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ABSTRACT. The nonstationary Navier—Stokes problem is studied in a three-
dimensional domain with cylindrical outlets to infinity in weighted Sobolev
function spaces. The unique solvability of this problem is proved under
natural compatibility conditions either for a small time interval or for small
data. Moreover, it is shown that the solution having prescribed fluxes over
cross-sections of outlets to infinity tends in each outlet to the corresponding
time-dependent Poiseuille flow.
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1. Introduction

In this paper we study the three-dimensional Navier—Stokes problem in do-
mains with cylindrical outlets to infinity, i.e. we study the following initial-
boundary value problem for the Navier—Stokes system

u; — vAu+ (u-V)u+ Vp =1,
divu =0,
u(z,t)|on =0, u(z,0)=ug(x),

(1.1) / u(z,t) -n(x)dS = Fj(t) forj=1,...,J,
;Tj
> Fi(t)=0 for all ¢ € [0, T,
j=1

in a domain Q C R? with .J cylindrical outlets to infinity. It is assumed that
for sufficiently large |x| the domain €2 splits into J disconnected components 2;
(outlets to infinity) that in certain coordinate systems x(/) have the form

(1.2) Q; = {29 e R?: 200 = (xgj),xéj)) €oj, 0< xgj) < oo},

where cross-sections ; C R? are bounded domains. The condition (1.14) pre-
scribes fluxes of the velocity vector u(x,t) over cross-sections o; of outlets to
infinity ©; and the condition (1.15) means that the total flux is equal to zero for
all t € [0, T7.

We assume that F; € W4(0,T), j = 1,...,J, and that the initial velocity
up(z) and the external force f(x,t) admit the representations

J
wo(w) =3 (g (20) + o ),

j=0

<
I

(a9 D (20 1) + F(a, t),

M-

f(x,t) =

<
I
o

where ((7) is a smooth cut-off function with {(7) = 0 for 7 < 1 and ((7) =1
for T > 2, u(()J) € Wi(oj), f9) € La(a]), o] =05 x(0,T), and f, Uy belong to
certain weighted spaces of vanishing at infinity functions. Moreover, we suppose

that there hold the compatibility conditions
dival? () =0, divug(z) =0, uo(z)aq =0,
F;(0) = / uD @D deOV G =1,... .
Under these assumptions we prove the local existence (i.e. either for small data

or for a small time interval [0, T']) of the solution to problem (1.1). The obtained
solution u(z,t) tends in each outlet to infinity 2; to a time-dependent Poiscuille
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type flow UW (20D’ ¢) related to the pipe II; = {z09) € R3 : 20)’ € ¢;, —0c0 <
2§ < 0o}, The decay rate of the difference u(z, t) — U (20)’ 1) is conditioned
by the decay rate of the external force and the initial data. In particular, if
?(x,t) = 0, up(xz) = 0 (or, if /f\'(a:,t) and Ug(z) vanish exponentially), then the
solution u(z,t) tends as |z| — oo,z € Q; to UY)(20)’ t) exponentially. The
uniqueness of the solution to problem (1.1) is proved in a class of functions that
are bounded (in certain sense) at infinity. In particular, from this follows the
uniqueness of the time-dependent Poiseuille flow in a straight pipe. Note that
for the steady case the uniqueness of Poiseuille flow is not known.

The analogous results for the linearized nonstationary Stokes system were
obtained in [8]. The problem (1.1) in a two-dimensional domain Q with strip-
like outlets to infinity was studied in [9], [10] where the global unique existence
of the solution to problem (1.1) was proved (i.e. the unique solution exists for
arbitrary data and the infinite time interval, in particular, for arbitrary fluxes).
In [12] the problem (1.1) was studied in an infinite three-dimensional straight
cylinder. In [12], assuming the norms of Ug(z), /f:(x, t) to be sufficiently small, the
existence of a unique global in time solution to the nonstationary Navier—Stokes
system with prescribed nonzero flux F(t) was proved (the values of the flux F'(t),
ug(z') and f(a’,t) could be arbitrary large). The obtained solution remains close
to the corresponding time dependent Poiseuille type flow and it converges to the
Poiseuille flow as |x3| — oco. The existence of time-dependent Poiseuille type
solutions in a straight pipe is studied in [6], [11], [7].

The nonstationary Navier—Stokes system in general domains with outlets to
infinity was studied in [5], [14]-[16] where the local existence of solutions with
prescribed fluxes F);(t) was proved. These solutions have finite or infinite energy
integral, dependent on the geometry of the outlets to infinity. In particular, if
outlets are cylindrical (or strip-like), the energy integral is infinite. We have
to mention also the paper [1] where the time-dependent perturbation of the
steady Poiseuille flow is studied in weighted spaces with polynomial weights. In
[1] it is assumed that the flux F is independent of ¢ and it is proved that for
sufficiently small |F| the solution of the nonstationary Navier—Stokes problem
tends as |z| — oo to the steady Poiseuille solution.

The paper is organized as follows. In Section 2 we define the function spaces
used in the paper and recall necessary multiplicative inequalities. In Section 3
we present results proved in [7] concerning the existence of the time-dependent
Poiseuille type flow in a straight pipe and we construct a divergence free flux
carrier V(z,t) coinciding in each outlet to infinity Q; with the corresponding
to this outlet time-dependent Poiseuille flow. Finally, we reduce problem (1.1)
to a problem for the perturbation of the constructed flux carrier (see (3.14)).
Note that in (3.14) all fluxes vanish and that there appear additional linear



336 K. PILECKAS

terms (containing the flux carrier V(z,t)) in the Navier—Stokes equations (1.17).
The results from [8] concerning the linear nonstationary Stokes problem are
collected in Section 4. In Section 5 we prove estimate in weighted W22 ’1—spaces
of the nonlinear and perturbation terms contained in equations (3.14). Finally, in
Sections 6 and 7 we prove the existence of a unique solution to problem (3.14) and
the uniqueness of a solution to problem (1.1). In Section 8 we discuss (without
proofs) the behavior as |x| — oo of weak Hopf’s solutions to problem (3.14).

2. Function spaces and auxiliary results

2.1. Notations, function spaces and multiplicative inequalities. The
norm of an element « in a Banach space V' is denoted by |lu; V||. Vector-valued
functions are denoted by bold letters and the spaces of scalar and vector-valued
functions are not distinguished in notations. The vector-valued function u =
(u1,...,u,) belongs to the space V, if u; € V, i = 1,...,n and |Ju; V| =
S s VIl

Let G be an arbitrary domain in R™, n > 1, with the boundary 0G. As usual,
denote by C*°(G) the set of all infinitely many times differentiable in G functions
and by C§°(G) the subset of functions from C'*°(G) with compact supports in G.
For a given nonnegative integer [ and ¢ > 1, W(G) indicates the Sobolev space
of functions with the finite norm

! 1/q
> [itaira)
la]=0"C
where D = 9l°l/ox ... 028, |a| = a1 + ... + an, W2(G) = Ly(G) and
I/?/fz(G) is the closure of C§°(G) in the norm (2.1). We shall write u € W/ ,.(G),

if u € WX(G") for any bounded subdomain G’ with G’ C G. Ls(G) is a linear
space of real Lebesgue measurable functions defined in G with the norm

(2.1) s W) | = (

l4; Loo (G) || = ess sup |u(z)] < oo.
z€G

Consider now functions which depend on € G and t € (0,7). Let GT =
G % (0,T), T € (0,00]. WZ"(GT) is a Hilbert space of functions that have
generalized derivatives Dy DS with every r and « such that 2r + |«| < 2I. The
norm in W22 l’l(GT) is defined by the formula

21 T 1/2
||u;W22l’l(GT)||:(Z > /O/G|D;'Dgu(g;,t)2dxdt) .

=0 2r-+[al=j

W, (GT) and W,°(GT) are spaces of functions with the finite norms

T 1/2
s W (@) = ( [ [ ute.op + ueop + w<w,t>|2>dxdt)
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and
o W O(GT) | = ( / ' /G (lu(e, &) + |w<x,t>|2>dxdt)l/2,

respectively. IX/;’O(GT) and V([)/é1 (GT) are subspaces of functions from W, (GT)
and W' (GT) satisfying the condition u(z,t)|sq = 0.
Let us recall well-known multiplicative inequalities (e.g. [4], [3]).

LEMMA 2.1. Let G C R® be a bounded domain.
(a) Ifue V?/%(G), then

lus La(G)[I* < (4/3)*2|lu; La(G) | Vs L2 (G)]*.
(b) If u € W3 (G), then
(2.2) [z L (G| < ellus Wy (G2 [lus La(G)|] 2.
(c) If u € W2(G), then
(2.3) [u; Loo (@] < € Vs Le(G) |2 [lus Lo (G)|/*
< | Vs Wy (G2 [lu; Wy (G) 2.
The constants in (2.2) and (2.3) depend only on G.

2.2. Weighted function spaces in domains with outlets to infin-
ity. Let Q C R? be a domain with J cylindrical outlets to infinity ©; having the
form (1.2). We introduce the following notations:

ij :{JJEQJ‘:LE?)<}{J}, u}jk:ij+1\ij7 j=1...,J, k>0,

@jk = wjk—1 Uwjr Uwjky, j=1...,J, k>1,
J J
Q) Q<0>U<Uﬂjk)7 Q(o>9\<UQj)-
J=1 j=1

Denote 3 = (f31,...,0s) and let Eg, (z) = Eg, (,Téj)) be a smooth monotone
weight-function in €; such that

(24) Eg(x) >0, a1 <E g (v)Ep(x) <ay forallze;, FEg(0)=1,
(2.5) b1Eg, (k) < Eg,(x) < byEg, (k) forall x € wjy,
(2.6) |VEg, (z)| < b3vkp,(x) for all x € Q;,
(2.7) 1§m Egs, () = oo, if B8; >0,
z{) =00

where the constants ai, as, by, by are independent of k& and b3 is independent
of 3;. Simple examples of such weight-functions are

Ep;(z) = (1+ 3lz§’?)%  and Eg,(z) = exp(23;5)).
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The conditions (2.4), (2.5) and (2.7) for these functions are obvious. The in-
equality (2.6) holds for the first weight-function with v, = [3;|9, and for the
second one with ~, = |5;]. Below, in proofs of solvability for the Navier—Stokes
system, we will require 7, to be “sufficiently small”.

Set
1 for x € Q(O),
Ep(w) = () .
Eg (x5’) forxeQy, j=1,...,J
and define in ) weighted function spaces. Let C§°(Q) be the set of all functions
from C*°(€2) that are equal to zero for large |z|. Denote by Wé’B(Q), 1 >0, the

space of functions obtained as a closure of C§°(f2) in the norm

s W 5 (D = ( 21: /QEﬁ(:CHDO‘U(x)de)l/Q

|a]=0

and let Lo 3(Q2) = Wgﬁ(Q). If B; > 0, weight-indices 3; show the decay rate
of elements u € W 5(€) and their derivatives as |z| — oo, z € ;. If 3; <0,
elements u € W} 5(Q) may grow as |z| — oo, & € ;. Obviously,

Wi 5() C WAQ) CWh_5(Q) for 8; >0, j=1,...,J,
W 5(Q) = W;() for B, =0, j=1,---,J.

Analogously, W;lﬁl(QT) (I >0 is an integer), W, 5(Q7) and W, '5(Q7) are the
spaces of functions obtained as closures of the set of all infinitely many times
differentiable with respect to z and ¢ functions equal to zero for large |z| in the

norms

(Z > [ Ea<w>|D:D:u<x,t>|2dxdt)m,

J=02r+|al=j

Jlus Wyl (1)

1/2

T
(/ Eg(a:)(|ut(x,t)\2 + u(z, t)? + |Vu(z, t)|?) de dt) ,
0 Jo

s Wy ()|

T 1/2
|u;w§;2<ﬂT>|( / /Q Eﬂ<z><|u<x,t>|2+|Vu<x,t>|2>dxdt) ,

respectively. Finally, L2 5(Q7) is the space of functions with the finite norm

s £2,5(97) | = ( / ' / Eﬁ<x>u<x7t>|2dxdt)l/2.

We will need also a “step” weight-function
1 for z € Q,
Eék)(x) = Eﬁj(zéj)) forz e Qjr, j=1,...,J,
Egj(k) f0r$€Qj\ij,j=1,...7J.
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Obviously,
£y(@) = Bylw) for v € Q. IVEP @) < by B (2),
andv if ﬁj > O7 then
ng)(x) < Eg,(x) forall z € Q.

LEMMA 2.2. For any function u € Wgﬁ(ﬂ) which is equal to zero on O
there holds the following weighted Poincaré inequality

(2.8) / Ep(@)u(z)? de < ¢ / (o) V() da.
Q Q
PROOF. Since E[gk) (2) depends only on mgj) in ; and it is equal to 1 in §2(g),
we get (2.8) applying classical Poincaré inequality in the domain () and on the
cross-sections o;. g

REMARK 2.3. Obviously, in (2.8) one may take the bounded domain €
and the “step” weight-function Eék)(x) instead of 2 and Eg(x). The constant in

the obtained weighted Poincaré inequality is the same as in (2.8) and does not
depend on k and [.

3. Reduction of problem (1.1) to a problem with zero fluxes

Let 0 € C?. Consider in the domain Q problem (1.1). Assume that F; €
Ws(0,T), j = 1,...,J, and that the initial velocity ug(z,t) and the external
force f(x,t) admit the representations

J
ug(z) = (@ )uf’ (29) + o (2),
j=0
J

fo,t) = (@)D (@D, )+, 1),
j=0

(3.1)

where ((7) is a smooth cut-off function with ¢(7) =0 for 7 <1 and {(7) =1 for
T 22,

ui (@) = (i) @), ufl) (@), uf) (29)),

3.2 , ; j
( ) f(j)(.’E(J)/, t) _ (fl(J)(x(_j)/7 t),fQ(J)(x(j)/, t)7f§])(x(j)/7 t)),

W) € Whio,), £9) € Ly(o7), =1
o € Who(NW(Q), felap(Ql), 6,20, j=1,...,J
Moreover, suppose that there hold the compatibility conditions

33)  divuy(z¥’) =0, F;(0) :/ u) (D) da D' G =1,... .

J
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Then (see [7]) in each cylinder II; = o; x (0, T') there exists a Poiseuille type
solution (UU) (0 #), PU)(20) ¢)) having the form

U (20 1) = (Ul(j)(sc(j)’ t) UZ(j)( @) ), U(J')( @7 )

3.4 ) ) ) ) )
(38.4) PO (2D 1) = 5D (2D 1) — ¢V (t)a (J) +p(j)( 1),

where (U@ (20)",1), 50 (@9, 1)) = (U (@0, ), U5 (@0, ), 5 (9, 1))
is a solution of the two-dimensional Navier—Stokes problem on the cross-section

0j:

U,gj)’ — AU 4 (U(j)/ . v/)U(j)/ L VP = )
(3.5) divu (20’ ) = 0,

U(j)’(x(j)’,t)bgj =0, U(j)’(x(j)’,o) = u(j)é(x(j)/)’
with
£ (20 ) = (fl(j)(:v(j)',t), féj)(x(j)’,t)),ugj)’(m(j)’) - (uéﬂ)(x(j)’),uéé) (zD"))
and (Uéj)(x(j)’,t), q)(t)) is the solution of the inverse parabolic problem:

(J) _ Z/A/U(j) (U(j)/ . v/)Uéj) _ q(j)( ) f(j)
(3.6) Ué D (20 1)]ag =0, U (@,0) = ulf) (z0)),
[ @t = i,

Note that in (3.6) F;(t), £ (1), ) and u§} (1)) are given while U (21’ t)

and ¢U)(t)) has to be found. The function p(J)( t) in (3.4) is arbitrary.
The following result is well known (see [3, Chapter VI]).

THEOREM 3.1. Let do; € C2, u’ € Wi(o;), div'u@}(z0)") = 0, £9)/
LQ(UJ-T). Then for arbitrary T € (O,oo] problem (3.5) admits a unique solution
(UW 59 such that UW) ¢ W22’1(U]T), V'p9) € Ly(oT) and there holds the
estimate

(3.7) U W2 T2 + |V'59); La(oT)|? < AT,

The constant A(J) n (3.7) depends on the norms ||u(j)/ Wa (o), |1£9); Lo (o T)H
If T = oo, then

U9 (-,1); La(a)) |1 + [V UD (-, 8); La(o)|* = 0 as t — oo.
Problem (3.6) is studied in [7]:

THEOREM 3.2. Let do; € C2, ul) € V?/%(Uj), F9 e Ly(o]), Fj € W3(0,T)
and let there holds the compatibility condition

F;(0) :/u(()?(x(j)’)d:c(j)’.
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Then for arbitrary T € (0, 0] problem (3.6) admits a unique solution (Uéj), q))e
W22’1(0JT) x L9(0,T). There holds the estimate

(3.8) U W3t (@)1 + [lg“; La(0,8)|2
< (AP Lol + [lugys W (o)1 + | By W (0, 8)]12),
for all t € (0, T, with a constant c(A(()J)) independent of t and T.
We define

(3.9) ZC g (z0)7 ¢ ZC O p@) () 1),

Jj=1

—

<.

Let

J ( )
g(z,t) = —divU(z,1t) Z (e )UéJ)( W 1).

Then supp, g(z,t) C Q) \ Q(1), and from the condition ijl F;(t) = 0 we
obtain that
/ glz,t)dz =0 forall t €0, T1.
Q2

Moreover, in virtue of (3.8)

T T
(3.10) / g+ £); W2 (Qey) 2 it + / 190+ 0): Lo(Qay) |2
J
<3 ([ 109w [ 10 0Lt o)

j=1

<

< XA Lo + llugy s W3 (0) 12 + 1 Fy: W3 0. T)|).
j=1
Since Uéj)(-7t) € I/?/%(aj), we get g(-,t) € IX/%(Q@)). Therefore, there exits a
vector-field W (- t) € I/?/%(Q@)) such that (see [2])
divW(z,t) = g(z, 1),
and the following estimate

(3.11) W (-6 W3 Qe < cllg(-, 1) W ()|

holds. Note that for the proof of this result an explicit representation formula
for the solution of the divergence equation was used (see [2]). This formula
admits the differentiation with respect to ¢, i.e. for Wy(z,t) holds the same
representation formula as for W (x,t) with g(x,t) changed to g:(z,t) and it is
easy to see that

W, (-,t) € W%(Q(g)), div Wy(z,t) = ge(z, 1),
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and
(3.12) W (- 1); Wa (Qa)) [1? < cllgel -, 1); La(Qs) I

Integrating (3.11), (3.12) with respect to ¢ and using (3.10), we get

T T
/0||w<-7t>;W§<Q<3>>||2dt+/o Wl 1) Wi () |2 dt
T T
gc( / lg(- 1 £); W3 (Qay) |2 dt + / ||gt<~,t>;L2<ﬂ<3>>||2dt)

< T (AP Lalo TP + luly s W ()1 + 1F5; W3 (0, T) %)

J=1

Let V(z,t) = U(z,t) + W(x,t). Then,

divV(z,t) =0, V(z,t)sq =0,

/_V(x,t).n(x)dSZFj(t), i=1,.. 0

and for x € Q; \ Q;3, 7 = 1,...,J, the vector-field V(x,t) coincides with the
velocity part U (2(9)’ t) of the corresponding Poiseuille solution.

We look for the solution (u(z,t), p(x,t)) of problem (1.1) in the form
(3.13) u(z,t) = v(z,t) + V(z,t), p(z,t) =p(z,t) + P(z,1),

where P(x,t) is defined by the formula (3.9). Then we obtain for (v(z,t), p(z,t))
the following problem

Vi —VAV+ (v-V)v+ (V-V)v+ (v-V)V+ Vi =1,
divv(z,t) =0,

(3.14) v(z,t)|oo =0, v(z,0) = uy(z),

/ v(z,t) - n(x)ds=0 forj=1,...,J,

j
with

f(z,t) =f(z, 1) + £1) (2, t) + o (2, 1),
Ug(z) =up(z) — W(z,0),

foy (@, t) = (£Y (2, 1), £ (2, 1)),
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J
= S @)U (97, 1

j=1
<<xé)>¢< S @, OO (@, 1)
— @I @) - 1)U @ 1) VYU (20 1)),

J
fayaa.t) = 320" @05 @, 1) = ()¢ @) U5 @O 1)
— @) (¢ @5) = DU @O, ) - U (29 1)
— @) gV (1)),
foy(z,t) = — Wy(z,t) + VAW (z,1) — (W(x,t) - V)W (x, 1)
— (U(z,t) - V)W(x,t) — (W(z,t) - V)U(x,t).

It easy to see that

suppz (f(1) (7, 1) + f(2) (7, 1)) C Q3).

Using multiplicative inequalities (see Lemma 2.1), estimates (3.7), (3.8) for
U (20 t) and estimates (3.10)(3.12) for W (z,t), we obtain the inequalities

(3.15) //\f(l) (z,7)|? dach<cZ// ([UD (@), 7)2 + [UD (z0), 7))t

+ UV @D 7) PV U (@D )2+ ¢ (1)) da dr

J t
SCZ/O/(IU( 2 1) + [q0(F)2) de) dr

+cz / sup ([UD @, r)P)[UD (-7 W o) |2 dr

r(J)’EGJ

<c(Ag+ Ay) +CZ sup (JUD (-, 7); Wy (o5)]%)
= 1 t€[0,T]

/ UG (-, 7): W) dr
c(Ap+ A1) (1 + Ao+ Ay) :=c Ay,

316//|f(2)x7|dxd7'<c//
Q)

+ (W (z,7)2+U(z, 7)[*)|VW (2, 7)*+|W (z, 7)*|[VU (2, 7')|2> dx dt

<|Wt (x,7 | + | AW (z, 7')|

<o+ c/t{ sup (W (z, 7) 2+ U, T)|2)/S (VW2 +|VU?) da:} dr

IGQ(g) 2(3)
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J
ScAite N {IIW( ;W Q)P+ D109 (1) Wzl(dj)|2}
efo, =

t J
(W w @@ + 3109wl ) dr < e

Jj=1

n (3.15), (3.16)

J
(3.17) Ao =AY,
j=1
] .
(3.18) Z (AP (1F5; WA 0, )1 + ufy; Wi (o)) 12 + 119 Wi (6 T)]12).

4. Linear problem

Consider in Q7 the nonstationary Stokes problem assuming that all fluxes
F;(t),j=1,...,J, are equal to zero, i.e. consider the problem

vy — vVAv+ Vp =f{,
divv =0,
(4.1) v(z,t)on =0, v(z,0) = vo(x),
/ v(z,t) -n(x)ds=0, forj=1,...,J

J

The following theorem is proved in [8].

THEOREM 4.1. Let 00 € C2, £ € L25(27), vo € Wi 5() NWA(Q), 5; = 0,
j=1,...,J, T €(0,00], and let there hold the compatibility conditions

(4.2) divvy =0, / vo(z) -n(z)dS=0, j=1,...,J.
If the number 7, in the inequality (2.6) for the weight-function Eg(x) is suffi-
ciently small, then there exists a unique solution (v(x,t), p(x,t)) of problem (4.1)
such that v € Wgé(QT), Vp € L2 5(QT) and there holds the estimate
(43)  sup [[v(-, ;W5 5 Q) + Vi Wy QD) + [V L2,5(Q7))|
t€[0,T]
< e(l[vo; Wa g (| + [1£ L2,5(27)])).

The constant in (4.3) is independent of T.

REMARK 4.2. Estimate (4.2) is proved in [8] for positive 3;. However, it is
easy to see from the proofs in [8] that this estimate remains valid for negative
Bj. More precisely, if the number -, in the inequality (2.6) for the weight-
function Eg(z) is sufficiently small and if there exists a solution (v(z,t), p(z,t))
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to problem (4.1) such that v € )/\/227{5(QT)7 Vp € Lo (0T, B; >0, j =
1,...,J,

/ v(z,t) -n(x)dS=0, j=1,...,J,
then for this solution holds the estimate

(4.4) sup V(-5 7)s Wa s ()l + [Iv; Wi 520 + (1 Vp; Lo, p(92"))]
T€|0,

< e(|lvos Wa, sl + If; L2,-(Q)])),

for all ¢ € [0, T], where the constant ¢ is independent of ¢ and T

5. Estimates of the nonlinear terms
LEMMA 5.1. Let v € Wys(QT), 8; 20, j =1,...,J, T € (0,00]. Then
(v-V)v e L2p5(0T) and
t
60 [ 1) Vv s Lo @) dr
< emin{1, T2} {lv; Wy 5(2 % (0,)]*,
for all t € [0,T), where the constant c is independent of t € [0,T] and T.
Proor. First of all we mention that the condition v € W22’1(QT) implies
v(-,t) € WH(Q). Denote I;s(t) = |[(v(-,t) - V)v(-,t); La(w;s)||*>. Then by
Holder inequality and by multiplicative inequalities (2.2), (2.3)
(5.2) Ijs(t) < [IV(+,1); Lo(wis) 121V V(- 1); La(wys) 1
< clv(- 1) Wy (i) IPIIVY (- 0 Wy (wis) [V V(- 1); La(w;s) |-
Therefore,

t t
(5:3) /ijs(T)dT <c S ||v(-,r);W21(sz)||2/0 Vv (-, 7); Wy (wjs) | dr

t
<c sup ||V('aT);W21(Q)||2/ [V (-, 7); W3 (wjs)II? dr
7€(0,t) 0

< ellv Wy (€ x (0, 6)) 1 ]lvs Wy (wys x (0,0))]%.

On the other hand,
t
/0 IVV(- 7 Wi ) [V (-, 7); La(ws) | dr

t 1/2
< sup ||v<~7T>;W;<sz>|t1/2( / ||v<-,7>;ws<sz>||2d7)
7€(0,t) 0

< eTY2|v; Wit (wjs x (0,1))]2
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and we derive from (5.2)

t
(5.4) / Lis(r)dr < TV sup |[v(-,7); Wa ()] lv; W3 (wjs x (0,1))]
0 7€(0,t)
< T2 v W (Q x (0,0)) [P [[vs W5 (wjs % (0,8))]1%.

Inequalities (5.3) and (5.4) yield
t
(5.5) / IV (-, 7) - D)=, 7)s Lafwys) | dr
< emin{1, TV2} v W2L(Q x (0,1))[2][v: W2 (wje x (0, ).

Obviously, the constant ¢ in (5.5) does not depend on s. Multiplying inequalities
(5.5) by Epg,(s) and summing obtained relations over s from 0 to oo, we get in
virtue of properties (2.4)—(2.7) of the weight-function Eg(x)

t
5:6) [ Iv(07)- DIV )L () dr
< cmin{1, T2 v; W3 (92 % (0,4))[17]|v; Wa'5, (2 x (0,4))]?
< emin{1, T2} |[v; Wi (92 x (0,1))[|*.

Analogously, could be proved that
t
6D [ I0C 7 OV 7 Lal ) P e
< emin{1, T2} v W51 (Q x (0, )12 |v; W3 (Qs) x (0,1))]]°
Inequality (5.1) follows from (5.6), (5.7). O

LEMMA 5.2. Let v,u € W;é(QT), B;>0,5=1,...,J, T € (0,00]. Then
(u-V)v € L2 5(Q7) and there hold the estimates

t t
(5.8) / lu(-7) - V)V(-,7); Lop(@)P dr < e / s WEL@ x (0, 7)) dr
Fee v WELQ x (0, )]s WEL(S x (0, )],
and
t t 91
(5.9) / [l 7) - V(- 7): Lo ()2 dr < . / v W2H(@ x (0,7)) 2 dr
e Ju WEL(Q x (0, )]l WEL(S x (0, )]

Constants in (5.8), (5.9) are independent of t € [0,T] and T.
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PROOF. As in estimates (5.2), (5.3) we obtain that

t):/t/w (e, )2 Vv (e, 7)|? de dr

<C/ [a(-,7); Wa (wis) 1PV 7); Wa (wis) V(- 7); W (wyis) || dr
Therefore,

Njs(t) <c sup |[v(-,7); Wy (wjs)ll sup [[u(-,7); Wy (w;s)l|
T€(0,t) T€(0,t)

I W sl 7 W el

<cllv; Wy 1(QT)IIHu Wy (wjs % (0 t)

I
([ 1w / VR

<cllv; Wy 1(QT)II llws W5 (ws % (0,1))

1/2
. ( / s W2 (e <o,7>>|2d7>
0
< ecllv: WELQT)|[* s W2 (wj x (0,

t
e [ e x 0,7 P dr
0
and

Njs(t) <c sup Jlu(-,7); Wy (wss)|?
T€(0,¢)
t
V(- 7) Wa (wis) v (-, 7); WE(wys) || dr
<eclluy Wy () |[*v; W3 (wjs x (0,0)]1?

t
e / v W2 (s x (0,7))]? dr.
0
Multiplying these relations by Ej,(s) and then summing over s furnishes
t
/ / Egs, (z)u(z, )| Vv(z,7)|? do dr

< ecllv; Wy s (7)1l Wa5(95 < (0,8))1?

/Hu WL, x (0,7)|2 dr,
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t
// Egj(m)|u(m,T)|2|Vv(a:,7)|2dxdT
0 Jo,
<eclw; Wy (1) |1*lvi Was (2 % (0,1))1?
t
e[ v WEL® x 0P dr.
0

Analogously could be proved that

t
// (e, )2 Vv(z, 7) 2 de dr
0 Q(g)
<ec|viWa s Q)| [ W Q) x (0,4))]2

t
te / s W2 Qs  (0,7)) dr,
0

t
/ / |u(x,7)|2|Vv(x,T)\2d:v dr
<ec|w Wy Q1) 1*lv W5 (Qs) x (0,1))]?

t
deo [ Iviw@ x 0.7 dr
0
and, therefore, we get (5.8) and (5.9). O
LEMMA 5.3. Let v € Wy4(QT), T € (0,00]. Then (V- V)v € Ly 5(Q7),
(v V)V e Ly 5(Q7) and
t
10) [ IVCr) DN Lap (@ dr
t
+ [ Itn) - DIV La s dr
< emin{1, T2} (Ag + A1)|[vs Wy 5(Q x (0,1))]?
for all t € [0, T, where the constant c is independent of t € [0,T] and T.
PROOF. Arguing as in Lemma 5.1, we get for
Jjs(t) = [(V(-,1) - V)v (-, 1); La(wss) |12
the estimates

t
/ Ju(r)dr <c sup [V(-,7) Wi(ws)]?
0 T€(0,t)

- / V(7 Wy ) V(- 7); Dn(wye)l] dr

<esup V0P )P W g 0.0
T7€(0,
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and

t
/st(f)dTéc sup [[V(-,7); W (wjs) | sup [[v(-,7); Wy (wjs)][ £/
0 7€(0,t) 7€(0,t)

t 1/2
( 0 ||Vv<~m>;w21<sz>||2dr)

<eTV s [V W ) [P W5 (o 0.0
T7€(0,

Therefore,
t

(5.11) / Jjs(1)dr < emin{1, T2}
0

s VT 9 ) i W3 e 0,0
T7€(0,

It follows from (3.7), (3.8) and from (3.10)—(3.12) that

sup [V (-, 7); Wy (wjs) ||

T€(0,t)
<e( sup U 1) Wy (wi)lIP + sup [[W(-,7); Wy (wss)|1?)
7€(0,t) 7€(0,t)
<c( sup UV 7); W3 (o)|” + sup [W(-,7); W3 (Qs)lI)
>~ P ) ) 2 7 P ) 9 2 (3)
T7€(0,t) T€(0,t)

(U W HaD)IIP + W W5 (QG)I1%) < (Ao + Ar).
Thus, (5.11) yields
t
(5.12) / Jis(1) dr < cmin{1, T2} (Ag + A1) [|v; Wa ' (w)s x (0,1))]|%.
0
Multiplying (5.12) by Eg,(s) and then summing over s, we derive
t
(5.13) / [V or) - V)V(-o7): Lo ()] dr
< emin{1, TV2}(Ag + A1)|lv; W35 (25 x (0,1))]1*.
Analogously,
t
(5.14) / V(- 7) - V)V( o7 L)) P dr
< emin{1, T"?}(Ag + A1) |[v; W3 (Qea) x (0,1))]1%
It follows from (5.13) and (5.14) that

/0 V(- 7) - V)V(-o7): Lo g () dr

< emin{1, T2} (Ag + A1) |[v; W 5(Q x (0,1))]]%.
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Consider now the integrals K;;(t) = ||(v(-,t)-V)V(+,t); L2(w;,)|*. Using (2.2),
we get

Kjs(t) < V(- 1); Loo(wjs) [PV V(- 1) La(wss) |
<cl|Vv (-, ) Wy (wis) v (-, ) Wy (wis) IV V(- 1); La(wss) |-

Hence,

t
/ Kju(r)dr <c sup [VV(-.,7): Lo(w;s)|?
0 7€(0,t)

/ IV (1) W () V(- ) Wi (o) dr
(Ao + Ar) / V(7Y WE(wsa) | dr
< (Ao + A v W2 (wje % (0,1))]2

On the other hand,
t
/ KjS(T) dr < C(AO + Al)
0

Csup V(- 7) Wi (wsa)l / V(7Y WE(wa) | dr
7€(0,t)

<c (Ao + AV Wt (wjs x (0,1))]| T2
1/2
( / V(- 7): W (w3 P dT)
<c(4o +A1)T1/2||v;W22’1(sz x (0,2))]].
Therefore,
t
/0 I(v(-27) - VIV, 7): Dy dr
<c¢(Ap+ A1) min{l, T1/2}||v; Wg’l(sz X (O,t))||2
and, as above, we derive
t
/0 1(v(-.7) - VIV (- o7): L, ()2 dr
< ¢ (Ag+ Ay min{1, T2}V Wy (5 x (0,1))]°.
It could be proved analogously that

t
/0||<v<~,T>~V>V<-,T>;L2<Q<g>>||2dv
< e (Ao + Ay)min{1, TV} |v; W2 Qs x (0,))]?
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and, therefore,

/0 I(v(-17) - V)V 7): Lo g dr

< ¢(Ag + Ay) min{1, T'2}|v; Wy5(Q x (0,0)*.

By considerations similar to those of Lemmats 5.2 and 5.3, we prove also the
following

LEMMA 5.4. Letv € W;é(QT), T € (0,00]. Then there holds the estimate

t t
/0 ||(V(',T)'V)V(°,T);ﬁ2,ﬁ(9)|l2dT+/0 (v, 7)- V)V (-, 7); Lop () dr
t
<ec( A+ A WEHR X O0) + o [ IwWEH@ x 0,7) P
0
where the constant ¢ is independent of t € [0,T] and T

6. Solvability of problem (3.14)

THEOREM 6.1. Let 0Q € C?, F; € W} (0, T), divug = 0 and let the initial
data ug(x) and the external force f(x,t) are represented in the form (3.1) and
(3.2) with

ﬁo € W22,,6(Q) OIX/%(Q% /f € EZ,ﬁ(QT)7 ﬂj > 07 j: yee e 5<]a
uf) € Whio)), f9) € Lo(a]), j=1,...,J.

Moreover, assume that there hold compatibility conditions (3.4) and that the num-
ber v in inequality (2.6) for the weight function Eg(x) is sufficiently small (such
that the conditions of Theorem 4.1 are valid). If

comin{1, TY?}(Ay + A;) < 1,
(6.1) 3
derey Y Apmin{1,TV?} < (1 = camin{1, T2} (Ag + 41))?,
k=0

where Ay, A1, Ag are defined in (3.15), (3.17), (3.18),
As = 8 La,p ()| + 805 W3 5(Q)]I%,

c1, ¢ are absolute constants defined below, then problem (3.14) admits a unique
solution v € W;é(QT), Vp € L25(QT). There holds the estimate

(6.2) v Wy s Q)P + I V5; L2,6(27)]* < ero,
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with
o 20&0
1—oaq+ \/(1 —(X1)2 —40[00&27

3
@y = C1 E Ak:7
k=0

a1 = C2 min{l,Tl/Q}(AO + Al),

Qo = Co min{LTl/g}.

(63) To

PrROOF. We prove the existence of the solution to problem (3.14) by the
method of successive approximations using the scheme proposed by V. A. Solon-
nikov [16]. We consider problem (3.14) as a linear time dependent Stokes problem

vi(z,t) — vAv(z,t) + Vp(z,t) = gz, t; v(z, 1)),
divv(z,t) =0,

v(z,t)|oa =0, v(z,0)=1uy(z),

/v(x,t)~n(x)ds:0, j=1...,J,
o
with

gz, t,v(z,t)) =f(z,t) — (v(z,t) - V)v(z,t)
— (V(z,t)- V)v(z,t) — (v(z,t) - V)V(z,t).

Let us put v(© (z,t) = 0, p(9 (x,t) = 0, and define the successive approximations
recurrently as solutions of linear problems

v§l+1)(x,t) — vAVEHD (2, 8) + VD (2, 1) = g(x, ;v (2, 1)),
divvH(z,t) =0,
v (2, t)|ag = 0, v (2,0) = T (),

/ vt (@ t) -n(z)ds =0, j=1,...,J

In virtue of (3.15), (3.16), (5.1) (5.10) and (3.10)—(3.12), the right-hand sides
g(z,t,vD(z,t)) and Uy(x) admit the estimates
lg(a, v (@, £)); L2,5(27)]1* < ¢ [[f L2,5(Q7)|I?
+emin{1, T2 ([v@; Wi (01" + (Ao + A v W35 (27))1%)
< c(I[f Lo,p( Q)P + €95 La5 (7)1 + 15); L2,5(27)]1?)
+emin{1, T2} (v Wy () |* + (Ao + A v Wy Q7))
S C(Ag + Ag)
+emin{1, T2}V W Q0" + (Ao + AD v W5 (Q7)1)
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and
[T0; W1 ()17 < [[G0; Wi g ()17 + [W (-, 0); Wy 5()|?

< c([[to; Wa 51> + W W51 (Qf5))IIP) < c(Az + Ay + Ag).
Notice that we have used the fact that suppy(fa)(z,t) + f2)(2,t)) C Q).
supp, W (z,t) C 5(3), and, therefore,

1£1) + £2)5 L2,6(QT)I* < ellfay + fr2y; L2 (7).
By Theorem 4.1, all approximations (v(*1 (z,¢),pt+1)(z,t)) are well defined
and satisfy the estimates
(64) [V @D)P + VBT £a,6(Q7)?

<c(llg(-,v); L2,5(QT)]7 + |00 W3 5(Q)])

3
<ec Z Aj + comin{1, T1/2}
k=0

(VD WS Q) + (Ao + An) v Wis (@))%
=g + o [V W Q)P + aal v WS (0|1
If
(65) a; <1, dagag < (1 — 041)2,

then the quadratic equation azp? + (a; —1)p+ o = 0 has two positive roots and
the smaller one r( is given by formula (6.3). Conditions (6.5) are satisfied because
of assumptions (6.1). From (6.4), (6.5) it follows that, if [|[v®; W2 (QT)||2 < ro,
then also

(6.6) VDS (@2 + VB Lo p(QT)|2 < ro.

Since, obviously [|v(); V\/gé(QT)H2 < 19, we conclude that (6.6) is valid for all
l>0.

Let us show that the sequence { (v (z,t), p!) (x,t))} converges to the solution
(v(z,t),p(x,t)) of problem (3.14). The differences

wi(z,t) = v (2, t) = v (z,1), ¢V (2,t) =" (2,t) — 5P (2, 1)
are the solutions of the following linear problems
W,El)(ac,t) —vAw (z,t) + Vg (z,t) = GO (z,1),
divw® (z,t) =0,
wl(z,t) 90 =0, w(z,0)=0,

/ w(z,t) -n(x)ds=0, j=1,...,J,
;
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where
GW(x,t) = — (V(x,t) - V)W (2, t) — (wD (z,t) - V)V (z,1)
— (WO (z,t) - V)V (z,t) — (vO(z,t) - V)W (z, ).
Let
XD (1) = WD Wg 5 (2 x (0,0)) 17 + VgD Lo 5(92 % (0,1))]1%
Using Theorem 4.1, Lemmas 5.2, 5.4 and estimate (6.6), we derive the inequality

(6.7) XUD(t) <c |GV (@, 1); L2,5(2 x (0,1))]?
<c(I(V- V)W L5 5(92 x (0, 1)
+ (W - V)V Ly (2 x (0,1))]
+[(w® - V)v D Ly 5(2 % (0,1))]
+ (v Vywh: Lo 5(2 x (0,1))]])
<ec(AF+ AT + VO Wi (@) ) Iw Wi (9 x (0,1))1?

+e / WO WELQ x (0,7))2 dr
<ec.(Af+ AT + ) [wD; W5 (€ x (0,1))2

/ [w O Wi 5(Q2 % (0,7))|* dr.

Let us fix € = 1/(2¢. (A% + A? + r2)) and sum relations (6.7) by [ from 1 to M.
This yields

M+1

(6.8) > xW) < X” +c/ Z XO(r

m=2 m=

Setting Y (M) (t) = ZMﬂ XD (t), from (6.8) we get

t
Y (1) <2XD(t) 4 ¢ / Y M) (1) dr
0
and, by Gronwall inequality,
YD () < 2et XD (1),

Therefore, the series ;7 X (O (t) converges for any t € [0, 7] and, consequently,
{vD(z, 1), VpU+D (2,1)} converges in the norm of W; 1(QT) x L25(07) to
the solution (v(x,t),p(z,t)) of problem (3.14). Ob\flously7 for (v(z,t),p(x,t))
remains valid inequality (6.6).
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Let us prove the uniqueness of the solution to problem (3.14). The difference
of two solutions w(z,t) = vil(z,t) — vPi(z 1), q(z,t) = pl(x,t) — pPP(x, 1)
satisfies the equations
wi(z,t) — vAw(z,t) + Vg(z,t) = —(V(z,t) - V)w(z,t)
—(w(z,t) - V)V(z,t) — (w(z,t) - V)vil(z,t) — (vEI(z, 1) - V)W(z,1),
divw(z,t) =0,
w(z,t)]oo =0, w(z,0)=0,

/ w(z,t) -n(x)ds=0, j=1,...,J.

J

Therefore, for (w(x,t), ¢(x,t)) holds the estimate
[[w; W35( x (0, 6))I* + [|Vg; L2,5(2 x (0,))]>
t
< [ Iwnwi@x 0,0 dr
0

from which it follows that w(z,t) =0, Vq(z,t) = 0. O
REMARK 6.2. If data are sufficiently small, i.e. if
CQ(AO + Al) < 1,

(6.9)
46102(A0 + A1+ Ay + A3) < (1 — CQ(AO + Al))2,

then it follows from Theorem 6.1 that the solution (v(zx,t),p(x,t)) of problem
(3.14) exists for any finite time interval [0, T]. Moreover, the constant in estimate
(6.2) does not depend on T" and, therefore, the solution exists also for the infinite
time interval (0, 00). If the data are “large” ((6.9) is not valid), then the solution
of problem (3.14) exists for “small” time intervals [0, T], where the bound for T
is given by (6.1).

7. Uniqueness of the solution to problem (1.1)

In Section 6 we proved the existence of the unique solution to problem (1.1)
which has the representation (3.13). In this section we show that problem (1.1)
cannot have other solutions in a class of functions that are “bounded at infinity”.
In particular, from this result it follows the uniqueness of the time-dependent
Poiseuille flow in a straight pipe.

Denote by W2 (QT) the space of functions having the finite norm

J 1/2
s 5 )] = (s WA @I+ S s s WA R
j=1°=

Obviously, the solution u of problem (1.1) having the representation (3.13) be-
longs to W3 (Q7T).
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THEOREM 7.1. Problem (1.1) cannot have two different solutions in the space
w2L@).

PrOOF. Let (ull(z,t),pM(z,t)) and (ul?(z,t), pl?l(x,t)) be two solutions to
problem (1.1). The differences w(z,t) = ulll(z,t) —ul?(z,1), ¢(z,t) = pM(z,t)—
pl?(z,t) satisfy the linear system

w; — VAW + Vg = —(w - V)ull — (ul?. v)w,
div w =0,

w(z, t)‘ag =0, w(z,0)=0,
/ w(z,t) -n(x)ds=0, j=1,...,J

J

Denote

1 fOI'IL'GQ(O),
Eq @) =9 o ,
e~ forx ey, j=1,...,J,

where 7. = (u, ... , %), 7% > 0. It is evident that W' (QT) c ngW(QT)
Therefore, we may treat w € ngv (QT) as a solution of linear problem (4.1)
with the right hand side f(z,t) = —(ul?(z,t) - V)w(a,t) — (w(z,t) - V)ull(z, 1)
and ug(z) = 0. Let us show that f € Lo ., (27). We have

(7.1) /0 /95—"* ()| ul? (2, 7) 2| Vw(z, 7)|? dz dT

t
< / / [ul? (z, 7)|?|Vw(z, 7)|? de dr
s
+ZZ/ / e [ul) (2, 7) 2| Vw(a, 7)[? da dr.
j=15=0
In virtue of Lemma 2.1 (see inequality (2.3)), there hold the estimates

t .
/ / e a2 (2, ) 2|V w(z, 7)|? da dr
0 Wis

js

t
<c/ e xS
<o / (1) W @) [ ) W2 (w0)]|

e 2w (- 7); Lo (wje) || dr
<e sup [[ul (-, 7) W3 (wse)| sup e 2Vw( -, 7); La(wss)|

T€[0,t] T€[0,t]

[ 7); Loo (wss) 1P VW (-, 7); La(ws) | dr

2
/ a7 W3 (wys) e ™75 /2w (-, 7); Lo(wys) || dr
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_ )
<e sup ||u[2]( 7); W2 Wis ||2/ e 7" /QVW('77)5L2(WJ'8)H2dT

T€[0,t]

+e. / a2 (-, 7) W (wse) |2 dr sup [le™=75" /2Tw( -, 7); Lo(w;s)|>

r€[0,t]

Therefore,

Z/ / e [0l (2, 7) 2 V() dee

<e sup( sup [[ul? (-, 7): W3 ;)
s>0 “T€[0,T]

g
Z/ e % Vw(-,7); La(w;s)|? dr
+c5sup( / Jul?(- w2<%>||2d7>

s>0
: ;) e ™75 20w (-, 7); Lo(wye) I
< cef[ul?; W2 QT2 / e P 7): L()|2 de
F e W2 @ x 0,0)P S e 2w W2 g % (0,07
< ceful; W2 (QT)|2 / e (- 7 Loy dr

V) ’
el W (€ x (0, 0) [P fle ™5 2w W (€ (0,0))]1%

Analogously, we get that

t
(7.3) / / al2 (2, 7) 2w (z, 7)|2 da dr
0 Qe
t
< el @) [ IV, Lol i
0
+ e [ul W2 (Q x (0,)[17lw; W3 () x (0,8))]12
Inequalities (7.1)—(7.3) yield

(74) (P V) - w; L2, (2 % (0,8))]?
< cel[ull; WoH Q) [Pl wi W (Q x (0,8))7
+ e[l W3 (9 x (0, )2l 2w W (9 % (0, 1))

(J)/
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Consider now the term (w(z,t) - V)ulll(z,¢). Using inequality (2.2) instead
of (2.3) and arguing as above, we obtain
(7.5) (w-V)-ull Lo (% (0,0))]
< cel[ultl; W3 Q) |2l 2ws W (2 x (0,1))]2

+ el WE (2 x (0,0 Pl 2w W (@2 x (0,0)]%
Thus, f € Lo, (2T) and, if v, is sufficiently small, then according to Re-
mark 4.1 for w(x,t) holds estimate (4.4) which together with (7.4), (7.5) yields

lw; Wl (2% (0,6))* < €llf; L3, (2 x (0,0))]>
< cre(al; W QD) + Pl W (QT)1P) fws Wil (2 x (0,8))1?

e ([[ul W (2 (0,0)) [P+l WE (@ (0, 6)) 1) w; Wil (2 (0, ).

Fixing in the last inequality

1
e <
= 2c1 (Jull; W3 HQT)|2 + [[ul; W3 Q7))

furnishes

(7.6) W Wil (2 x (0,817 < ex(|[ul'l; W3 (92 x (0,0)))?
+ W (@ % (0,0) %) ws WarL, (2 x (0.8))]1%.

s x

Let t; be such that cy(|[ul); W2 (Q x (0,£))]|2 + [ul; W2 (Q x (0,8))]2) < 1.
Then relation (7.6) yields ||w; 1/\/22£7 (Q x (0,1))]|* = 0 and, hence, w(z,t) =0
in Q x [0,¢1]. If t1 < T, we repeat our considerations for ¢ € [t1,%2], where
co(Juld; Wt (2 x (1, £2))]12 + [Jul; W2 H(Q x (t1,2))]]?) < 1, and get that
w(z,t) = 0 in Q x [0,t2], and so on. By finite number of steps we deduce
that w(z,t) = 0in Q x [0, 7] for any T < co. O

8. Remark on weak Hopf’s solution

The global unique solvability of problem (3.14) is proved in Section 6 as-
suming that the data are sufficiently small (see conditions (6.9)). On the other
hand, it could be proved (e.g. [3]) that for arbitrary data there exists at least
one weak global Hopf’s solution v (z,t) such that vy € W,°(Q x (0,00)) and
[ve(-,t); La(Q)]| = ¢(t) € Loo(0,00). Therefore, for any & > 0 there exists such
t. = t«(g) > 0 that

Ive(- t); W ()] <e.

For large t, also the norm ||[f: Lo(€2 x (t.,00)|| becomes small. Moreover, since
U e W2 (o x (0,00)), W € W2 (Q x (0,00)), we get for sufficiently large t.
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that

S U5 WE 0 x (b, 00D + W3 W3 (9 (00| < e

j=1
Considering vy (-,t.) € V‘E/%(Q) as an initial data for the problem (3.14), we
verify the condition (6.9) and, therefore, by Theorem 6.1 problem (3.14) admits
a unique solution v € W3"'( x (t.,00)) defined on the interval [t,,c0). By
uniqueness results (see [13]) vy (z,t) = v(z,t) for ¢ € [t., 00).

Thus, also for large data there exists at least one weak solution of problem
(1.1) having the form u(x,t) = V(z,t) + vg(z,t) (it may be not unique) and all
such solutions tend in outlets to infinity {2; to the corresponding Poiseuille flows
in the sense that

/OO / (v (z,t)]? + |Vvy(z,t)|?) dedt < co.
0 Q

Moreover, for ¢ > t, these solutions become regular and

[ (e

ot
Note that we are not able to prove that for ¢t > ¢, the solution v (x,t)

s La(92) 2

+ llvH(nt);Wg(Q)u?) dedi < oo

belongs to certain weighted space of vanishing at infinity function, since we do
not know whether the initial data v (-,t.) € W3(Q2) belongs to some weighted
space W%B(Q) with 8; >0,5=1,...,J.
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