
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 28, 2006, 385–399

EXISTENCE OF SOLUTIONS
FOR A NONLINEAR WAVE EQUATION

Marek Galewski — Andrzej Nowakowski

Abstract. We prove the existence of a strong solution of a periodic-
Dirichlet problem for the semilinear wave equation with irrational period

and with nonlinearity satisfying some general growth conditions locally

around 0. We construct a new variational method, called a dual method,
and using relations between critical points and critical values of the primal

action and the dual action functionals we prove that the solution exists.
The dual functional which we define is different from the ones known so far

in that it depends on two dual variables.

1. Introduction

The aim of this paper is to prove the existence of strong solutions by intro-
ducing a so called dual variational method for a certain class of periodic-Dirichlet
problems for a scalar nonlinear wave equation

xtt(t, y)− xyy(t, y) + Fx(t, y, x(t, y)) = 0,
x(t+ T, y) = x(t, y) for (t, y) ∈ R× Ω,
x(t, 0) = x(t, π) = 0 for t ∈ R,

where Ω = (0, π), Fx denotes the derivative with respect to the third variable of
the function F :R× Ω× R→ R which is convex and continuously differentiable
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with respect to the third variable in some interval that will be specified later.
The assumption on Ω means that we consider the so called one-dimensional or
scalar wave equation. Moreover, F satisfies the Caratheodory condition, i.e. it
is measurable with respect to first two variables and continuous with respect to
the third one. More detailed assumptions concerning the nonlinearity will be
provided later. We consider only the case when T = 2πα and α is a certain
irrational number. Although problem (1.1) is fairly difficult to study, in the
last decade of the former century there appeared many papers dealing with it
by a variety of methods, compare [1], [3]–[7], [8], [10], [19]. The main difficulty
which appears here is that the linear wave equation with the right hand side
being a fixed function (instead of our nonlinear function Fx) does not possess
solutions (even generalized) for all values of α (see comments in [18, pp. 242–
249]). This is why most of the sources mentioned tried to find the nature of
irrationality of α and relate it to solvability of (1.1) by extending KAM method,
Lyapunow–Schmidt method or topological and classical variational methods. All
these methods are based on the study of the spectrum of the linear equation
whose structure relates strongly to the Diophantine character of α and next
on developing nonlinear methods that use the properties of the spectrum of
the linear d’Alembert operator � . Our approach is different although to some
extent it is in the spirit of the paper [5] where the variational Lyapunov–Schmidt
reduction method is used. We use the same definition of α (see (T) below) but
quite different and brand new variational method. These α are good enough to
ensure that linear nonhomogeneous equation has a unique solution in a strong
sense. Therefore we use the theorem from [18] and later develop quite new
variational method by constructing new duality theory and variational relations
for (1.1). In the first step using a kind of a topological idea we construct a set
of functions X for which �−1Fx(X) ⊂ X. To this effect we use, in an essential
way, the exact value of constant c defining the irrational α and the α itself,
see condition (T) below. Such an assumption restricts locally a type of our
nonlinearity Fx. Thus although we apply the variational method that bases on
minimizing suitable action functionals and recovering the relationships between
their critical points and critical values, we do not surpass over all subtle details
connected with the wave operator and wave equation. The main difficulty in our
approach is the construction of the set X and of a new duality theory related
to that set X. Therefore, let us assume that the number-theoretical character
of α is

(T) T = 2πα, α is any irrational number satisfying |α− p/q| ≥ cq−2 for all
p, q ∈ N with c > 0.

On equivalent forms of this condition as well as on several properties of such
numbers see e.g. [2], [3]. We only mention following [5] that for 0 < c < 1/3, the
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set Wc = {α ∈ R : |α − p/q| ≥ cq−2 for all p, q ∈ N, p 6= q} is uncountable, has
zero measure and accumulates to α = 1 both from the left and from the right;
Wc = ∅ for c ≥ 1.
It is essential that our assumptions on the nonlinearity Fx(t, y, · ) concern

only some interval, i.e. we need no information about Fx(t, y, · ) out of that
interval. It allows us to consider superquadratic as well as subquadratic non-
linearities at infinity. We should underline as well that the existence result in
our paper asserts that a solution exists in a strong sense i.e. the solution x(t, y)
satisfies (1.1) almost everywhere.
For the proof of Proposition 2.2 we require the following auxiliary results.
Let

G =L2per(R;H20 (Ω)), G1 = H1per(R;H10 (Ω))
and let

U = H2per(R× Ω) ∩H1per,0(R× Ω), U1 = H1per((0, T );W
1,2
0 (Ω)),

where H1per, H
2
per are usual Sobolev spaces of periodic functions with respect to

the first variable with period T and

H1per,0(R× Ω) = {h ∈ H1(R× Ω) : h(t+ T, y) = h(t, y),
(t, y) ∈ R× Ω, h(t, 0) = h(t, π) = 0, t ∈ R}.

Theorem 1.1 ([18]). Let g ∈ G. Then there exist x ∈ U being a unique
solution to

xtt(t, y)−∆x(t, y) = g(t, y),
x(t, 0) = x(t, π) = 0, t ∈ R,

x(t+ T, y) = x(t, y), (t, y) ∈ R× Ω,

and x = Λg, where Λ ∈ L(L2per(R;H20 (Ω), U) with

x(t, y) =
(
2
πT

)1/2∑
j,k

(−j2α−2 + k2)−1gj,keij2πt/T sin ky,(1.2)

gj,k =
(
2
πT

)1/2 ∫ T
0

∫ π
0
g(t, y)e−ij2πt/T sin ky dy dt,

and such that

‖x‖2U ≤ B‖g‖2G ,(1.3)

‖x‖2U ≤ C‖g‖2G1 ,(1.4)

with some B ≥ (1 + 16α4)α2c−2 and C ≥ (1 + 16α4)α2c−2(α/2)−2 independent
on g.
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Remark 1.2. From [18, pp. 239–242] we get one more estimation for the
solution x ∈ U :

(1.5) ‖x‖2U1 ≤ A‖g‖2L∞((0,T );W 2,2(Ω)),

where A is independent on g. Let us observe that each x ∈ U1 may be identified
with an absolutely continuous function from [0, T ] to W 1,20 (Ω). Thus, solution x
defined by (1.2) may be estimated by

‖x(t, · )‖W 1,20 (Ω) ≤ C1 sup
t∈(0,T )

‖g(t, · )‖W 2,2(Ω), t ∈ [0, T ],

where C1 is some constant independent on g.

We assume the following hypotheses concerning the nonlinearity, where Fx(v)
denotes the function (t, y)→ Fx(t, y, v(t, y)),

(G1) there exists a function z ∈ C20 ([0, T ]×Ω) such that (d2/dt2)z−(d2/dt2)z
∈ L∞((0, T );W 2,2(Ω)), Fx(z) ∈ L∞((0, T );W 2,2(Ω));

(G2) F is continuously differentiable and convex with respect to the third
variable in some closed neighbourhood Ĩ = [−d, d] of the interval

I =
[
− C1 sup

t∈(0,T )
‖z(t, · )‖W 2,2(Ω), C1 sup

t∈(0,T )
‖z(t, · )‖W 2,2(Ω)

]
;

(G3) Fx(t+T, y, x) = Fx(t, y, x), (t, y, x) ∈ R×Ω× Ĩ, Fx(t, 0, 0) = Fx(t, π, 0)
= 0, t ∈ R, Fx(t, y, 0) 6= 0, for a.e. (t, y) ∈ (0, T )× Ω, (t, y)→ F (t, y, 0)
is integrable in (0, T )× Ω and

(1.6) sup
x∈I
‖Fx(t, · , x)‖W 2,2(Ω) ≤ sup

t∈(0,T )
‖z(t, · )‖W 2,2(Ω), t ∈ (0, T ).

(G4) Fxxx(t, · , · ) ∈ L2((Ω × I), Fxyy(t, · , x) ∈ L2(Ω) and Fxxy(t, · , · ) ∈
L2(Ω × I)) for a.e. t ∈ (0, T ), Fxt( · , y, · ) ∈ L2((0, T ) × I)) for a.e.
y ∈ Ω, there exists a function l ∈ L1((0, T )× Ω)

max
x∈I
{|Fx(t, y, x)|2 + |Fxt(t, y, x)|2 + |Fxy(t, y, x)|2+} ≤ l(t, y)

and esse sup(t,y)∈[0,T ]×Ωmaxx∈I |Fxx(t, y, x)|2 is finite.

Due to the assumptions (G1)–(G4) we define a function G: (0, T )×Ω×R→ R
by the formula

G(t, y, x) =

{
F (t, y, x) for (t, y, x) ∈ [0, T ]× Ω× Ĩ ,
∞ for (t, y, x) ∈ [0, T ]× Ω× (R\Ĩ).

We observe that function G satisfies assumptions (G1)–(G4). Before we will pro-
ceed further we provide an example of a function which satisfies the introduced
assumptions.
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Example 1.3. Let

F (t, y, x) = − 1
12
x4 +

1
2
xf(t, y) +

1
2
exp(x),

f, fy, ft ∈ L∞((0, T ) × Ω), f(t + T, y) = f(t, y) for a.e. (t, y) ∈ (0, T ) × Ω and
f(t, 0) = f(t, π) for a.e. t ∈ (0, T ) and esse sup(t,y)∈(0,T )×Ωf(t, y) = −1.5. We
observe that F is not convex with respect to x in the interval (0, 3) (for it has
2 inflection points) and it is convex for x ∈ (0, 1.487962065). We observe that
inequalities

2
3
d3 + ed − 1.5 ≤ d and 2

3
(−d)3 + e−d − 1.5 ≤ d

are satisfied for d = 1.487962065. Let us take any function z ∈ C10 ([0, T ] × Ω)
such that (d2/dt2)z − (d2/dt2)z ∈ L∞((0, T )× Ω,R) and

sup
(t,y)∈(0,T )×Ω

|z(t, y)| = 1.487962065/C1.

Therefore (1.6) is satisfied. Assumptions (G4) and (G3) now obviously hold.
Hence all assumptions (G1)–(G4) are satisfied.

Now we may define the following set

X =
{
x ∈ U : ‖x(t, · )W 1,20 (Ω) ∈ I, (t, y) ∈ (0, T ), ‖x‖

2
U1 ≤ C1 sup

t∈(0,T )
‖z(t, · )‖

}
.

Since F = G on X and since we will be looking for solutions of (1.1) in X, we
now may rewrite (1.1) in the form

xtt(t, y)− xyy(t, y) +Gx(t, y, x(t, y)) = 0,
x(t+ T, y) = x(t, y) for (t, y) ∈ R× Ω,
x(t, 0) = x(t, π) = 0 for t ∈ R,

and still refer to it as (1.1). We now consider it as the Euler–Lagrange equation
for the following action functional J

(1.7) J(x) =
∫ T
0

∫
Ω

(
1
2
|xy(t, y)|2 −

1
2
|xt(t, y)|2 +G(t, y, x(t, y))

)
dy dt

where J :H1per,0(R× Ω)→ R.
The dual functional, which is for the first time introduced here and which

will be investigated together with (1.7) now reads

(1.8) JD(p, q) = −
∫ T
0

∫
Ω
G∗(t, y,−(pt(t, y)− qy(t, y))) dy dt

− 1
2

∫ T
0

∫
Ω
|q(t, y)|2 dy dt+ 1

2

∫ T
0

∫
Ω
|p(t, y)|2 dy dt

and JD:H1((0, T )× Ω)×H1((0, T )× Ω)→ R.
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Let us note that by (G4) and (G3) it follows that (t, y) → G∗(t, y, 0) is
integrable. Therefore both action functionals are well defined, see [17].

We will look at two kinds of relationships between the functionals J and
JD on the set X: the Duality Principle and the Variational Principle. The
former, Theorem 4.1, relates the critical values of both functionals while the
latter, Theorem 4.4, provides the necessary conditions that must be satisfied
by the solution to problem (1.1). For the purpose of the necessary conditions
we have to assume that a solution is approximated by a suitably convergent
minimizing sequence. But in the main result we prove that such a sequence
actually exists.

The introduction of the two dual variables in (1.8) is a consequence of the
fact that the dual variational method from [15] requires the differential operator
to be either monotone and coercive or selfadjoint and positive definite. The
wave operator is actually the difference between the monotone operators −∆
and −d2/dt2. So that to tackle the problem of the existence of solutions we have
had to bring up a new duality and a new variational principle in which we put
two dual variables. In that consists the main difference with some results in that
field, i.e. [11]–[13], [16], also obtained by a dual variational method. The variable
p is connected with the operator −d2/dt2 and the variable q connected with
the operator −d2/dy2. In the literature to the best knowledge of the authors,
the dual functional for the wave equations connected with variational method
depends only on one variable.

2. The auxiliary results

Now we shall construct the aforementioned sets on which J and JD will
be considered. We observe by construction of the set X and Theorem 1.1 the
following lemma may be formulated

Lemma 2.1. For any x ∈ X there exists a solution v ∈ U to the problem

(2.1) vtt(t, y)− vyy(t, y) = −Gx(t, y, x(t, y)) a.e. on (0, T )× Ω.

There exists a constant C2 > 0 (independent on v) such that the following esti-
mation holds

‖v‖2U ≤ C2.

Proof. Fix arbitrary x ∈ X. Since x ∈ U and by the assumptions on G, see
(G4), it follows that Gx( · , · , x( · , · )) ∈ G. Hence by Theorem 1.1 there exists
a unique solution v ∈ U of the periodic-Dirichlet problem for the equation (2.1)
satisfying

‖v‖2U ≤ C‖Gx(x)‖2G1 .
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In order to proceed further we need some notations and calculations. Let

a1 =
∫ T
0

∫
Ω
sup
x∈eI
|Gxy(t, y, x)|2 +

∫ T
0

∫
Ω
sup
x∈eI
|Gxt(t, y, x)|2,

a2 = esse sup
(t,y)∈[0,T ]×Ω

max
x∈eI
|Gxx(t, y, x)|2.

Since for x ∈ X we have ‖x‖2U1 ≤ C1 supt∈(0,T ) ‖z(t, · )‖W 2,2(Ω) we may estimate
the norm C‖Gx(x)‖2G1 as follows

C‖Gx(x)‖2G1 =C
∫ T
0

∫
Ω
|Gxy(t, y, x(t, y))|2 dy dt

+ C
∫ T
0

∫
Ω
|Gxt(t, y, x(t, y))|2|xt(t, y))|2 dy dt

+ C
∫ T
0

∫
Ω
|Gxt(t, y, x(t, y))|2 dy dt

+ C
∫ T
0

∫
Ω
|Gxy(t, y, x(t, y))|2|xy(t, y))|2 dy dt

≤Ca1 + 2Ca2C1 sup
t∈(0,T )

‖z(t, · )‖W 2,2(Ω).

To conclude, we put

C2 = Ca1 + 2Ca2C1 sup
t∈(0,T )

‖z(t, · )‖W 2,2(Ω). �

We now define a set

X̃ =
{
x ∈ U : ‖x(t, · )‖W 1,2(Ω) ∈ I, t ∈ (0, T )× Ω,

‖x‖2U1 ≤ C1 sup
t∈(0,T )

‖z(t, · )‖W 2,2(Ω), ‖x‖2U ≤ C2
}
.

Definition of the set X. Define X as the largest subset of X̃ having
property X: for every x ∈ X the relation

(2.2) x̃tt(t, y)− x̃yy(t, y) = −Gx(t, y, x(t, y))

implies that x̃ ∈ X.
We have to prove that there exists a nonempty set X.

Proposition 2.2. X̃ has the property X i.e. X = X̃ 6= ∅.

Proof. It is obvious that X̃ 6= ∅. Fix arbitrary x ∈ X̃. Since x ∈ U and
by the assumptions on G, see (G4), it follows that Gx( · , · , x( · , · )) ∈ G and
also Gx( · , · , x( · , · )) ∈ G1. Hence by Theorem 1.1 there exists a unique solution
x̃ ∈ U of the periodic-Dirichlet problem for the equation

(2.3) x̃tt(t, y)− x̃yy(t, y) = −Gx(t, y, x(t, y)) a.e. on (0, T )× Ω.
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Further by Remark 1.2 we obtain

‖x̃‖2U1 ≤ C1 sup
t∈(0,T )

‖Gx(t, · , x(t, · ))‖W 2,2(Ω).

Thus by (1.6) it follows that

‖x̃(t, · )‖W 2,2(Ω) ≤ C1 sup
t∈(0,T )

‖z(t, · )‖W 2,2(Ω).

So ‖x̃(t, · )‖W 2,2(Ω) ∈ I for t ∈ (0, T ).
Since X̃ ⊂ X, so x̃ is a solution to (2.1) corresponding to a certain x ∈ X.

Therefore by Lemma 2.1 we get ‖x̃‖2U ≤ C2.
Thus for an arbitrary x ∈ X̃ there exists an x̃ ∈ X̃ and satisfying (2.3).

Therefore X̃ has the property X. �

Now we define the set on which the dual action functional will be considered.
To this effect let us put

W 1t =W
1
t ((0, T )× Ω) = {p ∈ L2((0, T )× Ω) : pt ∈ L2((0, T )× Ω)},

W 1y =W
1
y ((0, T )× Ω) = {q ∈ L2((0, T )× Ω) : qy ∈ L2((0, T )× Ω)}.

Definition of Xd. We say that an element (p, q) ∈W 1t ×W 1y belongs to Xd

provided that there exists x ∈ X such that, for a.e. (t, y) ∈ (0, T )× Ω,

pt(t, y)− qy(t, y) = −Gx(t, y, x(t, y)) with q(t, y) = xy(t, y)

or else

p(t, y) = xt(t, y) and q(t, y) = xy(t, y).

We will also consider sets

Xd1 = {p ∈W 1t : (p, q) ∈ Xd}, Xd2 = {q ∈W 1y : (p, q) ∈ Xd}.

We observe that both X and Xd are not subspaces. Thus even standard
calculations using convexity arguments are rather difficult. What helps us is a
special structure of the sets X and Xd which despite their nonlinearity makes
these calculations possible.
We have said that functionals J and JD are well defined on X and Xd.

Note that the dual action functional is not necessarily bounded on Xd. Using
Fenchel–Young inequality it is easily seen by (G3) nad (G4) that JD is bounded
from the above on Xd. Now we may state the main result of the paper which is
the following existence theorem.

Theorem 2.3. There exist x ∈ U and (p, q) ∈W 1t ×W 1y such that

JD(p, q) = inf
x∈X
J(x) = J(x)



Existence of Solutions for a Nonlinear Wave Equation 393

and the following system holds

xt(t, y) = p(t, y),

xy(t, y) = q(t, y),

pt(t, y)− qy(t, y) = −Gx(t, y, x(t, y)).

3. Duality result

We shall construct the duality theory for the functional JD:Xd → R. So that
to avoid a calculation of a Fenchel–Young transform with respect to a nonlinear
subset we introduce a perturbation functional defined on the whole space. Let
Jpert:Xd × L2((0, T )× Ω;R)→ R be given by the formula

Jpert(p, q, v) =
∫ T
0

∫
Ω
G∗(t, y,−(pt(t, y)− qy(t, y)) + v(t, y)) dy dt

+
1
2

∫ T
0

∫
Ω
|q(t, y)|2 dy dt− 1

2

∫ T
0

∫
Ω
|p(t, y)|2 dy dt.

From [17] and by assumption (G3) it follows that Jpert can be defined on L2((0, T )
×Ω;R). We observe that Jpert is convex and lower semicontinuous in the third
variable for a fixed (p, q) ∈ Xd and Jpert(p, q, 0) = −JD(p, q).
We define a kind of a Fenchel–Young transform, J#pert:X

d × X → R, with
respect to a duality pairing for the space L2 = L2((0, T )× Ω;R), by

J#pert(p, q, x) = sup
v∈L2

{∫ T
0

∫
Ω
〈x(t, y), v(t, y)〉 dy dt

−
∫ T
0

∫
Ω
G∗(t, y,−(pt(t, y)− qy(t, y)) + v(t, y)) dy dt

}
− 1
2

∫ T
0

∫
Ω
|q(t, y)|2 dy dt+ 1

2

∫ T
0

∫
Ω
|p(t, y)|2 dy dt.

Using properties of the Fenchel–Young transform and results concerning duality
of convex integral functionals [17]

J#pert(p, q, x) =
∫ T
0

∫
Ω
G(t, y, x(t, y)) dy dt

−
∫ T
0

∫
Ω
〈xt(t, y), p(t, y)〉 dy dt+

1
2

∫ T
0

∫
Ω
|p(t, y)|2 dy dt

+
∫ T
0

∫
Ω
〈xy(t, y), q(t, y)〉 dy dt−

1
2

∫ T
0

∫
Ω
|q(t, y)|2 dy dt.

We provide now two lemmas which will be used in the proof of the Duality
Principle.
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Lemma 3.1. For any x ∈ X

inf
p∈Xd1

sup
q∈Xd2
J#pert(p, q, x) = J(x).

Proof. It suffices to show that

sup
q∈Xd2

{∫ T
0

∫
Ω
(〈xy(t, y), q(t, y)〉 − |q(t, y)|2) dy dt

}
=
1
2

∫ T
0

∫
Ω
|xy(t, y)|2 dy dt

and

(3.1) inf
p∈Xd1

{∫ T
0

∫
Ω
(−〈xt(t, y), p(t, y)〉+ |p(t, y)|2) dy dt

}
= −1
2

∫ T
0

∫
Ω
|xt(t, y)|2 dy dt

using the structure of setsXd1 andX
d
2 . For this x there exists a pair (p

x, qx) ∈ Xd

such that

xt(t, y) = px(t, y), xy(t, y) = qx(t, y).

In a consequence

1
2

∫ T
0

∫
Ω
|xy(t, y)|2 dy dt

=
∫ T
0

∫
Ω
〈xy(t, y), qx(t, y)〉 dy dt−

1
2

∫ T
0

∫
Ω
|qx(t, y)|2 dy dt

≤ sup
q∈Xd2

{∫ T
0

∫
Ω
〈xy(t, y), q(t, y)〉 dy dt−

1
2

∫ T
0

∫
Ω
|q(t, y)|2 dy dt

}

≤ 1
2

∫ T
0

∫
Ω
|xy(t, y)|2 dy dt.

The relation (3.1) is now obvious. Thus we obtain the assertion of the lemma.�

Now by Fenchel–Young inequality it follows that

Lemma 3.2. For any (p, q) ∈ Xd

inf
x∈X
J#pert(p, q, x) ≥ JD(p, q).

From the definition of Xd it follows that in the above lemma we have equality
for some (p, q) ∈ Xd, e.g. for

q(t, y) = xy(t, y), pt(t, y) = qy(t, y)−Gx(t, y, x(t, y))
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4. Duality and Variational Principles

We now relate the critical values of both action functionals.

Theorem 4.1.

inf
x∈X
J(x) ≥ inf

p∈Xd1
sup
q∈Xd2
JD(p, q).

Proof. By Lemmas 3.1, 3.2 and since

inf
a∈A
sup
b∈B
I(a, b) ≥ sup

b∈B
inf
a∈A
I(a, b)

we obtain

inf
x∈X
J(x) = inf

x∈X
inf
p∈Xd1

sup
q∈Xd2
J#pert(p, q, x)

≥ inf
p∈Xd1

sup
q∈Xd2

inf
x∈X
J#pert(p, q, x) ≥ inf

p∈Xd1
sup
q∈Xd2
JD(p, q). �

We observe that Theorem 4.1 is valid in case we consider minimizing se-
quences. Therefore we have

Corollary 4.2. Let {xj} ⊂ X be a minimizing sequence for a functional J
and let {pj , qj} ⊂ Xd be the sequences corresponding to {xj} accordingly to the
definition of the set Xd. Then

(4.1) inf
xj∈X
J(xj) ≥ inf

pj∈Xd1
sup
qj∈Xd2

JD(pj , qj).

Remark 4.3. Let us note that from the proof of the Theorem 4.1 and Lem-
mas 3.1 and 3.2 we can take in the right hand side of (4.1) for each pj in “sup”
only at most two values of qj corresponding to pj , accordingly to the definition
of the set Xd. Therefore we have obvious inequalities

inf
xj∈X
J(xj) ≥ inf

pj∈Xd1
sup
qj∈Xd2

JD(pj , qj)

≥ sup
qj∈Xd2

inf
pj∈Xd1

JD(pj , qj) ≥ lim inf
j
JD(pj , qj).

We state the necessary conditions. We observe that due to the construction
of the set X and by Lemma 2.1 it follows that a minimizing sequence may be
assumed, at least up to a subsequence, to be weakly convergent in U and strongly
in U1.

Theorem 4.4. Let infx∈X J(x) = J(x), where x ∈ X is a limit, strong in
U1 and weak in U , of a minimizing sequence {xj} ⊂ X. Then there exist p ∈ Xd1
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and q ∈ Xd2 such that for a.e. (t, y) ∈ (0, T )× Ω,

p(t, y) = xt(t, y),(4.2)

q(t, y) = xy(t, y),(4.3)

pt(t, y)− qy(t, y) +Gx(t, y, x(t, y)) = 0,(4.4)

and such that

J(x) = JD(p, q).

Proof. Let x ∈ X be such that J(x) = infxj∈X J(xj) and let {pj , qj} ⊂ Xd

denote the sequences corresponding to {xj} according to the definition of set
Xd. We define

pt(t, y) = qy(t, y)−Gx(t, y, x(t, y)),
for almost all (t, y) ∈ (0, T )× Ω with q given by

q(t, y) = xy(t, y).

It is clear that the above (p, q) is a limit of a certain sequence of {pj , qj} ∈ Xd.
We observe that there are two possible sequences {pj , qj} ⊂ Xd corresponding
to the sequence {xj} accordingly to the definition of the set Xd with qj = xjy.
Namely

(4.5) qj(t, y) = xjy(t, y), p
j(t, y) = xjt (t, y)

or

(4.6) pjt (t, y) = q
j
y(t, y)−Gx(t, y, xj(t, y)), qj(t, y) = xjy(t, y).

First we investigate the convergence of both sequences. Since {xj} converges
strongly in U1 we get for the sequence (4.5)

xjt → xt = p, xjy → xy = q.

Therefore system (4.2)–(4.4) is satisfied. Moreover, by a direct calculation, we
have J(x) = JD(p, q).
In case of sequence (4.6) we have similarly qj → q = xy and qjy ⇀ qy = xyy

in L2, possibly up to a subsequence. Moreover,

(4.7) −(pjt (t, y)− qjy(t, y)) = Gx(t, y, xj(t, y)).

From (4.7) we infer, that the sequence {pjt − qjy} is bounded in L∞ and so in
L2 and up to a subsequence it is also weakly convergent. Since xj converges
pointwisely to x therefore {pjt − qjy} converges pointwisely to −Gx(t, y, x(t, y))
also. We investigate the convergence of the sequence {pj}. By (4.7) we get

pjt (t, y) = −Gx(t, y, xj(t, y)) + qjy(t, y).
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Hence {pjt} and in a consequence {pj} are bounded in L2. Therefore {pj} is
convergent weakly to p, possibly up to a subsequence. By Corollary 4.2 and
Remark 4.3 we have

J(x) ≥ inf
pj∈Xd1

sup
qj∈Xd2

JD(pj , qj)(4.8)

≥ sup
qj∈Xd2

inf
pj∈Xd1

JD(pj , qj) ≥ lim inf
j→∞

JD(pj , qj).

We observe that

(4.9) lim inf
j→∞

JD(pj , qj) ≥ JD(p, q).

Really, since {qj} is strongly convergent we have

lim inf
j→∞

(
1
2

∫ T
0

∫
Ω
|pj(t, y)|2 dy dt− 1

2

∫ T
0

∫
Ω
|qj(t, y)|2 dy dt

)
= lim inf

j→∞

1
2

∫ T
0

∫
Ω
|pj(t, y)|2 dy dt− lim

j→∞

1
2

∫ T
0

∫
Ω
|qj(t, y)|2 dy dt

≥ 1
2

∫ T
0

∫
Ω
|p(t, y)|2 dy dt− 1

2

∫ T
0

∫
Ω
|q(t, y)|2 dy dt.

Moreover,

(4.10) lim
j→∞

(∫ T
0

∫
Ω
G∗(t, y,−(pjt (t, y)− qjy(t, y)))

)
=
∫ T
0

∫
Ω
G∗(t, y,−(pt(t, y)− qy(t, y))) dy dt

Indeed, since∫ T
0

∫
Ω
G(t, y, xj(t, y)) dy dt →

∫ T
0

∫
Ω
G(t, y, x(t, y)) dy dt,∫ T

0

∫
Ω
〈pjt (t, y)− qjy(t, y), xj(t, y)〉 dy dt →

∫ T
0

∫
Ω
〈pt(t, y)− qy(t, y), x(t, y)〉 dy dt,

and since

−
∫ T
0

∫
Ω
G∗(t, y,−(pjt (t, y)− qjy(t, y))) dy dt

=
∫ T
0

∫
Ω
G(t, y, xj(t, y)) dy dt−

∫ T
0

∫
Ω
〈pjt (t, y)− qjy(t, y), xj(t, y)〉 dy dt

we have, using (4.4) together with properties of the Fenchel–Young, transform
that (4.10) is satisfied. By (4.8), (4.9) it now follows that J(x) ≥ JD(p, q).
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Moreover, by the definitions of J , JD, relations (4.3), (4.4) and the Fenchel–
Young inequality it follows that

J(x) =
∫ T
0

∫
Ω

(
1
2
|xy(t, y)|2 −

1
2
|xt(t, y)|2 +G(t, y, x(t, y))

)
dy dt

≤ −
∫ T
0

∫
Ω
〈xt(t, y), p(t, y)〉 dy dt+

1
2

∫ T
0

∫
Ω
|p(t, y)|2 dy dt

+
∫ T
0

∫
Ω
〈xy(t, y), q(t, y)〉 dy dt−

1
2

∫ T
0

∫
Ω
|q(t, y)|2 dy dt

+
∫ T
0

∫
Ω
G(t, y, x(t, y)) dy dt

= −
∫ T
0

∫
Ω
G∗(t, y,−(pt(t, y)− qy(t, y))) dy dt

− 1
2

∫ T
0

∫
Ω
|q(t, y)|2 dy dt+ 1

2

∫ T
0

∫
Ω
|p(t, y)|2 dy dt = JD(p, q).

Therefore we get that J(x) ≤ JD(p, q). Thus J(x) = JD(p, q), which reads∫ T
0

∫
Ω
G∗(t, y,−(pt(t, y)− qy(t, y))) dy dt+

∫ T
0

∫
Ω
G(t, y, x(t, y)) dy dt

+
1
2

∫ T
0

∫
Ω
|q(t, y)|2 dy dt+ 1

2

∫ T
0

∫
Ω
|xy(t, y)|2 dy dt

=
1
2

∫ T
0

∫
Ω
|p(t, y)|2 dy dt+ 1

2

∫ T
0

∫
Ω
|xt(t, y)|2 dy dt.

Therefore by (4.3), (4.4) and standard convexity arguments

1
2

∫ T
0

∫
Ω
|p(t, y)|2 dy dt+ 1

2

∫ T
0

∫
Ω
|xt(t, y)|2 dy dt =

∫ T
0

∫
Ω
〈xt(t, y), p(t, y)〉.

Hence we obtain (4.2). �

5. The proof of the main result

By definition of the set X we see that the functional J is bounded in X.
Therefore we can choose in X a minimizing sequence for the functional J which
we denote by {xj}. Sequence {xj} has a subsequence denoted again by {xj} con-
verging weakly in U and strongly in U1. Therefore {xj} converges also strongly
in L2((0, T )×Ω;R) to a certain element x ∈ U . By construction of the set X we
observe that x ∈ U . Moreover, {xj} is also convergent almost everywhere and
sequence {xjt} is convergent strongly in L2((0, T )× Ω;R). So

lim inf
j→∞

inf J(xj) ≥ J(x).

Hence infx∈X J(xj) = J(x). Therefore by Theorem 4.1 we get the main result
of the paper.
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