
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 30, 2007, 211–221

RELATIVE HOMOLOGICAL LINKING
IN CRITICAL POINT THEORY

Alexandre Girouard

Abstract. A relative homological linking of pairs is proposed. It is shown

to imply homotopical linking, as well as earlier non-relative notion of ho-
mological linkings. Using Morse theory we prove a simple “homological

linking principle”, thereby generalizing and simplifying many well known

results in critical point theory.

1. Introduction

The use of linking methods in critical point theory is rather new. It was
implicitely present in the work of Ambrosetti and Rabinowitz [1] in the early 70’s
as well as in the work of Benci and Rabinowitz [2]. The first explicit definition
was given by Ni in 1980 [10].

Definition 1.1 (Classical Homotopical Linking). Let A ⊂ B and Q be
subspaces of a topological space X such that the pair (B,A) is homeomorphic to
(Dn, Sn−1). Then A homotopically links Q if for each deformation η: [0, 1]×B →
X fixing A, η(1, B) ∩Q 6= ∅.

In the early 80’s, homological linking was introduced in critical point theory
(see Fadell [5], Benci [3] and Chang [4] for instance).
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Definition 1.2 (Classical Homological Linking). Let A and S be non-empty
disjoint subspaces in a topological space X. Then A homologically links S if the
inclusion of A in X\S induces a non-trivial homomorphism in reduced homology.

In her 1999’s article [6], Frigon generalized homotopical linking to pairs of
subspaces.

Definition 1.3 (Relative Homotopical Linking). Let (B,A) and (Q,P ) be
two pairs of subspaces in a topological space X such that B∩P = ∅ and A∩Q = ∅.
(B,A) homotopically links (Q,P ) if for each deformation η: [0, 1]×B → X fixing
A pointwise, η(1, B)∩Q = ∅ then there exists t ∈ ]0, 1] such that η(t, B)∩P 6= ∅.

The classical definition corresponds to the case where (B,A) ∼= (Dn, Sn−1)
and P = ∅.

The goal of this article is to propose a similar generalization for homological
linking. In Section 2.1 we explore the properties of this new homological linking
and in 2.2 we give some detailed examples. In Section 3 we interpret homotopical
linking as an obstruction to factoring certain homotopy through homotopically
trivial pairs. It becomes clear from this point of view that homological linking
is stronger than homotopical linking. Our definition of homological linking fits
very nicely with Morse theory. We exploit this in Section 4 to derive a new
linking principle (see Theorem 4.2) for detecting and locating critical points.
Despite its simplicity, the idea is quite fruitful. Close analog to the Mountain
Pass Theorem of Ambrosetti and Rabinowitz [1] as well as to the Saddle Point
Theorem of Rabinowitz [12] are easy corollaries. In Proposition 4.6, we also
obtain a homological version of the generalized saddle point theorem of Frigon
(see [6]). In Section 4.1, some multiplicity results are studied.

Our approach has many advantages: each critical point is detected by a
different linking, stability type is directly available (i.e. critical groups are known)
and last but not least, the proofs are easy. However, it also has a disadvantage:
working with Morse theory requires more regularity than using a “min–max”
method for example. It might appear as if the content of this paper is extremely
easy. We agree with this point of view. In fact, it is rather surprising to see
that so many of the classical results of critical point theory are straightforward
consequences of this new definition of homological linking.

This paper is an extension of the author’s master’s thesis [7]. He would like
to express his most sincere thanks to his advisor, Marlène Frigon.

2. Homological linking

2.1. Definition and properties. The principal contribution of this article
is the following definition.
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Definition 2.1 (Relative Homological Linking). Let (B,A) and (Q,P ) be
pairs of subspaces in a topological space X. Then (B,A) homologically links
(Q,P ) in X if (B,A) ⊂ (X \P,X \Q) and if this inclusion induces a non-trivial
homomorphism in reduced homology. Given integers q, β ≥ 0, we say that

(B,A) (q, β)-links (Q,P ) in X

if the above inclusion induces a homomorphism of rank β on the q-th reduced
homology groups.

Remark 2.2. For notational convenience, a topological pair (B, ∅) will be
identified with the space B.

Remark 2.3. The classical definition corresponds to the case A (q, β)-links
(X, Q) and β > 0.

Remark 2.4. For any space X, X (q, bq(X))-links X in X, where bq(X)
is the q-th reduced Betti number of X. Thus our linking contains as much
information as Betti numbers.

The next proposition and it’s corollary shows that in many situations, it
suffices to consider linking locally to deduce a global linking situation.

Proposition 2.5. Let O be an open subset of X. If
A,B, P, Q ⊂ O with Q closed, then

(B,A) (q, β)-links (Q,P ) in X if and only if (B,A) (q, β)-links (Q,P ) in O.

Proof. Since Oc is closed and X \Q is open in X \ P , the excision axiom
applies to

Oc ⊂ X \Q ⊂ X \ P.

It follows that the the bottom line of the following commutative diagram is an
isomorphism.

H̃q(B,A)

i

��

j

))RRRRRRRRRRRRR

H̃q(O \ P,O \Q) ∼=
// H̃q(X \ P,X \Q)

Hence, rank j = rank i. �

Corollary 2.6. Let O be the domain of a chart on a manifold M . If the
pair (B,A) links the pair (Q,P ) in O, with Q closed, then (B,A) also links the
pair (Q, P ) in M .

The two following theorems show how some simple linking situations lead to
new linkings.
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Theorem 2.7. If A (q, β)-links (X, Q) and A (q, δ)-links (X, X \ B) in X

for some δ < β then (B,A) (q + 1, µ)-links Q in X for some µ ≥ β − δ.

Proof. It follows from the commutativity of

H̃q+1(B,A)
∆1 //

α

��

H̃q(A)
k //

i

��

H̃q(B)

��

H̃q+1(X, X \Q)
∆2

// H̃q(X \Q) // H̃q(X)

that

µ := rank α ≥ rank ∆2 ◦ α = rank i ◦∆1 ≥ rank ∆1 − dim(ker i)

= rang ∆1 − (dim H̃q(A)− rank i) = rank i + rank ∆1 − dim H̃q(A)

= rank i + rank ∆1 − (rank k + dim(ker k)).

By exactness, rank∆1 = dim(ker k), thus

µ ≥ rank i− rank k = β − δ. �

Theorem 2.8. If B (q, β)-links (X, P ) and X \ Q (q, δ)-links (X, P ) for
some δ < β, then B (q, µ)-links (Q,P ) in X for some µ ≥ β − δ.

Proof. From the commutativity of

H̃q(B)
∼= //

i

��

H̃q(B, ∅)

α

��

H̃q(X \Q)
k

// H̃q(X \ P )
j

// H̃q(X \ P,X \Q)

it follows that

µ = rankα = rank j ◦ i ≥ rank i− dim(ker j) = rank i− rank k = β − δ. �

2.2. Examples of linking. Our definition permits to obtain new situations
of linking and to recover others already known. In particular, in Propositions
2.9–2.11 we present linking situations equivalent to those already studied by
Perera in [11] using a non relative definition of homological linking.

Let E be a Banach space. Given a direct sum decomposition E = E1 ⊕ E2,
Bi denotes the closed ball in Ei and Si its relative boundary (i = 1, 2).
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Proposition 2.9. Let e ∈ E, ‖e‖ > 1. Then {0, e} (0, 1)-links (E,S) in E.

Proof. The map r:E \ S → {0, e} defined by

r(x) =

{
0 if ‖x‖ < 1,

e if ‖x‖ > 1.

is a retraction. That is, the following diagram commutes

E \ S
r // {0, e}

{0, e}
id

;;wwwwwwwww

OO

It follows that the inclusion of {0, e} in E \S is of rank 1 in reduced homology.�

Proposition 2.10. Let E = E1 ⊕ E2 with k = dim E1 ∈ ]0,∞[. Then S1

(k − 1, 1)-links (E,E2) in E.

Proof. The long exact sequence induced by S1 ⊂ E \ E2 is

· · · −→ H̃k(E \ E2, S1) −→ H̃k−1(S1)
i−→ H̃k−1(E \ E2) −→ · · ·

Because E \ E2 strongly retract on S1, Hk(E \ E2, S1) = 0. It follows that
rank i = dim H̃k−1(S1) = 1. �

Proposition 2.11. Let E = E1 ⊕ E2 with k = dim E1 ∈ ]0,∞[ and let
e ∈ E2 be of unit length. Let A = ∂(B1⊕ [0, 2]e) in E1⊕Re. Then A (k, 1)-links
(E,S2) in E.

Proof. Let P :E → E1 be the projection on E1 and r:E \ S2 → (E1 ⊕
Re) \ {e} be defined by r(x) = P (x) + ‖x− P (x)‖e. Let’s make sure {e} really
is omitted by r. Suppose x ∈ E is such that P (x) + ‖x − P (x)‖e = e. Then
P (x) = 0 and 1 = ‖x− P (x)‖ = ‖x‖. In other words, x ∈ E2 and ‖x‖ = 1 wich
is impossible for x in the domain of r. Let i be the inclusion of A in E \ S2. If
ik: H̃k(A) → H̃k(E \ S2) is null, then so is

rk ◦ ik: H̃k(A) → H̃k((E1 ⊕ Re) \ {e}).

However, r◦ i is the inclusion of A in (E1⊕Re)\{e} and (E1⊕Re)\{e} strongly
retract on A. Thus H̃∗((E1 ⊕ Re) \ {e}, A) ∼= 0. It then follows from the long
exact sequence induced by the inclusion r ◦ i of A in (E1 ⊕ Re) \ {e}

0 = H̃k+1((E1 ⊕ Re) \ {e}, A) −→ H̃k(A)
rk◦ik−−−−→ H̃k(E1 ⊕ Re \ {e})

that rk ◦ ik is not trivial because H̃k(A) ∼= K. Consequently A (k, 1)-links (E,S2)
in E, as was to be proved. �

Theorem 2.7 and the previous linking situations give rise to other linkings
which are in fact the classical situations treated in the litterature. Observe that,
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in these classical situations, the pair (Q,P ) is always of the form (Q, ∅) and the
pair (B,A) always has A 6= ∅.

Corollary 2.12. Let e ∈ E with ‖e‖ > 1. Then ([0, e], {0, e}) (1, 1)-links
S in E.

Corollary 2.13. Let E = E1⊕E2 with k = dim E1 ∈ ]0,∞[. Then (B1, S1)
(k, 1)-links E2 in E.

Corollary 2.14. Let E = E1⊕E2 with k = dim E1 ∈ ]0,∞[ and let e ∈ E2

be of unit length. Let B = B1 ⊕ [0, 2]e and A = ∂B in E1 ⊕ Re. Then (B,A)
(k + 1, 1)-links S2 in E.

By combining the linking situations of Propositions 2.9–2.11 with Theo-
rem 2.8, we get a new familly of linking situations. These linking situation
will be particularyly useful in applications to critical point theory since they will
allow us to relax the a priori estimates on f . For these linking, the pair (B,A)
is always of the form (B, ∅) and the pair (Q,P ) always has P 6= ∅.

Corollary 2.15. Let e ∈ E, ‖e‖ > 1. Then {0, e} (0, 1)-links (B,S) in E.

Corollary 2.16. Let E = E1 ⊕ E2 with k = dim E1 ∈ ]0,∞[ and let
e ∈ E1 be of unit length. Let B = S1, Q = E2 + [0,∞[e and P = E2. Then B

(k − 1, 1)-links (Q, P ) in E.

Corollary 2.17. Let E = E1⊕E2 with k = dim E1 ∈ ]0,∞[ and let e ∈ E2

be of unit length. Let A = ∂(B1⊕[0, 2]e) in E1⊕Re. Then A (k, 1)-links (B2, S2)
in E.

The two following propositions exhibit new homological linking situations.
From a homotopical point of view, they where studied by Frigon [6]. These
linking fully deserve to be called “linking of pairs” since for both of them we
have A 6= ∅ and P 6= ∅. A more geometrical argument is also possible, but it is
longuer.

Proposition 2.18. Let E = E1 ⊕ E2 ⊕ Re with e ∈ E of unit length and
k = dim E1 ∈ ]0,∞[. Let B = B1 + e, A = S1 + e, Q = E2 + [0,∞[e et P = E2

Then (B,A) (k, 1)-links (Q, P ) in E.

Proof. Let ε ∈ ]0, 1[ and

B̂ = B ∪ (εB1 + ]0,∞[e + E2), Â = B̂ \ (]0,∞[e + E2).

Since B (resp. A) is a strong deformation retract of B̂ (resp. Â), the inclusion
(B,A) → (B̂, Â) induces an isomorphism Hk(B,A) ∼= Hk(B̂, Â). Let

U = (E \ P ) \ B̂ ⊂ E \Q ⊂ E \ P,
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and observe that U ⊂ int (E \Q) in E \P , B̂ = (E \P )\U and Â = (E \Q)\U .
Hence, by excision, the inclusion (B̂, Â) → (E\P,E\Q) induces an isomorphism
Hk(B̂, Â) ∼= Hk(E \ P,E \Q). The result follows from Hk(B,A) ∼= K. �

A similar argument leads to the following proposition.

Proposition 2.19. Let E = E1 ⊕ E2 with k = dimE1 ∈ ]0,∞[. Then
(B1, S1) (k, 1)-links (B2, S2) in E.

3. Homotopical consequences of homological linking

Let (B,A) and (Q,P ) be pairs of subspaces in a topological space X such that
B∩P = ∅ and A∩Q = ∅. The following lemma shows that relative homotopical
linking is an obstruction to extension factoring through a homotopically trivial
pair.

Lemma 3.1. The following statements are equivalent.

(a) The pair (B,A) homotopicaly links (Q,P ).
(b) There exists no homotopy η: [0, 1]× (B,A) → (X \ P,X \Q) such that

η = id on {0}×B∪ [0, 1]×A making the following diagram commutative

(B,A)
η1//

η1
''NNNNNNNNNNN

(X \ P,X \Q)

(X \Q,X \Q)

OO

Corollary 3.2. Homological linking implies homotopical linking.

Remark 3.3. To see that homotopical linking doesn’t imply homological
linking, it is sufficient to consider X = B = Q to be a singleton and A = P = ∅.

4. Homological linking principle

Let H be a Hilbert space and let f ∈ C2(H, R). The following notation is
standard. Given c ∈ R, fc = {p ∈ H | f(p) ≤ c} is a level set of f , K(f) = {p ∈
H | f ′(p) = 0} is the critical set of f , Kc(f) = K(f) ∩ f−1(c).

Throughout this section, the following hypothesis are assumed,

(H1) the Palais–Smale condition for f holds. That is, each sequence (xn)n∈N

such that (f(xn)) is bounded and f ′(xn) → 0 admits a convergent
subsequence,

(H2) the set K(f) of critical point of f is discrete.

In particular, f(K) is discrete and for each bounded interval I, K∩I is compact.
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Under these assumptions, there is a suitable Morse theory which is well
behaved (see [9] for instance). We shall use the following standard notation.
Given p ∈ Kc(f),

Cq(f, p) := Hq(fc, fc \ {p})

is the q-th critical group of f at p. Let a < b be two regular values of f ,

µq(fb, fa) :=
∑

p∈K(f)∩f−1[a,b]

dim Cq(f, p)

is the Morse number of the pair (fb, fa). The function f is said to be a Morse
function if its critical points are all non-degenerate.

Remark 4.1. Most of our results depend only on the Morse inequalities.
It is thus possible to use any other setting where they hold. For example, in
[8] a Morse theory for continuous functions on metric spaces is presented. In
applications to PDE, it may be necessary to use the Finsler structure approach
of Chang [4] to apply the results in suitable Sobolev spaces.

The following theorem is an easy exercise and was probably first observed by
Marston Morse himself.

Theorem 4.2 (Homological Linking Principle). Let (B,A) and (Q,P ) be
pairs of subspaces in H and let a < b be regular values of f such that (B,A) ⊂
(fb, fa) ⊂ (H \P,H \Q). If (B,A) (q, β)-links (Q,P ) in H for some β ≥ 1 then
f admits a critical point p such that a < f(p) < b and Cq(f, p) 6= 0. Moreover,
if f is a Morse function then it admits at least β such points.

Proof. It follows from commutativity of

H̃q(B,A) //

��

H̃q(H \ P,H \Q)

H̃q(fb, fa)

77nnnnnnnnnnnn

that dim H̃q(fb, fa) ≥ β. Application of the weak Morse inequalities leads to
µq(fb, fa) ≥ β and to the first conclusion. The non-degeneracy condition leads
to the second one. �

Remark 4.3. From Remark 2.4 and our linking principle we recover the
weak Morse inequalities. This shows that our homological linking contains nearly
as much information as classical Morse theory.

Lemma 4.4. Let (B,A) and (Q,P ) be pairs of subspaces in H such that

sup f(B) < inf f(P ), sup f(A) ≤ inf f(Q).
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If (B,A) (q, β)-links (Q,P ) in H for some β ≥ 1 then inf f(Q) ≤ sup f(B).

Proof. Let the opposite be supposed: sup f(B) < inf f(Q). For each n ∈ N,
there exist regular values an < bn in ]sup f(B), sup f(B) + 1/n[. If n is big
enough, sup f(B) + 1/n < inf f(Q) ≤ inf f(P ) so that

(B,A) ⊂ (fbn , fan) ⊂ (X \ P,X \Q).

It follows from the homological linking principle that f admits a critical value
cn ∈ ]an, bn[. The infinite sequence (cn) converges to c = sup f(B) which must
therefore be critical because the set of all critical values of f is closed. This
contradicts the fact that critical values must be isolated. �

The next theorem will be usefull for applications. In the next section, it will
be used to prove some multiplicity results.

Theorem 4.5. Let (B,A) and (Q,P ) be pairs of subspaces in H such that

sup f(B) < inf f(P ), sup f(A) < inf f(Q).

If (B,A) (q, β)-links (Q, P ) in H for some β ≥ 1 then f admits a critical point
p such that

inf f(Q) ≤ f(p) ≤ sup f(B)

and Cq(f, p) 6= 0. Moreover, if f is a Morse function then it admits at least β

such points.

Proof. By the preceding lemma,

sup f(A) < inf f(Q) ≤ sup f(B) < inf f(P ).

There exist regular values an < bn (n ∈ N) such that

sup f(A) < an < inf f(Q) ≤ sup f(B) < bn < inf f(P )

and an → inf f(Q), bn → sup f(B). By the linking principle, there must exist
a sequence (pn) of critical points such that Cq(f, pn) 6= 0 and such that the
sequence (cn) = (f(pn)) satisfies an < cn < bn. Because critical values are
isolated, cn ∈ [inf f(Q), sup f(B)] for n big enough. �

The following result follows directly from Proposition 2.19 and Theorem 4.5.
As far as we know, this result is new.

Theorem 4.6. Let H = H1 ⊕H2 with k = dim H1 < ∞. If

sup f(S1) < inf f(B2), sup f(B1) < inf f(S2)

then f admits a critical point p such that

inf f(S2) ≤ f(p) ≤ sup f(S1)

and Ck(f, p) 6= 0.
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4.1. Multiplicity results. By combining Corollaries 2.14 and 2.17 with
Theorem 4.5, we get a version of a well known multiplicity result (see [13] for
instance). As before, we get extra information about the critical groups.

Proposition 4.7. Let H = H1 ⊕H2 with k = dim H1 ∈ ]0,∞[ and e ∈ H2

be of unit length. Let B = B1 ⊕ [0, 2]e and A = ∂B in in H1 ⊕ Re. If f is
bounded below on B2 and if

sup f(A) < inf f(S2)

then f admits two critical points p0 6= p1 such that

inf(f(B2) ≤ f(p0) ≤ sup f(A), inf f(S2) ≤ f(p1) ≤ sup f(B)

and Ck(f, p0) 6= 0, Ck+1(f, p1 6= 0).

Proof. Because

sup f(A) < inf f(S2), sup f(∅) = −∞ < inf f(B2)

and A (k, 1)-links (B2, S2), it follows from Theorem 4.5 that f admits a critical
point p0 such that inf f(B2) ≤ f(p0) ≤ sup f(A) and Ck(f, p0) 6= 0. Also,
Corrolary 2.14 says that (B,A) (k + 1, 1)-links S2. Since

sup f(B) < ∞ = inf f(∅), sup f(A) < inf f(S2)

it follows from Theorem 4.5 that f admits a critical point p1 such that inf f(S2) ≤
f(p1) ≤ sup f(B) and Ck+1(f, p1) 6= 0. The inequality

f(p0) ≤ sup f(A) < inf f(S2) ≤ f(p1)

insure that p0 and p1 are distinct. �

A similar argument using Corollaries 2.13 and 2.16 leads to the next theorem.
This result was already known to Perera [11].

Theorem 4.8. Let H = H1 ⊕H2 with k = dim H1 ∈ ]0,∞[ and let e ∈ H1

be of unit length. If f is bounded below on H1 + [0,∞[e and if

sup f(S1) < inf f(H2)

then f admits two critical points p0 6= p1 such that

inf(f(H1+[0,∞[e)) ≤ f(p0) ≤ max f(S1), inf f(H2) ≤ f(p1) ≤ max f(B(0, 1))

and Ck−1(f, p0) 6= 0, Ck(f, p1 6= 0).
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Département de Mathématiques et Statistique
Université de Montréal

C. P. 6128, Succ. Centre-ville
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