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HOMOTOPY METHOD FOR POSITIVE SOLUTIONS
OF p-LAPLACE INCLUSIONS

Jean-François Couchouron — Radu Precup

Abstract. In this paper the compression-expansion fixed point theorems

are extended to operators which are compositions of two multi-valued non-
linear maps and satisfy compactness conditions of Mönch type with respect

to the weak or the strong topology. As an application, the existence of pos-

itive solutions for p-Laplace inclusions is studied.

1. Introduction

Various mathematical models for nonlinear problems are expressed as bound-
ary value problems for differential, integro-differential, or more generally, functio-
nal-differential equations or inclusions. These can be equivalently reformulated
as an operator inclusion with decomposable maps,

(1.1) x ∈ ΨΦx

where ΨΦ stands for the composition Ψ ◦ Φ of two single or multi-valued op-
erators Ψ and Φ. In [14], a fixed point approach has been used to develop an
existence theory for inclusion (1.1). The key result in [14] is the following fixed
point principle for decomposable non-convex-valued maps. Before we state it we
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introduce the notation:

Pfc(X) = {A ⊂ X : A is nonempty, closed, convex},
Pkwc(X) = {A ⊂ X : A is nonempty, weakly compact, convex}.

Here X is a closed convex subset of a normed linear space.

Theorem 1.1. Let X, Y be normed linear spaces or, more generally, metriz-
able locally convex linear topological spaces, let A and B be non-empty weakly
compact convex subsets of X and Y , respectively, and let

Φ: A → Pfc(B), Ψ:B → Pfc(A)

be two multi-valued maps. Assume Φ and Ψ are sequentially weakly upper semi-
continuous (w-u.s.c. for short). Then there exists at least one x ∈ A with x ∈
ΨΦx and, equivalently, there exists at least one y ∈ B with y ∈ ΦΨy.

Remark 1.2. The result remains true if A, B are compact with respect
to the strong topology and Φ, Ψ are upper semi-continuous (u.s.c. for short).
Indeed, any u.s.c. map on a compact set is sequentially w-u.s.c.

The above principle yields the following fixed point theorems for self-maps
of a closed convex set.

Theorem 1.3. Let X, Y be normed linear spaces, let C be a closed convex
subset of X, and let

Φ: C → Pkwc(Y ), Ψ: co Φ(C) → Pfc(C)

be two multi-valued maps. Assume that there exists x0 ∈ C such that the follow-
ing condition holds:

(1.2) if A ⊂ C, A = co ({x0} ∪Ψ(co Φ(A))) then A is weakly compact and

Φ, Ψ are sequentially w-u.s.c. on A and co Φ(A), respectively.

Then there exists at least one x ∈ C with x ∈ ΨΦx.

Remark 1.4. Theorem 1.3 is also true if instead of (1.2) we take the condi-
tion

if A ⊂ C, A = co ({x0} ∪Ψ(co Φ(A))) then A is compact and

Φ, Ψ are u.s.c. on A and co Φ(A), respectively.

As a result, a Leray–Schauder type continuation theorem for non-self-maps
was also obtained in [14].
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Theorem 1.5. Let X and Y be normed linear spaces, K a closed convex
subset of X, U a convex relatively open subset of K, x0 ∈ U and let

Φ: U → Pkwc(Y ), Ψ: co Φ(U) → Pfc(K)

be two multi-valued maps. Assume that for every compact convex subset A of U ,
Φ and Ψ are sequentially w-u.s.c. on A and co Φ(A), respectively. Also assume
that the two conditions:

(a) if A ⊂ U , A closed convex, A ⊂ co ({x0} ∪ Ψ(co Φ(A))) then A is
compact,

(b) x /∈ (1− λ)x0 + λΨΦx for all x ∈ U \ U , λ ∈ (0, 1)

are satisfied. Then there exists at least one x ∈ U with x ∈ ΨΦx.

The main idea of the proof of Theorem 1.1 is to consider the Cartesian
product map Π:A×B → Pfc(A×B), given by

Π(x, y) = Ψy × Φx

whose values are convex in X × Y . This is done to overcome the difficulty that
ΨΦx is generally non-convex. Then observe that A × B is a weakly compact
convex subset of X × Y and Π is sequentially w-u.s.c. Now the Arino–Gautier–
Penot fixed point theorem guarantees the existence of a fixed point (x, y) of Π.
Hence x ∈ Ψy and y ∈ Φx, whence x ∈ ΨΦx.

The same idea will be used in this paper to give extensions for inclusions of
type (1.1), of the Krasnoselskii’s compression-expansion fixed point theorem in
a cone. Such type of results give information about the existence of nontrivial
(non-zero) solutions, and also, in some cases, lead to multiplicity theorems. Our
extensions will use compactness conditions of Mönch type with respect to the
strong topology, or to the weak topology, in the same way that Theorem 1.3
does. This abstract part of the paper also relates to the continuation theorems
established in [6] and [7]. As an application and mainly motivated by the recent
paper [15], we present an existence principle for positive solutions of inclusions
with p-Laplacian. We shall use the fixed point approach and basic results on the
p-Laplacian (see [8], [4], [19]) in order to complement and extend to p-Laplacian
some methods and results given for the classical Laplacian ([9], [12], [17]), and
to inclusions with p-Laplacian, several results obtained for p-Laplace equations
[2], [3], [13], [15] and [18].

2. Compression-expansion fixed point theorems

Let (X, | · |) and Y be normed linear spaces and K a wedge of X. We start
with a compression type theorem.
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Theorem 2.1. Let

Φ: K → Pkwc(Y ), Ψ:K × C → Pfc(K)

be two bounded multi-valued maps, where C = co({0} ∪ Φ(K)). Assume that

(2.1) if A ⊂ K, A = co ({0} ∪Ψ(A× co({0} ∪ Φ(A)))

then A is weakly compact and Φ, Ψ are sequentially w-u.s.c. on A

and co({0} ∪ Φ(A)), respectively.

In addition assume that there are 0 < r < R, x0 ∈ K, r ≤ |x0| ≤ R and h ∈
Ψ(x0,Φ(x0)), h 6= 0, such that the following compression condition is satisfied:

x /∈ λΨ(x,Φx) for λ ∈ (0, 1) and x ∈ K with |x| = R,(2.2)

x /∈ Ψ(x,Φx) + µh for µ > 0 and x ∈ K with |x| = r.(2.3)

Then there exists at least one x ∈ K with x ∈ Ψ(x,Φx) and r ≤ |x| ≤ R.

Proof. Let M be the collection of all closed, convex subsets M of K with
x0 ∈ M and

co({0} ∪Ψ(M × co({0} ∪ Φ(M)))) ⊂ M.

Clearly, K ∈ M and 0, h ∈ M for every M ∈ M. Moreover, it is easy to see
that

M ∈M ⇒ co({0} ∪Ψ(M × co({0} ∪ Φ(M)))) ∈M.

Define the set A = ∩{M : M ∈M}. We have A ∈M. Also,

A = co({0} ∪Ψ(A× co({0} ∪ Φ(A)))).

It follows from (2.1) that A is weakly compact and Φ, Ψ are sequentially w-u.s.c.
on A and B := co({0} ∪ Φ(A)), respectively.

Since Φ is sequentially w-u.s.c. on A, we have that B is weakly compact too.
Define the map Π: A×B → Pfc(A×B) by Π(x, y) =
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Here for 0 < |x| < r and y ∈ B,

λ(x, y) = sup
{

λ : λ ∈ (0, 1], λ
r

|x|
y ∈ B

}
.

Notice

λ(x, y) = 1 if y ∈ |x|
r

Φ
(

r

|x|
x

)
.

Also note that
|x|
r

Ψ
(

r

|x|
x, λ(x, y)

r

|x|
y

)
+

δ

r
h ∈ A.

This follows from the following remark: if A is convex and 0 ∈ A, then αx+βy ∈
A for every x, y ∈ A and α, β ∈ [0, 1] with α + β ≤ 1. Indeed,

αx + βy = (α + β)
[

α

α + β
x +

β

α + β
y

]
∈ (α + β)A ⊂ A.

One can prove that Π is sequentially w-u.s.c. (see [11, Theorem 1.2.12]).
Now the Arino–Gautier–Penot fixed point theorem, guarantees the existence

of a fixed point (x, y) ∈ A×B of Π. It remains to show that r ≤ |x| ≤ R. Clearly
x 6= 0 since h 6= 0. If 0 < |x| ≤ r − δ, then

x ∈ |x|
r

Ψ
(

r

|x|
x,Φ

(
r

|x|
x

))
+

δ

r
h.

If we denote z = (r/|x|)x, then |z| = r and

z ∈ Ψ(z,Φz) + µh

where µ = δ/|x| > 0. This contradicts (2.3). We derive the same contradiction
if we assume r − δ < |x| < r. Finally, assume |x| > R. Then

x ∈ Ψ
(

R

|x|
x,Φ

(
R

|x|
x

))
and if we denote z = (R/|x|)x, we see that |z| = R and z ∈ (R/|x|)Ψ(z,Φz) with
0 < R/|x| < 1, which contradicts (2.2). Therefore r < |x| < R. �

Our next abstract result is an expansion type theorem.

Theorem 2.2. Assume the conditions of Theorem 2.1 except (2.2)–(2.3) are
satisfied. In addition assume that the following expansion condition holds:

x /∈ λΨ(x,Φx) for λ ∈ (0, 1) and x ∈ K with |x| = r

and

x /∈ Ψ(x,Φx) + µh for µ > 0 and x ∈ K with |x| = R.
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Then there exists at least one x ∈ K with x ∈ Ψ(x,Φx) and r ≤ |x| ≤ R.

Proof. Define Φ′:K → Pkwc(Y ), by

Φ′(x) = Φ
((

R

|x|
+

r

|x|
− 1

)
x

)
if r ≤ |x| ≤ R,

Φ′(x) = Φ
((

R

r

)
x

)
if |x| < r,

Φ′(x) = Φ
((

r

R

)
x

)
if |x| > R.

Also define Ψ′:K × C → Pf c(K) by
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(

R
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r

|x|
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)−1

Ψ
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|x|
+

r

|x|
− 1

)
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)
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if |x| > R.

Notice, if x = (R/|x| + r/|x| − 1)x, then r ≤ |x| ≤ R whenever x ∈ K and
r ≤ |x| ≤ R. Also |x| = r for |x| = R and |x| = R if |x| = r. Now observe that
conditions (2.2)–(2.3) in Theorem 2.1 holds for Φ′ and Ψ′ instead of Φ and Ψ,
respectively, with x0 and h := (R/|x0|+ r/|x0| − 1)h. Consequently, there exists
x′ ∈ K with x′ ∈ Ψ′(x′,Φ′x′) and r ≤ |x′|‘ ≤ R. Then x := (R/|x′|+r/|x′|−1)x′

satisfies x ∈ Ψ(x,Φx) and r ≤ |x| ≤ R. �

In particular, if Ψ(x, y) = Ψ(y), we immediately derive from Theorems 2.1
and 2.2, an existence principle for (1.1).

Theorem 2.3. Let Φ: K → Pkwc(Y ), Ψ:C → Pfc(K) be two bounded multi-
valued maps. Assume that

(2.4) A ⊂ K, A = co ({0} ∪Ψ(co({0} ∪ Φ(A))) ⇒ A is weakly compact

and Φ,Ψ are sequentially w-u.s.c. on A and co({0} ∪ Φ(A)), respectively.

In addition assume either

(2.5)

{
x /∈ λΨΦx for λ ∈ (0, 1) and x ∈ K with |x| = R; and

x /∈ ΨΦx + µh for µ > 0 and x ∈ K with |x| = r,

or

(2.6)

{
x /∈ λΨΦx for λ ∈ (0, 1) and x ∈ K with |x| = r; and

x /∈ ΨΦx + µh for µ > 0 and x ∈ K with |x| = R.
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Then there exists at least one x ∈ K with x ∈ ΨΦx and r ≤ |x| ≤ R.

Theorem 2.3 yields in particular the following compression-expansion princi-
ple for convex-valued maps.

Corollary 2.4. Let Φ: K → Pkwc(K) be a bounded multi-valued map. As-
sume that Φ is sequentially w-u.s.c. and

A ⊂ K, A = co ({0} ∪ Φ(A)) ⇒ A is weakly compact

and Φ is sequentially w-u.s.c. on A.

In addition assume that one of the following conditions is satisfied{
x /∈ λΦx for λ ∈ (0, 1) and x ∈ K with |x| = R, and

x /∈ Φx + µh for µ > 0 and x ∈ K with |x| = r;{
x /∈ λΦx for λ ∈ (0, 1) and x ∈ K with |x| = r, and

x /∈ Φx + µh for µ > 0 and x ∈ K with |x| = R.

Then there exists at least one x ∈ K with x ∈ Φx and r ≤ |x| ≤ R.

Our next result gives an useful sufficient condition to guarantee the second
part of (2.5) and of (2.6).

Theorem 2.5. Assume that for some r0 > 0, µ0 ≥ 0, and h ∈ K, h 6= 0,
the following conditions hold:

x /∈ ΨΦ(x + µh) for all x ∈ K, µ ≥ µ0;(2.7)

x /∈ ΨΦ(x + µh) for all x ∈ K, |x| > r0, µ ∈ (0, µ0).(2.8)

Then
x /∈ ΨΦx + µh for µ > 0 and x ∈ K with |x| ≥ ρ,

where ρ = r0 + µ0|h|.

Proof. Assume the contrary. Then there exists an x ∈ K with |x| ≥ ρ and
x ∈ ΨΦx + µh for some µ > 0. Denote y := x− µh. Then

y ∈ ΨΦ(y + µh).

Since Ψ has values in K, the last relation says that y ∈ K. The case µ ≥ µ0 is
impossible by (2.7). Now if µ < µ0, then from (2.8), |y| ≤ r0. But

|y| ≥ |x| − µ|h| > |x| − µ0|h| ≥ ρ− µ0|h| = r0,

which is a contradiction. �

Remark 2.6. If (2.7) holds and there exists constants r0, r1 > 0 such that
|x| 6= r0 for all solutions x ∈ K to

x ∈ λΨΦx



164 J.-F. Couchouron — R. Precup

and every λ ∈ (0, 1), and |x| ≤ r1 for every solution x ∈ K to

x ∈ ΨΦ(x + µh)

and µ ∈ (0, µ0), then (2.5) or (2.6) is satisfied with R := r0 and r := r1 +µ0|h| if
r0 > r1 +µ0|h| and respectively with r = r0 and R > r1 +µ0|h| if r0 ≤ r1 +µ0|h|.

3. Positive solutions of p-Laplace inclusions

Consider the boundary value problem

(3.1)

{
−∆pu ∈ f(x, u,∇u) in Ω,

u = 0 on ∂Ω

Here Ω ⊂ RN is a bounded smooth domain, ∆pu = div(|∇u|p−2∇u), p > 1, and
| · | is the Euclidean norm in RN . We seek weak solutions to (3.1), i.e. a function
u ∈ W 1,p

0 (Ω), for which there is w ∈ L∞(Ω) with w(x) ∈ f(x, u(x),∇u(x)) for
a.e. x ∈ Ω and∫

Ω

|∇u|p−2∇u · ∇v dx =
∫

Ω

wv dx for all v ∈ W 1,p
0 (Ω).

Notice that by a well-known regularity result (see [3] and [4]), any weak solution
of (3.1) belongs to C1(Ω). By a positive solution to (3.1) we mean a weak solution
u with u > 0 in Ω.

We shall assume that f : Ω× RN+1 → 2R is such that

(3.2) f(x, v) ⊂ R+ for all v ∈ R+ × RN and a.e. x ∈ Ω.

Also assume that

(3.3) the map F :Lm(Ω; RN+1) → 2Ln(Ω) given by Fv := {w ∈ Ln(Ω) :
w(x) ∈ f(x, v(x)) for a.e. x ∈ Ω} has non-empty, closed, convex values,
is u.s.c. and F (C(Ω; RN+1)) ⊂ L∞(Ω)

for some m,n ∈ [1,∞). Sufficient conditions for (3.3) can be found in [5].
In what follows by λ1 and φ1 we shall denote the first eigenvalue of the

p-Laplacian and its associated positive eigenfunction.
From Theorem 2.3, we obtain the following existence principle for (3.1), under

an “a priori bounds” assumption.

Theorem 3.1. Assume (3.2), (3.3), there exists r0 > 0 such that

(3.4) |u|W 1,p(Ω) 6= r0

for every solution u ≥ 0 to −∆pu ∈ λf(x, u,∇u) and all λ ∈ (0, 1), and that for
each µ0 > 0 there exists r1 > 0 with

(3.5) |u|W 1,p(Ω) ≤ r1
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for every solution u ≥ 0 to −∆pu ∈ f(x, u + µ,∇u) and all µ ∈ (0, µ0). In
addition assume that one of the following conditions holds:

(a) there exists constants a > λ1 and b ≥ 0 with

(3.5) aup−1 − b ≤ f(x, u, v)

for all u ∈ R+, v ∈ RN and a.e. x ∈ Ω;
(b) there exists constants a > 0, b, c ≥ 0 and q > p − 1, α ∈ (p −

1, pq/(q + 1)) with

auq − b|v|α − c ≤ f(x, u, v)

for all u ∈ R+, v ∈ RN and a.e. x ∈ Ω.

Then problem (3.1) has a positive solution.

Proof. It is well known that for every v ∈ W−1,p′
(Ω), there exists a unique

uv ∈ W 1,p
0 (Ω) denoted by (−∆p)−1v such that −∆puv = v in the weak sense,

i.e. ∫
Ω

|∇u|p−2∇u · ∇w dx = (v, w) for all w ∈ W 1,p
0 (Ω),

and the (nonlinear) map (−∆p)−1 is bounded and continuous from W−1,p′
(Ω) to

W 1,p
0 (Ω). In addition, by the strong maximum principle for the p-Laplacian (see

[19]), if v ∈ L∞(Ω), v ≥ 0 and v 6= 0, then uv > 0 in Ω. Hence any nontrivial,
nonnegative solution to (3.1) is positive.

Let X := C1(Ω) endowed with the norm of W 1,p(Ω), Y := L∞(Ω) endowed
with the norm of Ln(Ω) and K := {u ∈ C1(Ω) : u ≥ 0}.

Let Φ: X → 2Y be defined by Φ = FJ , where J :C1(Ω) → C(Ω; RN+1),
Ju = (u,∇u). Clearly J is a bounded linear operator. Consequently, Φ has
non-empty, closed, convex values and is u.s.c. Also, define Ψ : L∞(Ω) → C1(Ω),
by Ψv = (−∆p)−1v. Clearly Ψ is completely continuous since the imbedding of
L∞(Ω) into W−1,p′

(Ω) is compact. Consequently, ΨΦ sends bounded sets into
relatively compact sets, so condition (2.4) trivially holds.

Now a positive solution of (3.1) is a fixed point u ∈ C1(Ω) of ΨΦ with u > 0
on Ω. Let us prove that

u /∈ ΨΦ(u + µ) for all u ∈ C1(Ω), u ≥ 0, u 6= 0 and µ ≥ µ0

for some sufficiently large µ0 > 0.
Assume first (a). We shall use the arguments used in [9], [12] and [17] for

the classical Laplacian. Let u ∈ C1(Ω), u ≥ 0, u 6= 0 and u ∈ ΨΦ(u + µ) for
some µ ≥ (b/a)1/(p−1). Then according to (3.5), we have

(3.6) −∆pu ≥ a(u + µ)p−1 − b ≥ a(up−1 + µp−1)− b ≥ aup−1



166 J.-F. Couchouron — R. Precup

Now we recall Picone’s identity for the p-Laplacian (see [1]):

(3.7) |∇v|p + (p− 1)
vp

up
|∇u|p − p

vp−1

up−1
∇v|∇u|p−2∇u

= |∇v|p −∇
(

vp

up−1

)
|∇u|p−2∇u ≥ 0

for u, v ∈ C1(Ω), u > 0 and v ≥ 0. This for v = φ1 gives

(3.8)
∫

Ω

∇
(

φp
1

up−1

)
|∇u|p−2∇u ≤

∫
Ω

|∇φ1|p = λ1

∫
Ω

φp
1.

On the other hand, (3.6) gives∫
Ω

∇
(

φp
1

up−1

)
|∇u|p−2∇u = −

∫
Ω

φp
1

up−1
∆pu ≥ a

∫
Ω

φp
1.

Hence
a

∫
Ω

φp
1 ≤ λ1

∫
Ω

φp
1

which contradicts a > λ1.
Assume now (b). We shall basically use the same arguments as in [15] (see

also [16]). Let u ∈ C1(Ω), u ≥ 0, u 6= 0 and u ∈ ΨΦ(u+µ) for some µ ≥ (c/a)1/q.
We have∫

Ω

∇
(

φp
1

up−1

)
|∇u|p−2∇u = −

∫
Ω

φp
1

up−1
∆pu

≥
∫

Ω

[a(u + µ)q − b|∇u|α − c]
φp

1

up−1
≥

∫
Ω

[auq − b|∇u|α + aµq − c]
φp

1

up−1
.

This together with (3.8) gives

(3.9) b

∫
Ω

|∇u|α φp
1

up−1
≥ (l(µ)− λ1)

∫
Ω

φp
1

where

l(µ) = min
{

atq + aµq − c

tp−1
: t > 0

}
.

It is easy to see that l(µ) → ∞ as µ → ∞. Then (3.9) will guarantee that µ is
bounded if we show that the left side of (3.9) is bounded from above. Indeed,
from

−∆pu ≥ a(u + µ)q − b|∇u|α − c ≥ auq − b|∇u|α + aµq − c ≥ auq − b|∇u|α,

taking the test function φp
1/up−1 we obtain∫

Ω

∇
(

φp
1

up−1

)
|∇u|p−2∇u ≥ a

∫
Ω

φp
1u

q−p+1 − b

∫
Ω

φp
1u
−p+1|∇u|α.

On the other hand, according to (3.7), the left integral is equal to

−(p− 1)
∫

Ω

φp
1u
−p|∇u|p + p

∫
Ω

φp−1
1 u−p+1∇φ1|∇u|p−2∇u.



Homotopy Method for Positive Solutions of p-Laplace Inclusions 167

Hence

(3.10) (p− 1)
∫

Ω

φp
1u
−p|∇u|p + a

∫
Ω

φp
1u

q−p+1

≤ p

∫
Ω

φp−1
1 u−p+1|∇φ1||∇u|p−1 + b

∫
Ω

φp
1u
−p+1|∇u|α.

Now using the Young inequality x ≤ εxγ + C with γ > 1 (here we take γ :=
p/(p− 1)), and the fact that ∇φ1 is bounded, we obtain that

(3.11) p

∫
Ω

φp−1
1 u−p+1|∇φ1||∇u|p−1 ≤ p− 1

2

∫
Ω

φp
1u
−p|∇u|p + C.

Then (3.10) and (3.11) imply

(3.12)
p− 1

2

∫
Ω

φp
1u
−p|∇u|p + a

∫
Ω

φp
1u

q−p+1 ≤ b

∫
Ω

φp
1u
−p+1|∇u|α + C.

Now we use the Young inequality in the form

xy ≤ εxγ + ε1/(1−γ)yγ/(γ−1), γ > 1, ε > 0,

first with x := φp−α
1 u1−p+α, y := φα

1 u−α|∇u|α, γ = p/(p− α) and ε := ε1 > 0
such that bε

1/(1−γ)
1 = (p− 1)/4, to obtain

(3.13) b

∫
Ω

φp
1u
−p+1|∇u|α ≤ p− 1

4

∫
Ω

φp
1u
−p|∇u|p + bε1

∫
Ω

φp
1u

(1−p+α)p/(p−α).

Next we apply Young’s inequality once again with

γ :=
q − p + 1
1− p + α

· p− α

p
, x := φ

p/γ
1 u(1−p+α)p/(p−α) and ε :=

a

2bε1
.

Notice γ > 1 since α < pq/(q + 1) and p/γ < p. As a result

(3.14) bε1

∫
Ω

φp
1u

(1−p+α)p/(p−α) ≤ a

2

∫
Ω

φp
1u

q−p+1 + C.

Now (3.13) and (3.14) give

(3.15) b

∫
Ω

φp
1u
−p+1|∇u|α ≤ p− 1

4

∫
Ω

φp
1u
−p|∇u|p +

a

2

∫
Ω

φp
1u

q−p+1 + C.

Then (3.12) and (3.15) imply

(3.16)
p− 1

4

∫
Ω

φp
1u
−p|∇u|p +

a

2

∫
Ω

φp
1u

q−p+1 ≤ C

and finally (3.16) and (3.15) guarantee that

b

∫
Ω

φp
1u
−p+1|∇u|α ≤ C

as we wished.
Finally, assumptions (3.4) and (3.5) guarantee (2.5) or (2.6) as shows Remark

2.6 (here h = 1 and |h| = |h|W 1,p(Ω) = |h|Lp(Ω)). �
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Concerning the “a priori bounds” hypothesis (3.4) and (3.5), we refer to the
papers [9], [10] and [17] for the classical Laplacian, to [13] for the one-dimensional
p-Laplacian, and to [3] and [15], for the N -dimensional p-Laplacian.

For example, the a priori estimates in [15], together with our existence prin-
ciple, Theorem 3.1, yield the following version for inclusions of the main result,
Theorem 4.2 in [15].

Theorem 3.2. Assume Ω is a bounded C2 domain in RN , 1 < p < N and
for f : Ω× RN+1 → 2R the following conditions are satisfied:

(a) f(x,w) ⊂ R+ for all w ∈ R+ × RN and a.e. x ∈ Ω;
(b) the graph of f belongs to the σ-field L ⊗ B (here B = B(RN+1)⊗ B(R)

is the Borel σ-field in RN+1 × R);
(c) the map w 7→ f(x,w) is u.s.c. for a.e. x ∈ Ω;
(d) uq − M |v|α ≤ f(x, u, v) ≤ c0u

q + M |v|α for u ∈ R+, v ∈ RN and
a.e. x ∈ Ω, where c0 ≥ 1, M > 0, q ∈ (p − 1, (p− 1)N/(N − p)) and
α ∈ (p− 1, pq/(q + 1)).

Then problem (3.1) has a positive solution.
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Dapartamentul de Matematică Aplicată
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