# NODAL SOLUTIONS 

 FOR A NONHOMOGENEOUS ELLIPTIC EQUATION WITH SYMMETRYMarcelo F. Furtado


#### Abstract

We consider the semilinear problem $-\Delta u+\lambda u=|u|^{p-2} u+$ $f(u)$ in $\Omega, u=0$ on $\partial \Omega$ where $\Omega \subset \mathbb{R}^{N}$ is a bounded smooth domain, $2<p<2^{*}=2 N /(N-2)$ and $f(t)$ behaves like $t^{p-1-\varepsilon}$ at infinity. We show that if $\Omega$ is invariant by a nontrivial orthogonal involution then, for $\lambda>0$ sufficiently large, the equivariant topology of $\Omega$ is related with the number of solutions which change sign exactly once. The results are proved by using equivariant Lusternik-Schnirelmann theory.


## 1. Introduction

Consider the problem

$$
\begin{cases}-\Delta u+\lambda u=|u|^{p-2} u+f(u) & \text { in } \Omega,  \tag{1.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded smooth domain, $\lambda \geq 0,2<p<2^{*}:=2 N /(N-2)$ and the function $f \in C^{1}(\mathbb{R}, \mathbb{R})$ satisfies
$\left(\mathrm{f}_{1}\right) \lim _{t \rightarrow \infty} f(t) / t^{p-1}=0 ;$

2000 Mathematics Subject Classification. 35J25, 35J60, 58E05.
Key words and phrases. Nodal solutions, equivariant category, symmetry.
Research supported by post-doctoral grant 04/09232-2 from FAPESP/Brazil.
( $\mathrm{f}_{2}$ ) there exists $\gamma>0$ such that

$$
\frac{d}{d t}\left(\frac{f(t)}{t^{1+\gamma}}\right) \geq 0 \quad \text { for any } t>0
$$

$\left(\mathrm{f}_{3}\right) f(t) \geq 0$ for any $t>0$.
We are interested in investigating the effect of the topology of $\Omega$ on the number of solutions of (1.1). The starting point of our study is the paper of Benci and Cerami [4], where the authors considered $f \equiv 0$ and proved that (1.1) possesses at least cat $(\Omega)$ positive solutions provided $\lambda$ is large enough or $p$ is close to $2^{*}$. Here, $\operatorname{cat}(\Omega)$ stands the usual Lusternik-Schnirelmann category of $\bar{\Omega}$ in itself. The result for $\lambda$ large was extended for nonhomogeneous nonlinearities by the same authors in [5]. Since the work [4], multiplicity results for problems like (1.1) involving the category have been intensively studied (see [6], [7], [11] for subcritical, and [16], [14], [2], [1] for critical nonlinearities).

In the aforementioned works, the authors obtained positive solutions. Castro, Cossio and Neuberger considered in [10] a slightly different class of nonlinearities and proved that the problem possesses a solution which changes sign exactly once. This means that the solution $u$ is such that $\Omega \backslash u^{-1}(0)$ has exactly two connected components, $u$ is positive in one of them and negative in the other. In [3], Bartsch obtained infinite nodal solutions for (1.1). Motivated by these works and by a recent paper of Castro and Clapp [9], we are interested in relating the topology of $\Omega$ with the number of solutions which change sign exactly once.

We deal with the problem
$\left(\mathrm{P}_{\lambda}^{\tau}\right) \quad \begin{cases}-\Delta u+\lambda u=|u|^{p-2} u+f(u) & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega, \\ u(\tau x)=-u(x) & \text { for all } x \in \Omega,\end{cases}$
where $\tau: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a linear orthogonal transformation such that $\tau \neq \mathrm{id}$, $\tau^{2}=\mathrm{id}$, and $\Omega \subset \mathbb{R}^{N}$ is a bounded smooth domain such that $\tau \Omega=\Omega$. Since we are looking for nodal solutions we suppose that $f$ is odd, that is,

$$
\begin{equation*}
f(-t)=-f(t) \quad \text { for any } t \in \mathbb{R} \tag{4}
\end{equation*}
$$

Before to state our main results, we would like to quote the paper [8], where Cao, Li and Zhong proved that, under $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{4}\right)$, the problem without symmetry (1.1) has at least $\operatorname{cat}(\Omega)$ positive solutions. Quite recently, Furtado [13] considered the problem $\left(\mathrm{P}_{\lambda}^{\tau}\right)$ for $f \equiv 0$ and proved that, if $\lambda \geq 0$ is fixed and $p$ is sufficiently close to $2^{*}$, then there exists an effect of the equivariant topology of $\Omega$ on the number of solutions which change sign exactly once. In view of this and the results of [4], [5], [8], it is natural to ask if the same kind of result holds for the nonhomogeneous symmetric problem $\left(\mathrm{P}_{\lambda}^{\tau}\right)$ when $p$ is fixed and $\lambda$
is large. In this paper we give an affirmative answer to this question by proving the following result.

Theorem 1.1. Suppose $p \in\left(2,2^{*}\right)$ and $f$ satisfies $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{4}\right)$. Then there exists $\bar{\lambda}(p)$ such that, for all $\lambda \geq \bar{\lambda}(p)$, the problem $\left(\mathrm{P}_{\lambda}^{\tau}\right)$ has at least $\tau$-cat ${ }_{\Omega}(\Omega \backslash$ $\Omega^{\tau}$ ) pairs of solutions which change sign exactly once.

Here, $\Omega^{\tau}=\{x \in \Omega: \tau x=x\}$ and $\tau$-cat is the $G_{\tau}$-equivariant LusternikSchnirelmann category for the group $G_{\tau}=\{\mathrm{id}, \tau\}$ (see Section 3). There are several situations where the equivariant category turns out to be larger than the nonequivariant one. The classical example is the unit sphere $\mathbb{S}^{N-1} \subset \mathbb{R}^{N}$ with $\tau=-$ id. In this case $\operatorname{cat}\left(\mathbb{S}^{N-1}\right)=2$ whereas $\tau$-cat $\left(\mathbb{S}^{N-1}\right)=N$. Thus, as a consequence of Theorem 1.1 we have

Corollary 1.2. Suppose $p \in\left(2,2^{*}\right)$ and $f$ satisfies $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{4}\right)$. Assume further that $\Omega$ is symmetric with respect to the origin, $0 \notin \Omega$ and there is an odd map $\varphi: \mathbb{S}^{N-1} \rightarrow \Omega$. Then there exists $\bar{\lambda}(p)$ such that, for all $\lambda \geq \bar{\lambda}(p)$, the problem (1.1) has at least $N$ pairs of odd solutions which change sign exactly once.

The above results complement those of [9] where the authors considered the critical semilinear problem

$$
-\Delta u=\lambda u+|u|^{2^{*}-2} u, \quad u \in H_{0}^{1}(\Omega), \quad u(\tau x)=-u(x) \quad \text { in } \Omega
$$

and obtained the same results for $\lambda>0$ small enough. They also complement the results of [8] since we obtain nodal solutions under the same hypothesis on $f$, as well the aforementioned works which deal only with positive solutions.

The paper is organized as follows. In Section 2 we present the abstract framework of the problem and some technical results. Section 3 is devoted to recalling some facts about equivariant Lusternik-Schnirelmann theory. The main results are proved in Section 4.

## 2. Functional setting and some technical results

Throughout this paper, we denote by $H$ the Sobolev space $H_{0}^{1}(\Omega)$ endowed with the norm

$$
\|u\|=\left\{\int_{\Omega}|\nabla u|^{2} d x\right\}^{1 / 2}
$$

and by $|u|_{s}$ the $L^{s}(\Omega)$-norm of a function $u \in L^{s}(\Omega)$. For simplicity of notation, we write only $\int_{\Omega} u$ instead of $\int_{\Omega} u(x) d x$.

We start by noting that the involution $\tau$ of $\Omega$ induces an action on $H$, which we also denote by $\tau$, in the following way: for each $u \in H$ we define $\tau u \in H$ by

$$
\begin{equation*}
(\tau u)(x)=-u(\tau x) . \tag{2.1}
\end{equation*}
$$

If we set $H^{\tau}=\{u \in H: \tau u=u\}$ as being the subspace of $\tau$-invariant functions, it follows from the above expression that any function $u \in H^{\tau}$ satisfies the symmetry condition which appears in $\left(\mathrm{P}_{\lambda}^{\tau}\right)$.

It is well known that the nontrivial weak solutions of the problem (1.1) are precisely the nontrivial critical points of the $C^{2}$-functional $E_{\lambda}: H \rightarrow \mathbb{R}$ given by

$$
E_{\lambda}(u)=\frac{1}{2} \int_{\Omega}\left(|\nabla u|^{2}+\lambda u^{2}\right)-\frac{1}{p} \int_{\Omega}|u|^{p}-\int_{\Omega} F(u)
$$

where $F(t)=\int_{0}^{t} f(s) d s$ is the primitive of $f$. All of them belong to the Nehari manifold of $E_{\lambda}$ given by

$$
\begin{aligned}
\mathcal{N}_{\lambda} & =\left\{u \in H \backslash\{0\}:\left\langle E_{\lambda}^{\prime}(u), u\right\rangle=0\right\} \\
& =\left\{u \in H \backslash\{0\}:\|u\|^{2}+\lambda|u|_{2}^{2}=|u|_{p}^{p}+\int_{\Omega} f(u) u\right\} .
\end{aligned}
$$

In order to obtain $\tau$-invariant solutions, we will look for critical points of $E_{\lambda}$ restricted to the $\tau$-invariant Nehari manifold

$$
\mathcal{N}_{\lambda}^{\tau}=\left\{u \in \mathcal{N}_{\lambda}: \tau u=u\right\}=\mathcal{N}_{\lambda} \cap H^{\tau} .
$$

By using conditions $\left(f_{2}\right)-\left(f_{4}\right)$ we can check that

$$
\begin{equation*}
0 \leq(2+\gamma) F(t) \leq f(t) t \tag{2.2}
\end{equation*}
$$

for any $t \in \mathbb{R}$. Thus, if $u \in \mathcal{N}_{\lambda}$, we have

$$
\begin{aligned}
E_{\lambda}(u) & =\left(\frac{1}{2}-\frac{1}{p}\right) \int_{\Omega}|u|^{p}+\frac{1}{2} \int_{\Omega} f(u) u-\int_{\Omega} F(u) \\
& \geq\left(\frac{1}{2}-\frac{1}{p}\right) \int_{\Omega}|u|^{p}+\left(\frac{1}{2}-\frac{1}{2+\gamma}\right) \int_{\Omega} f(u) u>0
\end{aligned}
$$

and therefore the following minimization problems are well defined

$$
m_{\lambda}=\inf _{u \in \mathcal{N}_{\lambda}} E_{\lambda}(u) \quad \text { and } \quad m_{\lambda}^{\tau}=\inf _{u \in \mathcal{N}_{\lambda}^{\tau}} E_{\lambda}(u)
$$

By using the symmetry of the problem $\left(\mathrm{P}_{\lambda}^{\tau}\right)$ we can obtain the following relation between the two minimizers defined above.

Lemma 2.1. For any $\lambda \geq 0$, we have that $2 m_{\lambda} \leq m_{\lambda}^{\tau}$.
Proof. Let $u \in \mathcal{N}_{\lambda}^{\tau}$ and set $u^{ \pm}=\max \{ \pm u, 0\}$. Since $u \in H^{\tau}$, we can use (2.1) to conclude that $u$ is negative in $\tau(A)$ whenever $u$ is positive in some subset $A \subset \Omega$. We claim that

$$
\begin{equation*}
\int_{\Omega} f\left(u^{ \pm}\right) u^{ \pm}=\frac{1}{2} \int_{\Omega} f(u) u, \quad\left\|u^{ \pm}\right\|^{2}=\frac{1}{2}\|u\|^{2} \quad \text { and } \quad\left|u^{ \pm}\right|_{s}^{s}=\frac{1}{2}|u|_{s}^{s} \tag{2.3}
\end{equation*}
$$

for any $2 \leq s<2^{*}$. Indeed, if we set $\Omega^{+}=\{x \in \Omega: u(x)>0\}$, we can use (2.1) to verify that $\Omega^{-}=\{x \in \Omega: u(x)<0\}=\tau\left(\Omega^{+}\right)$. Recalling that $u=u^{+}-u^{-}$ and $f$ is an odd function, we obtain
(2.4) $\int_{\Omega} f(u) u=\int_{\Omega^{+}} f\left(u^{+}\right) u^{+}-\int_{\Omega^{-}} f\left(-u^{-}\right) u^{-}=\int_{\Omega} f\left(u^{+}\right) u^{+}+\int_{\Omega} f\left(u^{-}\right) u^{-}$.

Moreover, since $\tau=\tau^{-1}$, we can use a change of variables to conclude that

$$
\begin{aligned}
\int_{\Omega} f\left(u^{+}\right) u^{+} & =\int_{\Omega^{+}} f(u(x)) u(x) d x=\int_{\tau^{-1}\left(\Omega^{+}\right)} f(u(\tau y)) u(\tau y) d y \\
& =\int_{\Omega^{-}} f(-u(y))(-u(y)) d y=\int_{\Omega} f\left(u^{-}\right) u^{-}
\end{aligned}
$$

This and (2.4) imply the first equality in (2.3). The other ones can be proved in a similar way.

Since $F$ is even and $F(0)=0$, we can argue as above to conclude that

$$
\int_{\Omega} F(u)=\int_{\Omega} F\left(u^{+}-u^{-}\right)=\int_{\Omega} F\left(u^{+}\right)+\int_{\Omega} F\left(u^{-}\right) .
$$

Moreover, since $u \in \mathcal{N}_{\lambda}^{\tau}$, it follows from (2.3) that $u^{ \pm} \in \mathcal{N}_{\lambda}$. Thus, we can use the above equation and (2.3) to get

$$
E_{\lambda}(u)=E_{\lambda}\left(u^{+}\right)+E_{\lambda}\left(u^{-}\right) \geq 2 m_{\lambda},
$$

which concludes the proof of the lemma.
In what follows we denote by $\left\|E_{\lambda}^{\prime}(u)\right\|_{*}$ the norm of the derivative of the restriction of $E_{\lambda}$ to $\mathcal{N}_{\lambda}^{\tau}$ at $u$, which is defined by (see [18, Section 5.3])

$$
\left\|E_{\lambda}^{\prime}(u)\right\|_{*}=\min _{\theta \in \mathbb{R}}\left\|E_{\lambda}^{\prime}(u)-\theta J_{\lambda}^{\prime}(u)\right\|_{\left(H^{\tau}\right)^{*}}
$$

where $\left(H^{\tau}\right)^{*}$ is the dual space of $H^{\tau}$ and $J_{\lambda}: H^{\tau} \rightarrow \mathbb{R}$ is given by

$$
J_{\lambda}(u)=\|u\|^{2}+\lambda|u|_{2}^{2}-|u|_{p}^{p}-\int_{\Omega} f(u) u .
$$

Lemma 2.2. If $u$ is a critical point of $E_{\lambda}$ restricted to $\mathcal{N}_{\lambda}^{\tau}$, then $E_{\lambda}^{\prime}(u)=0$ in the dual space of $H$.

Proof. By definition, there exits $\theta \in \mathbb{R}$ such that $\left\langle E_{\lambda}^{\prime}(u)-\theta J_{\lambda}^{\prime}(u), \phi\right\rangle=0$, for all $\phi \in H^{\tau}$. Since $u \in \mathcal{N}_{\lambda}^{\tau}$, we can take $\phi=u$ to get $\theta\left\langle J_{\lambda}^{\prime}(u), u\right\rangle=0$.

By using $\left(\mathrm{f}_{2}\right)-\left(\mathrm{f}_{4}\right)$ we can check that

$$
f(t) t-f^{\prime}(t) t^{2} \leq-\gamma f(t) t \leq 0 \quad \text { for any } t \in \mathbb{R}
$$

This and the definition of $J_{\lambda}$ imply that

$$
\begin{aligned}
\left\langle J_{\lambda}^{\prime}(u), u\right\rangle & =2\|u\|^{2}+2 \lambda|u|_{2}^{2}-p|u|_{p}^{p}-\int_{\Omega}\left\{f^{\prime}(u) u^{2}+f(u) u\right\} \\
& =(2-p)|u|_{p}^{p}+\int_{\Omega}\left\{f(u) u-f^{\prime}(u) u^{2}\right\}<0 .
\end{aligned}
$$

Thus $\theta=0$ and therefore $\left\langle E_{\lambda}^{\prime}(u), \phi\right\rangle=0$ for all $\phi \in H^{\tau}$. The result follows from the principle of symmetric criticality [15] (see also [18, Theorem 1.28]).

Let $V$ be a Banach space, $M$ be a $C^{1}$-manifold of $V$ and $I: V \rightarrow \mathbb{R}$ a $C^{1}$ functional. We recall that $I$ restricted to $M$ satisfies the Palais-Smale condition at level $c\left((\mathrm{PS})_{c}\right.$ for short) if any sequence $\left(u_{n}\right) \subset M$ such that $I\left(u_{n}\right) \rightarrow c$ and $\left\|I^{\prime}\left(u_{n}\right)\right\|_{*} \rightarrow 0$ contains a convergent subsequence. We end this section by stating the compactness property satisfied by $E_{\lambda}$.

Lemma 2.3. The functional $E_{\lambda}$ restricted to $\mathcal{N}_{\lambda}^{\tau}$ satisfies the Palais-Smale condition at any level $c \in \mathbb{R}$.

Proof. Since we are dealing with a subcritical nonlinearity, the proof follows from the boundedness of $\Omega$, the Ambrosetti-Rabinowitz condition in (2.2) and standard arguments (see [5]). We omit the details.

## 3. Equivariant Lusternik-Schnirelmann theory

We recall in this section some facts about equivariant Lusternik-Schnirelmann theory. An involution on a topological space $X$ is a continuous function $\tau_{X}: X \rightarrow X$ such that $\tau_{X}^{2}$ is the identity map of $X$. A subset $A$ of $X$ is called $\tau_{X}$-invariant if $\tau_{X}(A)=A$. If $X$ and $Y$ are topological spaces equipped with involutions $\tau_{X}$ and $\tau_{Y}$, respectively, then an equivariant map is a continuous function $f: X \rightarrow Y$ such that $f \circ \tau_{X}=\tau_{Y} \circ f$. Two equivariant maps $f_{0}, f_{1}: X \rightarrow$ $Y$ are equivariantly homotopic if there is an homotopy $\Theta: X \times[0,1] \rightarrow Y$ such that $\Theta(x, 0)=f_{0}(x), \Theta(x, 1)=f_{1}(x)$ and $\Theta\left(\tau_{X}(x), t\right)=\tau_{Y}(\Theta(x, t))$, for all $x \in X, t \in[0,1]$.

Definition 3.1. The equivariant category of an equivariant map $f: X \rightarrow Y$, denoted by $\left(\tau_{X}, \tau_{Y}\right)$-cat $(f)$, is the smallest number $k$ of open invariant subsets $X_{1}, \ldots, X_{k}$ of $X$ which cover $X$ and which have the property that, for each $i=1, \ldots, k$, there is a point $y_{i} \in Y$ and a homotopy $\Theta_{i}: X_{i} \times[0,1] \rightarrow Y$ such that $\Theta_{i}(x, 0)=f(x), \Theta_{i}(x, 1) \in\left\{y_{i}, \tau_{Y}\left(y_{i}\right)\right\}$ and $\Theta_{i}\left(\tau_{X}(x), t\right)=\tau_{Y}\left(\Theta_{i}(x, t)\right)$ for every $x \in X_{i}, t \in[0,1]$. If no such covering exists we define $\left(\tau_{X}, \tau_{Y}\right)$-cat $(f)=\infty$.

If $A$ is a $\tau_{X}$-invariant subset of $X$ and $\iota: A \hookrightarrow X$ is the inclusion map we write

$$
\tau_{X}-\operatorname{cat}_{X}(A)=\left(\tau_{X}, \tau_{X}\right)-\operatorname{cat}(\iota) \quad \text { and } \quad \tau_{X}-\operatorname{cat}(X)=\tau_{X}-\operatorname{cat}_{X}(X)
$$

The following properties can be verified.

Lemma 3.2.
(a) If $f: X \rightarrow Y$ and $h: Y \rightarrow Z$ are equivariant maps then

$$
\left(\tau_{X}, \tau_{Z}\right)-\operatorname{cat}(h \circ f) \leq \tau_{Y}-\operatorname{cat}(Y)
$$

(b) If $f_{0}, f_{1}: X \rightarrow Y$ are equivariantly homotopic then

$$
\left(\tau_{X}, \tau_{Y}\right)-\operatorname{cat}\left(f_{0}\right)=\left(\tau_{X}, \tau_{Y}\right)-\operatorname{cat}\left(f_{1}\right)
$$

Let $\tau_{a}: V \rightarrow V$ be the antipodal involution $\tau_{a}(u)=-u$ on the vector space $V$. Equivariant Lusternik-Schnirelmann category provides a lower bound for the number of pairs $\{u,-u\}$ of critical points of an even functional, as stated in the following abstract result (see [12, Theorem 1.1], [17, Theorem 5.7]).

Theorem 3.3. Let $I: M \rightarrow \mathbb{R}$ be an even $C^{1}$-functional on a complete symmetric $C^{1,1}$-submanifold $M$ of some Banach space $V$. Assume that $I$ is bounded below and satisfies $(P S)_{c}$ for all $c \leq d$. Then, if $I^{d}=\{u \in M: I(u) \leq d\}$, the functional I has at least $\tau_{a}$-cat $I^{d}\left(I^{d}\right)$ antipodal pairs $\{u,-u\}$ of critical points with $I( \pm u) \leq d$.

## 4. Proofs of the main results

By standard regularity theory we know that if $u$ is a solution of $\left(\mathrm{P}_{\lambda}^{\tau}\right)$, then it is of class $C^{1}$. We say it changes sign $k$ times if the set $\{x \in \Omega: u(x) \neq 0\}$ has $k+1$ connected components. By (2.1), if $u$ is a nontrivial solution of problem $\left(\mathrm{P}_{\lambda}^{\tau}\right)$ then it changes sign an odd number of times. More specifically, we have the following relation between the number of nodal regions of a solution and its energy.

Lemma 4.1. If $u$ is a solution of problem $\left(\mathrm{P}_{\lambda}^{\tau}\right)$ which changes sign $2 k-1$ times, then $E_{\lambda}(u) \geq k m_{\lambda}^{\tau}$. In particular, if $u$ is a nontrivial solution of $\left(\mathrm{P}_{\lambda}^{\tau}\right)$ such that $E_{\lambda}(u)<2 m_{\lambda}^{\tau}$, then $u$ changes sign exactly once.

Proof. The set $\{x \in \Omega: u(x)>0\}$ has $k$ connected components $A_{1}, \ldots, A_{k}$. Let $u_{i}(x)=u(x)$ if $x \in A_{i} \cup \tau A_{i}$ and $u_{i}(x)=0$, otherwise. We have that

$$
\begin{aligned}
0 & =\left\langle E_{\lambda}^{\prime}(u), u_{i}\right\rangle=\int_{\Omega}\left(\nabla u \cdot \nabla u_{i}+\lambda u u_{i}-|u|^{p-2} u u_{i}-f(u) u_{i}\right) \\
& =\left\|u_{i}\right\|^{2}+\lambda\left|u_{i}\right|_{2}^{2}-\left|u_{i}\right|_{p}^{p}-\int_{\Omega} f\left(u_{i}\right) u_{i} .
\end{aligned}
$$

Thus, $u_{i} \in \mathcal{N}_{\lambda}^{\tau}$ for all $i=1, \ldots, k$, and $E_{\lambda}(u)=E_{\lambda}\left(u_{1}\right)+\ldots+E_{\lambda}\left(u_{k}\right) \geq k m_{\lambda}^{\tau}$, as desired.

Given $r>0$, we define the sets

$$
\Omega_{r}^{+}=\left\{x \in \mathbb{R}^{N}: \operatorname{dist}(x, \Omega)<r\right\} \quad \text { and } \quad \Omega_{r}^{-}=\left\{x \in \Omega: \operatorname{dist}\left(x, \partial \Omega \cup \Omega^{\tau}\right) \geq r\right\} .
$$

From now on we fix $r>0$ sufficiently small in such way that the inclusion maps $\Omega_{r}^{-} \hookrightarrow \Omega \backslash \Omega^{\tau}$ and $\Omega \hookrightarrow \Omega_{r}^{+}$are equivariant homotopy equivalences. We also define the barycenter map $\beta: H \backslash\{0\} \rightarrow \mathbb{R}^{N}$ by setting

$$
\beta(u)=\frac{\int_{\Omega} x \cdot|\nabla u(x)|^{2} d x}{\int_{\Omega}|\nabla u(x)|^{2} d x}
$$

Let $E_{\lambda, r}: H_{0}^{1}\left(B_{r}(0)\right) \rightarrow \mathbb{R}$ be defined as

$$
E_{\lambda, r}(u)=\frac{1}{2} \int_{B_{r}(0)}\left(|\nabla u|^{2}+\lambda u^{2}\right)-\frac{1}{p} \int_{B_{r}(0)}|u|^{p}-\int_{B_{r}(0)} F(u)
$$

and set

$$
m_{\lambda, r}=\inf _{u \in \mathcal{N}_{\lambda, r}} E_{\lambda, r}(u)
$$

where $\mathcal{N}_{\lambda, r}$ stands the Nehari manifold of $E_{\lambda, r}$. The following lemma is an important tool for the proof of Theorem 1.1.

Lemma 4.2. For any fixed $p \in\left(2,2^{*}\right)$ there exists $\bar{\lambda}(p)$ such that, for any $\lambda \geq \bar{\lambda}(p)$, there hold
(a) $m_{\lambda, r}<2 m_{\lambda}$,
(b) if $u \in \mathcal{N}_{\lambda}$ and $E_{\lambda}(u) \leq m_{\lambda, r}$, then $\beta(u) \in \Omega_{r}^{+}$.

Proof. See [8, Corollary 3.20 and Lemma 3.24].
For any given $d>0$ we set $E_{\lambda}^{d}=\left\{u \in \mathcal{N}_{\lambda}^{\tau}: E_{\lambda}(u) \leq d\right\}$. By using the second statement of the above lemma we are able to prove the following result.

Lemma 4.3. For any fixed $p \in\left(2,2^{*}\right)$, let $\bar{\lambda}(p)$ be given by Lemma 4.2. Then

$$
\tau_{a}-\operatorname{cat}\left(E_{\lambda}^{2 m_{\lambda, r}}\right) \geq \tau-\operatorname{cat}_{\Omega}\left(\Omega \backslash \Omega^{\tau}\right), \quad \text { for any } \lambda \geq \bar{\lambda}(p)
$$

Proof. We claim that, for any $\lambda \geq \bar{\lambda}(p)$ fixed, there exist two maps

$$
\Omega_{r}^{-} \xrightarrow{\alpha_{\lambda}} E_{\lambda}^{2 m_{\lambda, r}} \xrightarrow{\gamma_{\lambda}} \Omega_{r}^{+}
$$

such that $\alpha_{\lambda}(\tau x)=-\alpha_{\lambda}(x), \gamma_{\lambda}(-u)=\tau \gamma_{\lambda}(u)$, and $\gamma_{\lambda} \circ \alpha_{\lambda}$ is equivariantly homotopic to the inclusion map $\Omega_{r}^{-} \hookrightarrow \Omega_{r}^{+}$. Assuming the claim and recalling that the maps $\Omega_{r}^{-} \hookrightarrow \Omega \backslash \Omega^{\tau}$ and $\Omega \hookrightarrow \Omega_{r}^{+}$are equivariant homotopy equivalences, we can use Lemma 3.2 to get

$$
\tau_{a}-\operatorname{cat}\left(E_{\lambda}^{2 m_{\lambda, r}}\right) \geq \tau-\operatorname{cat}_{\Omega_{r}^{+}}\left(\Omega_{r}^{-}\right)=\tau-\operatorname{cat}_{\Omega}\left(\Omega \backslash \Omega^{\tau}\right)
$$

In order to prove the claim we follow [9]. Let $v_{\lambda} \in \mathcal{N}_{\lambda, r}$ be a positive radial function such that $E_{\lambda, r}\left(v_{\lambda}\right)=m_{\lambda, r}$. We define $\alpha_{\lambda}: \Omega_{r}^{-} \rightarrow E_{\lambda}^{2 m_{\lambda, r}}$ by

$$
\begin{equation*}
\alpha_{\lambda}(x)=v_{\lambda}(\cdot-x)-v_{\lambda}(\cdot-\tau x) \tag{4.1}
\end{equation*}
$$

It is clear that $\alpha_{\lambda}(\tau x)=-\alpha_{\lambda}(x)$. Furthermore, since $v_{\lambda}$ is radial and $\tau$ is an isometry, we have that $\alpha_{\lambda}(x) \in H^{\tau}$. The definition of $\Omega_{r}^{-}$implies that
$|x-\tau x| \geq 2 r$ for any $x \in \Omega_{r}^{-}$. Thus, we can check that $E_{\lambda}\left(\alpha_{\lambda}(x)\right)=2 m_{\lambda, r}$ and $\alpha_{\lambda}(x) \in \mathcal{N}_{\lambda}^{\tau}$. All this considerations show that $\alpha_{\lambda}$ is well defined.

Given $u \in E_{\lambda}^{2 m_{\lambda, r}}$ we can proceed as in the proof of Lemma 2.1 to conclude that $u^{+} \in \mathcal{N}_{\lambda}$ and $2 E_{\lambda}\left(u^{+}\right)=E_{\lambda}(u) \leq 2 m_{\lambda, r}$. It follows from Lemma 4.2(b) that $\gamma_{\lambda}: E_{\lambda}^{2 m_{\lambda, r}} \rightarrow \Omega_{r}^{+}$given by $\gamma_{\lambda}(u)=\beta\left(u^{+}\right)$is well defined. A simple calculation shows that $\gamma_{\lambda}(-u)=\tau \gamma_{\lambda}(u)$. Moreover, using (4.1) and the fact that $v_{\lambda}$ is radial we get

$$
\gamma_{\lambda}\left(\alpha_{\lambda}(x)\right)=\frac{\int_{B_{r}(x)} y \cdot\left|\nabla v_{\lambda}(y-x)\right|^{2} d y}{\int_{B_{r}(x)}\left|\nabla v_{\lambda}(y-x)\right|^{2} d y}=\frac{\int_{B_{r}(0)}(y+x) \cdot\left|\nabla v_{\lambda}(y)\right|^{2} d y}{\int_{B_{r}(0)}\left|\nabla v_{\lambda}(y)\right|^{2} d y}=x
$$

for any $x \in \Omega_{r}^{-}$. This concludes the proof.
We are now ready to present the proof of our main results.
Proof of Theorem 1.1. Let $p \in\left(2,2^{*}\right)$ and $\bar{\lambda}(p)$ be given by the Lemma 4.2. For any $\lambda \geq \bar{\lambda}(p)$, we can apply Theorem 3.3 and Lemma 4.3 to obtain $\tau$-cat ${ }_{\Omega}\left(\Omega \backslash \Omega^{\tau}\right)$ pairs $\pm u_{i}$ of critical points of the even functional $E_{\lambda}$ restricted to $\mathcal{N}_{\lambda}^{\tau}$ verifying

$$
E_{\lambda}\left( \pm u_{i}\right) \leq 2 m_{\lambda, r}<4 m_{\lambda} \leq 2 m_{\lambda}^{\tau}
$$

where we have used Lemma 4.2(a) and Lemma 2.1. It follows from Lemmas 2.2 and 4.1 that $\pm u_{i}$ are solutions of $\left(\mathrm{P}_{\lambda}^{\tau}\right)$ which change sign exactly once.

Proof of Corollary 1.2. Let $\tau: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ be given by $\tau(x)=-x$. It is proved in [9, Corollary 3] that our assumptions imply $\tau$-cat $(\Omega) \geq N$. Since $0 \notin \Omega, \Omega^{\tau}=\emptyset$. It suffices now to apply Theorem 1.1.

## References

[1] C. O. Alves, Existence and multiplicity of solution for a class of quasilinear equations, Adv. Nonlinear Studies 5 (2005), 73-87.
[2] C. O. Alves and Y. H. Ding, Multiplicity of positive solutions to a p-Laplacian equation involving critical nonlinearity, J. Math. Anal. Appl. 279 (2003), 508-521.
[3] T. Bartsch, Critical point theory in partially ordered Hilbert spaces, J. Funct. Anal. 186 (2001), 117-152.
[4] V. Benci and G. Cerami, The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rational Mech. Anal. 114 (1991), 79-93.
[5] , Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology, Calc. Var. Partial Differential Equations 2 (1994), 29-48.
[6] V. Benci, G. Cerami and D. Passaseo, On the number of positive solutions of some nonlinear elliptic problems, Nonlinear Analysis. A tribute in honour of G. Prodi, Quaderno Scuola Norm. Sup., Pisa, 1991, pp. 93-107.
[7] A. M. Candela, Remarks on the number of positive solutions for a class of nonlinear elliptic problems, Differential Integral Equations 5 (1992), 553-560.
[8] D. Cao, G. Li and X. Zhong, A note on the number of positive solutions of some nonlinear elliptic problems, Nonlinear Anal. 27 (1996), 1095-1108.
[9] A. Castro and M. Clapp, The effect of the domain topology on the number of minimal nodal solutions of an elliptic equation at critical growth in a symmetric domain, Nonlinearity 16 (2003), 579-590.
[10] A. Castro, J. Cossio and M. Neuberger, A sign-changing solution for a superlinear Dirichlet problem, Rocky Mountain J. Math. 27 (1997), 1041-1053.
[11] M. Clapp, On the number of positive symmetric solutions of a nonautonomous semilinear elliptic problem, Nonlinear Anal. 42 (2000), 405-422.
[12] M. Clapp and D. Puppe, Critical point theory with symmetries, J. Reine Angew. Math. 418 (1991), 1-29.
[13] M. F. Furtado, A relation between the domain topology and the number of minimal nodal solutions for a quasilinear elliptic problem, Nonlinear Anal. 62 (2005), 615-628.
[14] M. Lazzo, Solutions positives multiples pour une équation elliptique non linéaire avec léxposant critique de Sobolev, C. R. Acad. Sci. Paris Sér. 314 (1992), 61-64.
[15] R. S. Palais, The principle of symmetric criticality, Comm. Math. Phys. 69 (1979), 19-30.
[16] O. Rey, A multiplicity result for a variational problem with lack of compactness, Nonlinear Anal. 13 (1989), 1241-1249.
[17] M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, Berlin, 1990.
[18] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.

Marcelo F. Furtado
Departamento de Matemática
Universidade de Brasília
70910-900, Brasília-DF, BRAZIL
E-mail address: mfurtado@unb.br

