeckich 8
00-956 Warsaw, POLAND
E-mail address: jr@impan.gov.pl
Wojciech M. Zajaçzowski
Institute of Mathematics
Polish Academy of Sciences
Śniadeckich 8
00-956 Warsaw, POLAND
and
Institute of Mathematics and Cryptology
Military University of Technology
Kaliskiego 2
00-908 Warsaw, POLAND
E-mail address: wz@impan.gov.pl

[^0]: 2000 Mathematics Subject Classification. 35Q35, 76D03, 76D05.

