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Abstract. Necessary and sufficient conditions for single-valued extensions

of multivalued maps are discussed. Moreover, a quantitative version of a

generalization of Dugundji’s extension theorem for multivalued maps is
obtained. Finally, the extension problem for compact maps is studied.

Many of the results are new even for single-valued maps.

1. Introduction

The celebrated extension theorem of Dugundji [10] states that any continu-
ous map f :A → Y defined on a closed subset A of a metric space X with values
in a convex subset Y of a locally convex vector space possesses a continuous
extension F :X → Y . In the degree theory of multivalued maps, it is impor-
tant to have such an extension result also for multivalued upper semicontinuous
maps f :A ( Y . In particular, for the degree of noncompact maps, a standard
proceeding is to restrict maps to so-called fundamental sets and then to extend
them continuously (resp. upper semicontinuously).
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The only extension result which we know in this direction is a theorem of
Ma [16] which closely follows Dugundji’s proof and obtains a corresponding result
for multivalued maps with compact convex values. In particular, it seems that no
result is known which does not need convexity of the maps. However, in typical
applications of degree theory, e.g. for the translation operator of differential
equations in the absence of uniqueness, one not only has non-convex values but
even maps with non-acyclic values which, however, typically are compositions of
so-called Rδ-maps with single-valued maps.

We are therefore not only interested in the existence of upper semicontinuous
extension for the above maps with non-convex values but also in preserving as
much of the additional structure of these maps as possible. The first property
in this connection which one might hope for is that the extension F :X ( Y is
even single-valued on X \A. Another required property is that the extension of
a compact map remains compact.

The existence of single-valued continuous extensions of a multivalued map
is closely related to the approximation property as we will discuss in Section 2.
The most important case of multivalued maps with the approximation property is
that of upper semicontinuous maps with compact convex values. For such maps,
we will obtain the existence of single-valued continuous extensions with very
strong additional properties in Section 3. In particular, our result will contain
the extension theorems of Dugundji and Ma as special cases, and in addition, we
obtain a more quantitative version which yields the existence of retractions with
very good approximation properties. In Section 4, we discuss the extension of
continuous compact maps. We point out that many of our results are new even
in case of single-valued maps.

2. Single-valued extensions and the approximation property

By a multivalued map f :X ( Y , we understand a map f :X → 2Y with
possibly empty values f(x). As is usual practice, we put f(A) :=

⋃
x∈A f(x) and

Gr(f) := {(x, y) ∈ X × Y : y ∈ f(x)}.

Recall that f is called upper semicontinuous at x ⊆ X, if for each open set V ⊆ Y

containing f(x) there is some neighbourhood U ⊆ X of x with f(U) ⊆ V . Upper
semicontinuity on a set M ⊆ X means upper semicontinuity at each x ∈ M .

We point out that the set X is implicitly involved in this definition, i.e. the
upper semicontinuity of f on M is a stronger property than the upper semicon-
tinuity of the restricted map f |M :M ( Y . Also in the following definitions the
spaces X and Y are implicitly involved.

Definition 2.1. Let X and Y be topological spaces, and F :X ( Y . If
W ⊆ X × Y is a neighbourhood of Gr(F ), we call a continuous map ϕ:X → Y
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a W -approximation (for F ) if Gr(ϕ) ⊆ W . Let F be a subset of the space
C(X, Y ) of all continuous functions from X into Y .

(a) F has the approximation property (with respect to F) if for each neigh-
bourhood W ⊆ X × Y of Gr(F ) there is a W -approximation in F .

(b) F has the homotopy approximation property (with respect to F) if it
has the approximation property (with respect to F) and if for each
neighbourhood W ⊆ X × Y of Gr(F ) there is some neighbourhood
W0 ⊆ X×Y of Gr(F ) such that each two W0-approximations (from F)
are joined by a homotopy h: [0, 1] × X → Y such that h(t, · ) is a W -
approximation for each t ∈ [0, 1].

Most results which imply that a function has the approximation property
also show that the function has the homotopy approximation property. Let us
start with some examples.

Recall that a nonempty closed set K of a Hausdorff space Y is

(a) ∞-proximally connected in Y if each neighbourhood U ⊆ Y of K con-
tains a neighbourhood V ⊆ U of K such that each continuous map from
some finite-dimensional sphere into V has a continuous extension to the
corresponding ball with values in U .

(b) UV∞ in Y if each neighbourhood U ⊆ Y of K contains a contractible
neighbourhood V ⊆ U of K.

If K is UV∞ in Y then K is ∞-proximally connected in Y , but the converse is
not true, in general. In view of [14, Proposition 1.12] (see also [15]), each Rδ-
space K (i.e. each intersection of a decreasing sequence of nonempty compact
contractible metric spaces) has the above two properties whenever Y is an ANR
(see Section 4).

Proposition 2.2.

(a) (AC) If X is a metric space, Y is a locally convex space, and F :X ( Y

is upper semicontinuous with nonempty compact convex values, then F

has the approximation property with respect to C(X, Y ).
(b) (AC) If X and Y are metrizable, X has finite or countable covering

dimension, and F :X ( Y is upper semicontinuous and F (x) is compact
and UV∞ in Y for each x ∈ X, then F has the homotopy approximation
property with respect to C(X, Y ).

(c) Let Y be Hausdorff and F :X ( Y be upper semicontinuous and F (x)
be ∞-proximally connected in Y for each x ∈ X. Assume in addition
(i) X is a finite polyhedron or
(ii) X is a compact ANR, Y is metrizable and F (x) is compact for each

x ∈ X.
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Then F has the homotopy approximation property with respect to the
space C(X, Y ).

(d) If F :X ( Y has the approximation property with respect to some family
F and g:Y → Z is continuous, then g◦F has the approximation property
with respect to the family Fg := {g ◦ ϕ : ϕ ∈ F}. If g is one-to-one and
g:Y → g(Y ) is an open map, then an analogous result holds for the
homotopy approximation property.

We use the symbol (AC) to tag that the axiom of choice is essentially involved
in the proof (cf. also Remark 3.4).

Proof. (a) This is a special case of [3, Proposition 4.2]; for a particular case
see also [7].

(b) By [14, Theorem 1.21] (see also [1]), F is weakly relatively approximable
over ∅ in the sense of [14]. In particular, F has the approximation property.
The same result shows that also the map F̃ (t, x) := F (x) (t ∈ [0, 1]) is weakly
relatively approximable over A := {0, 1} ×X. Hence, if W ⊆ X × Y is a neigh-
bourhood of Gr(F ), then W̃ := [0, 1]×W is a neighbourhood of Gr(F̃ ), and so
we find some open neighbourhood W̃0 of Gr(F̃ ) such that any continuous map
ϕ:A → Y with Gr(ϕ) ⊆ W̃0 has an extension to a W̃ -approximation. Then

W0 := {(x, y) ∈ X × Y : (0, x, y) ∈ W̃0 and (1, x, y) ∈ W̃0}

is open and thus a neighbourhood of Gr(F ). If ϕ0, ϕ1 are two W0-approxima-
tions, the map ϕ:A → Y , defined by ϕ(t, x) := ϕt(x) (t ∈ {0, 1}) is continuous
with Gr(ϕ) ⊆ W̃0 and thus has an extension to a W̃ -approximation h: [0, 1]×X →
Y . Then h is a homotopy connecting ϕ0 with ϕ1 and such that h(t, · ) is a W -
approximation for each t ∈ [0, 1].

(c) For the case that X is a polyhedron, the claim is a reformulation of [2,
Theorem 8.11]. In the other case the claim is a reformulation of [12, Theo-
rems 23.8 and 23.9] (see also [13, Theorems 5.12 and 5.13]) in view of Remark 2.8.

(d) Let W ⊆ X × Z be an open neighbourhood of Gr(g ◦ F ). Then

WF := {(x, y) ∈ X × Y : (x, g(y)) ⊆ W}

is open and thus a neighbourhood of Gr(F ). If ϕ is a WF -approximation, then
g ◦ ϕ is a W -approximation. Hence, g ◦ F has the approximation property
with respect to Fg. Moreover, if F has the homotopy approximation property,
we find some neighbourhood W0 ⊆ X × Y of Gr(F ) such that each two W0-
approximations from F are joined by a homotopy h: [0, 1] × X → Y such that
h(t, · ) is a WF -approximation for each t ∈ [0, 1]. Each (x0, y0) ∈ W0 has an
open neighbourhood of the form U × V ⊆ X × Y with U × V ⊆ W0. Then g(V )
is open in g(Y ), i.e. there is some open set O ⊆ Z with O ∩ g(Y ) = g(V ). Since
g is one-to-one, we have g−1(O) = V . Let Wg◦F ⊆ X × Z be the union of all
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sets U × O obtained in this way. Then Wg◦F is open and a neighbourhood of
Gr(g ◦ F ). Moreover, if (x, g(y)) ∈ Wg◦F then (x, y) ∈ W0.

Let now Φi ∈ Fg (i = 1, 2) be two Wg◦F -approximations. Then Φi = g ◦ ϕi

for some ϕi ∈ F , and by our choice of Wg◦F , ϕi is a W0-approximation for
i = 1, 2. Hence, we find a homotopy h: [0, 1] × X → Y joining ϕ1 with ϕ2 and
such that h(t, · ) is a WF -approximation for each t ∈ [0, 1]. It follows as above
that H(t, · ) := g(h(t, · )) is a W -approximation for each t ∈ [0, 1] which joins
Φ1 with Φ2. �

For further examples, see e.g. [2, Section II.8].
The following result shows that without the approximation property one has

practically no chance to obtain a single-valued extension of a multivalued map.

Proposition 2.3. Let X be a metric space, Y be a topological space, and
A ⊆ X. Let B ⊆ Z ⊆ X be such that for each Lipschitz-continuous function
δ:B → (0, 1) there is a continuous map s:B → Z\A with d(s(x), x) ≤ δ(x) for all
x ∈ B. If f :A ( Y has an extension F :Z ( Y which is upper semicontinuous
on B and single-valued on Z \ A, then F |B :B ( Y has the approximation
property with respect to C(X, Y ).

Proposition 2.3 means not only that the extended function F has the ap-
proximation property but even the original (unextended) function f must have
this property, provided that A is “not too bad”.

Corollary 2.4. Let X be a metric space, Y be a topological space, and
suppose that the closed set A ⊆ X has the property that for each Lipschitz-
continuous function δ: ∂A → (0,∞) there is a continuous map s: ∂A → X \ A

with d(s(x), x) ≤ δ(x) for all x ∈ ∂A. If f :A ( Y has an extension F :U ( Y

to some neighbourhood U ⊆ X of A which is upper semicontinuous on ∂A and
single-valued on X \A, then f |∂A: ∂A ( Y has the approximation property with
respect to C(X, Y ).

Proof. Apply Proposition 2.3 with X := U , B := ∂A, and Z := X \A. �

Proof of Proposition 2.3. Let W be a neighbourhood of Gr(F |B) in
B × Y . Let U be the family of all open in Z sets U ⊆ Z with diam U <

min{1,diam Z} and the property that there is some open set V ⊆ Y such that
F (U) ⊆ V and (U ∩ B) × V ⊆ W . Then U covers B. Indeed, for each x ∈ B,
the set W is a neighbourhood of the set {x} × F (x) in the space B × Y , and
so we find open sets U ⊆ X and V ⊆ Y with x ∈ U and F (x) ⊆ V such that
(U ∩ B) × V ⊆ W . Since F :Z ( Y is upper semicontinuous at x ∈ B with
F (x) ⊆ V , we conclude that x is contained in some set of U. Hence, the function
δ:Z → [0, 1], defined by

δ(x) := sup{dist(x, Z \ U) : U ∈ U},
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has no zero on B. In view of the subsequent Lemma 2.5 δ is Lipschitz (with
constant ≤ 1).

Let s:B → Z \ A be continuous with d(s(x), x) ≤ δ(x)/2 for all x ∈ B, and
define ϕ:B → Y by {ϕ(x)} = F (s(x)). Then Gr(ϕ) ⊆ W , because for each x ∈ B

there is some U ∈ U with d(s(x), x) < dist(x, Z\U), and so s(x) ∈ Z\(Z\U) = U ;
consequently (x, ϕ(x)) ∈ (U ∩B)× F (U) ⊆ (U ∩B)× V ⊆ W . �

Lemma 2.5. Let X be a metric space and fi:X → R (i ∈ I) a family
of Lipschitz functions, all with a constant ≤ L < ∞. Then either f+(x) :=
supi fi(x) is constantly ∞ or defines a Lipschitz function with constant ≤ L. An
analogous result holds for f−(x) := infi fi(x).

Proof. Let x, y ∈ X with f+(y) < ∞. Choose sequences in, jn with
fin

(x) → f+(x) and fjn
(y) → f+(y). Since

fin(x)− fjn(y) ≤ fin(x)− fin(y) + f+(y)− fjn(y)

≤ Ld(x, y) + f+(y)− fjn(y) → Ld(x, y),

we conclude that f+(x) − f+(y) ≤ Ld(x, y). In particular, f+(x) < ∞, and
interchanging x and y, we obtain |f+(x)− f+(y)| ≤ Ld(x, y). The claim for f−
follows from f−(x) = − supi(−fi)(x). �

Proposition 2.3 states, roughly speaking, that for finding a single-valued ex-
tension it is necessary to find an extension with the approximation property.
Theorem 2.9 will show that finding an extension with the homotopy approxi-
mation property is even sufficient for finding a single-valued extension. Even
slightly less is required.

In a metric space X and for M ⊆ X, we use the notation Br(M) := {x ∈
X : dist(x,M) < r}. For M := {x}, we write shorter Br(x) := Br({x}).

The following definition is from [5]. In [6], the same property is called “ε-δ-
upper semicontinuous”.

Definition 2.6. Let Y be a metric space. A multivalued map f :X ( Y is
called upper semicontinuous at x ∈ X in the ε-sense, if for each ε > 0 there is
some neighbourhood U ⊆ X of x with f(U) ⊆ Bε(f(x)).

If f is upper semicontinuous at x, then f is upper semicontinuous at x in the
ε-sense. The converse holds if f(x) is compact. In a similar sense, we generalize
the approximation properties.

Definition 2.7. Let X and Y be metric spaces, and F :X ( Y . We call
a continuous map ϕ:X → Y an ε-approximation of F , if Gr(ϕ) ⊆ Bε(Gr(F )),
i.e. if ϕ is a Bε(Gr(F ))-approximation; here we understand X × Y equipped
with the max-distance, i.e. Gr(ϕ) ⊆ Bε(Gr(F )) means that for each x ∈ X
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there are z ∈ X and y ∈ F (z) satisfying d(x, z) < ε and d(ϕ(x), y) < ε. Let
F ⊆ C(X, Y ).

(a) F has the weak approximation property (with respect to F) if for each
ε > 0 there is an ε-approximation ϕ ∈ F of F .

(b) F has the ε-homotopy approximation property (with respect to F) if
it has the weak approximation property (with respect to F) and if for
each ε > 0 there is some ε0 > 0 such that each two ε0-approximations
of F (from F) are homotopic by a homotopy h: [0, 1] × X → Y such
that h(t, · ) is an ε-approximation of F for each t ∈ [0, 1].

(c) F has the weak homotopy approximation property (with respect to F)
if it has the approximation property (with respect to F) and if for each
ε > 0 there is some neighbourhood W0 ⊆ X × Y of Gr(F ) such that
each two W0-approximations (from F) are homotopic by a homotopy
h: [0, 1]×X → Y such that h(t, · ) is an ε-approximation of F for each
t ∈ [0, 1].

Remark 2.8. The homotopy approximation property implies the weak ho-
motopy approximation property, and the approximation property implies the
weak approximation property; the converse holds if Gr(F ) is compact (e.g. if
X is compact and F :X ( Y is upper semicontinuous with compact values).
Moreover, in this case, the homotopy approximation property, the weak homo-
topy approximation property and the ε-homotopy approximation property are
equivalent.

Theorem 2.9. Let X and Y be metric spaces, A ⊆ X be closed, and let
f :A ( Y possess an extension f :X ( Y which is upper semicontinuous on
∂A in the ε-sense and such that the restriction of f to a set Z ⊇ X \ A has
the weak homotopy approximation property or the ε-homotopy approximation
property (with respect to some F ⊆ C(X, Y )). Then f possesses an extension
F :X ( Y which is single-valued on X \A and upper semicontinuous on X \A

in the ε-sense.

At a first glance, Theorem 2.9 might appear somewhat disappointing, be-
cause it only states, roughly speaking, that if one finds an extension with the
homotopy approximation property, then one also finds a single-valued extension.
However, if the original map has the homotopy extension property and the set
A is not “too bad”, then such an extension exists, provided that the family F is
appropriately chosen, as we will show now. Actually, this was the main reason
why we introduced the family F .

Recall that a set A ⊆ X is called a retract of X, if there is a retraction
ρ:X → A onto A, i.e. ρ is continuous with ρ(x) = x for all x ∈ A.
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Corollary 2.10. Let X and Y be metric spaces, U ⊆ X, and A be a re-
tract of U with a corresponding retraction ρ which is uniformly continuous. As-
sume also that ρ is “uniformly open” in the following sense: There is a function
δ: (0,∞) → (0,∞) with δ(ε) → 0 as ε → 0 and

(2.1) ρ(Bδ(ε)(x) ∩ U) ⊇ Bε(ρ(x)) ∩ Z0 (x ∈ Z),

where U \A ⊆ Z ⊆ U and Z0 := ρ(Z). Suppose that f :A ( Y is upper semicon-
tinuous in the ε-sense and that f |Z0 :Z0 ( Y has the ε-homotopy approximation
property with respect to some family F0. Then f has an extension to an upper
semicontinuous map F0:U ( Y in the ε-sense which is single-valued on U \A.

In Section 4, we will see that if U is a neighbourhood of A, then in many
situations one even finds an extension f :X ( Y .

A simple example of a set A with the properties required in Corollary 2.10
is a closed ball in a normed space X when U is bounded. Then the canonical
radial retraction ρ is Lipschitz and satisfies (2.1) with δ(ε) := cε where c > 0 is
a constant.

Proof of Corollary 2.10. Shrinking X if necessary, it is no loss of gen-
erality to assume X = U . Let F be the family of all functions of the form
ϕ ◦ ρ where ϕ ∈ F0. Extend f to an upper semicontinuous in the ε-sense func-
tion F :X ( Y by putting F (x) := f(ρ(x)) for x ∈ X. We will show that
F |Z :Z → Y has the ε-homotopy approximation property with respect to F .
Then the claim follows immediately from Theorem 2.9, observing that A must
be closed, since it is a retract.

Without loss of generality, we may assume that ε < δ(ε) for all ε > 0. We
show first that, if ϕ is an ε-approximation of f |Z0 , then the map ϕ ◦ ρ:Z → Y is
an δ(ε)-approximation of F |Z . In fact, the former means that for each x0 ∈ Z0

there is some z0 ∈ Z0 with d(x0, z0) < ε and dist(ϕ(x0), f(z0)) < ε. Choose some
x ∈ Z with ρ(x) = x0. In view of (2.1), we find some z ∈ Z with d(x, z) < δ(ε)
and ρ(z) = z0, i.e. dist((ϕ ◦ ρ)(x), F (z)) = dist(ϕ(x0), f(z0)) < ε < δ(ε). Hence,
ϕ ◦ ρ is an δ(ε)-approximation of F |Z , as claimed.

For each a > 0, we find some ε > 0 with δ(ε) < a and some ε0 > 0 such that
each two ε0-approximations of f |Z0 from F0 are connected by some homotopy
h: [0, 1] × Z0 → Y such that h(t, · ) is an ε-approximation of f |Z0 for each t ∈
[0, 1]. Since ρ is uniformly continuous, there is some a0 ∈ (0, ε0) such that
d(ρ(x), ρ(x0)) < ε0 whenever d(x, x0) < a0.

There is some ε-approximation ϕ ∈ F0 of f |Z0 , and by what we have proved
in the beginning, the map ϕ ◦ ρ ∈ F is an a-approximation of F |Z . Hence,
F |Z has the weak approximation property. Moreover, let Φi ∈ F (i = 1, 2) be
a0-approximations of F |Z . There are ϕi ∈ F0 with Φi = ϕi ◦ ρ (i = 1, 2).
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We show that ϕi (i = 1, 2) must be ε0-approximations of f |Z0 . Indeed,
for each x0 ∈ Z0, we find some x ∈ Z with ρ(x) = x0 and some z ∈ Z

with d(x, z) < a0 and dist(Φi(x), F (z)) < a0. Then z0 := ρ(z) ∈ Z0 satisfies
d(x0, z0) < ε0, and we have dist(ϕi(x0), f(z0)) = dist(Φi(x), F (z)) < ε0, as
required.

Hence, there is a homotopy h: [0, 1]×Z0 → Y connecting ϕ1 with ϕ2 and such
that h(t, · ) is an ε-approximation of f |Z0 for each t ∈ [0, 1]. By what we have
proved in the beginning, it follows that the map H(t, · ) := h(t, ρ( · )):Z → Y is
a δ(ε)-approximation of F |Z for each t ∈ [0, 1]. Hence, H defines a homotopy
connecting Φ1 with Φ2 and such that H(t, · ) is an a-approximation of F |Z for
each t ∈ [0, 1]. This shows that F |Z has the ε-homotopy approximation property
with respect to F , as claimed. �

Proof of Theorem 2.9. By the weak homotopy approximation property,
we find for n = 1, 2, . . . some neighbourhood Wn ⊆ Z × Y of Gr(f |Z) such that
each two Wn-approximations can be connected by a homotopy h: [0, 1]×Z → Y

where h(t, · ) is a B1/n(Gr(f |Z))-approximation for each t ∈ [0, 1]. In case of
the ε-homotopy approximation property, we may and will assume in addition
Wn = Bεn

(Gr(f |Z)).
Without loss of generality, we may assume that Wn+1 ⊆ Wn. There are Wn-

approximations ϕn:Z → Y . We thus find continuous maps hn: [0, 1] × Z → Y

with hn(0, · ) = ϕn, hn(1, · ) = ϕn+1, and

(2.2) Gr(hn(t, · )) ⊆ B1/n(Gr(f |Z)) (0 ≤ t ≤ 1).

Define a continuous function H: [1,∞)× Z → Y by

H(n + t, x) := hn(t, x) (0 ≤ t < 1, n = 1, 2, . . . ).

We claim that a required extension is given by

F (x) :=

{
f(x) if x ∈ A,

{H(max{1/dist(x,A), 1}, x)} if x /∈ A.

We have to show that F is upper semicontinuous in the ε-sense at each point
x0 ∈ ∂A. Thus, let ε > 0 be given. We find some r > 0 such that f(Br(x0)) ⊆
Bε/2(f(x0)), without loss of generality r < ε. Choose some natural number
m > 2/r and put δ := 1/m. Then F (Bδ(x0)) ⊆ Bε(f(x0)). Indeed, for x ∈
Bδ(x0), we distinguish two cases: If x ∈ A, we have F (x) = f(x) ∈ f(Br(x0)) ⊆
Bε/2(f(x0)). If x /∈ A, then dist(x,A) ≤ d(x, x0) < δ = 1/m, and so we have
F (x) = {hn(t, x)} for some t ∈ [0, 1) and some natural number n ≥ m. In view
of (2.2), there is some z ∈ Z satisfying d(z, x) < 1/n and dist(hn(t, x), f(z)) <

1/n. Then d(z, x0) < 1/n + δ = 1/n + 1/m < r, i.e. z ∈ Br(x0), and so



142 I.-S. Kim — M. Väth

f(z) ⊆ Bε/2(f(x0)), i.e. dist(hn(t, x), f(x0)) < 1/n + ε/2 < ε. This means that
F (x) = {hn(t, x)} ⊆ Bε(f(x0)), as required. �

3. Single-valued extensions of convex-valued maps

In view of Proposition 2.2 and the discussion in the previous section, it is
not surprising that one can obtain results about single-valued extensions of maps
with convex values. However, we obtain more general results in a different way,
using the idea of the extension theorem of Dugundji [9] and Ma [16]. Moreover,
we can even say more about the extending map.

To the authors’ surprise, the theorem can be formulated in such a form that
it requires neither any form of continuity of the original function f :A ( Y nor
any convexity hypothesis (also no local convexity of Y ); nevertheless, the single-
valued extension is continuous on X\A and satisfies the “glueing” condition (3.1)
on ∂A. Only for the conclusion that this glueing condition really implies upper
semicontinuity on ∂A, additional hypotheses are needed.

Theorem 3.1 (AC). Let X be a metric space, A ⊆ X closed and nonempty,
Y be a topological Hausdorff vector space, and f :A ( Y be such that it assumes
on a dense subset of ∂A only nonempty values. Then for each continuous func-
tion ε:X \ A → (0,∞) the map f has an extension fε:X ( Y which is single-
valued, locally compact, continuous (and if the uniform structure of conv f(A)
is metrizable even locally Lipschitz, independent of the metric) on X \ A and
satisfies in addition

(3.1) fε(x) ∈ conv
⋃
{f(a) : a ∈ ∂A and d(x, a) ≤ (1 + ε(x)) dist(x, A)}

(x ∈ X \A).

In particular, fε(X) ⊆ conv f(A). Moreover, if f is upper semicontinuous
and each value of f on ∂A has a neighbourhood base consisting of convex sets,
then (3.1) implies that fε is upper semicontinuous (if ε is locally bounded at ∂A).

Actually, our proof will show that if D ⊆ ∂A is a dense subset on which f

has nonempty values and if g:D → Y satisfies g(a) ∈ f(a) for all a ∈ D, then
the function fε can be chosen such that even

(3.2) fε(x) ∈ conv {g(a) : a ∈ ∂A and d(x, a) ≤ (1 + ε(x)) dist(x, A)}
(x ∈ X \A).

Dugundji’s and Ma’s extension theorems are contained in the following special
case of Theorem 3.1.

Corollary 3.2 (AC). Let X be a metric space, A ⊆ X be closed and
nonempty, Y be a locally convex space and f :A ( Y be upper semicontinuous
and such that for each a ∈ ∂A the set f(a) is nonempty and convex and either
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open or compact. Then for each continuous function ε:X \A → (0,∞) the map
f has an extension to an upper semicontinuous map fε:X ( Y which is single-
valued, locally compact, continuous (and if the uniform structure of conv f(A)
is metrizable even locally Lipschitz, independent of the metric) on X \ A and
satisfies (3.1) and even (3.2).

Proof. We have to verify that for each a ∈ ∂A the set f(a) has a neighbour-
hood base consisting of convex sets. This is clear if f(a) is open (and convex).
Thus, assume that f(a) is compact (and convex), and let V ⊆ Y be an arbitrary
neighbourhood of f(a). By the compactness of f(a), we find some neighbour-
hood U ⊆ Y of 0 with f(a) + U ⊆ V . Since Y is locally convex, we may assume
that U is convex. Since f(a) is convex, it follows that f(a) + U is a convex
neighbourhood of f(a) contained in V . �

Corollary 3.2 implies not only the well-known fact that closed convex subsets
of metrizable locally convex spaces are retracts, but moreover that the retrac-
tion function can be chosen such that it maps “almost” on the element of best
approximation, i.e. up to an arbitrarily small continuous error function ε.

Corollary 3.3 (AC). Let X be a metric subset of a locally convex space Y

(where the metric is compatible with the uniform structure). Then each closed
convex subset A ⊆ X is a retract of X where the retraction is locally compact
and locally Lipschitz on X \ A. Moreover, if the metric on X has the property
that each closed ball in X is the intersection of a convex subset of Y with X,
then for each continuous function ε:X → [0,∞) which is nonzero outside A the
retraction ρε can be chosen such that in addition

d(x, ρε(x)) ≤ (1 + ε(x)) dist(x,A) (x ∈ X).

Proof of Theorem 3.1. For the first claim, we may assume that ε:X\A →
(0, 1]. For each point x ∈ X \ A, let r(x) be the supremum of all numbers
r ∈ [0, ε(x) dist(x,A)/25] with the property infz∈B2r(x) ε(z) ≥ ε(x)/2. Since ε is
continuous and ε(x) > 0, we have r(x) > 0, and the ball Bx := Br(x)(x) has the
property

(3.3) ε(z) ≥ ε(x)/2 and diam Bx ≤ ε(z) dist(z,A)/6 for each z ∈ Bx.

Indeed, for each z ∈ Bx we have

dist(x,A) ≤ d(x, z) + dist(z,A) ≤ r(x) + dist(z,A) ≤ dist(x,A)/25 + dist(z,A).

Hence, 25 dist(z,A) ≥ 24 dist(x,A) which together with

diam Bx ≤ 2r(x) ≤ 2ε(x) dist(x,A)/25 ≤ 4ε(z) dist(x, A)/25

implies (3.3).
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The family of all sets Bx (x ∈ X \ A) is an open cover of the paracompact
space X \ A, and so it has a subordinate locally finite cover U of open sets, i.e.
for each U ∈ U, we find some xU ∈ X \ A with U ⊆ BxU

. Choose zU ∈ U and
aU ∈ ∂A with

(3.4) d(zU , aU ) ≤
(

1 +
ε(xU )

4

)
dist(zU , A)

and f(aU ) 6= ∅ (or aU ∈ D, respectively). Choose some yU ∈ f(aU ) (or put
yU := g(aU ), respectively), and define λU (z) := dist(z,X \ U) and

fε(z) :=


f(z) if z ∈ A,{∑

U∈U λU (z)yU∑
U∈U λU (z)

}
if z ∈ X \A.

Since U is a locally finite open cover of X\A, each point z ∈ X\A has a neighbour-
hood Uz which belongs to only finitely many U ∈ U. On this neighbourhood Uz,
fε is well-defined, continuous, and in the metrizable case even Lipschitz (since all
λU are Lipschitz), and f(Uz) is contained in the convex hull of finitely many yU

and thus contained in a compact set. Moreover, for each U ∈ U with λU (z) 6= 0,
we have in view of (3.4) and (3.3) that

d(z, aU ) ≤ d(z, zU ) + d(zU , aU ) ≤ d(z, zU ) +
(

1 +
ε(xU )

4

)
dist(zU , A)

≤ d(z, zU ) +
(

1 +
ε(z)
2

)
(d(z, zU ) + dist(z,A))

≤ 3 diam U +
(

1 +
ε(z)
2

)
dist(z,A) ≤ (1 + ε(z)) dist(z,A).

Hence, fε(z) ∈ conv {yU : d(z, aU ) ≤ (1 + ε(z)) dist(z,A)}, and so (3.1) holds.
The last claim follows from (3.1). In fact, since fε is continuous on X\A, it re-

mains to verify the upper semicontinuity on ∂A. However, if a0 ∈ ∂A and V ⊆ Y

is a neighbourhood of f(a0), then we find by hypothesis a convex neighbourhood
V0 ⊆ V of f(a0). There is some δ > 0 with f(Bδ(a0) ∩ A) ⊆ V0. Shrinking δ if
necessary, we may assume that the function 1 + ε is bounded on Bδ(a0) \ A by
some constant M > 1. Then for each x ∈ X\A with d(x, a0) < δ/(1+M) the fol-
lowing holds: For each a ∈ ∂A satisfying d(x, a) ≤ (1 + ε(x)) dist(x,A), we have
d(a, a0) ≤ d(a, x) + d(x, a0) ≤ M dist(x, A) + d(x, a0) ≤ (1 + M)d(x, a0) < δ,
and so f(a) ⊆ V0. Hence, (3.1) implies f(x) ⊆ conv V0 = V0 ⊆ V , and so
f(Bδ/(1+M)(a0)) ⊆ V . This shows that f is upper semicontinuous at a0, as
claimed. �

Remark 3.4. Theorem 3.1 and Corollaries 3.2 and 3.3 depend essentially on
the axiom of choice which is not only needed to select the function U 7→ yU but
moreover for the proof of Stone’s theorem that metric spaces are paracompact.
However, if X \ A is separable, then the countable axiom of choice suffices for
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the proof. In fact, each open covering of a separable metric space has a locally
finite countable subordinate open covering U: This can be seen as in the proof
of [17, 10.7], observing that each separable metric space has a countable base of
open sets.

In view of Remark 3.4, it appears important to have a more constructive
approach to the above results. Hence, although the following result is a special
case of the above results, it is of independent interest, since its proof uses a dif-
ferent method which requires only a countable form of the axiom of choice. In
finite-dimensional normed spaces, a simpler version of this proof was used in [8].

Theorem 3.5. Assume only the countable axiom of choice. Consider one
of the situations of Theorem 3.1, Corollary 3.2, or Corollary 3.3 and assume
that ∂A is separable and that Y is locally compact, metrizable and equipped with
a metric which is compatible with the uniform structure of Y .

(a) If dim spanf(∂A) < ∞, then all statements of the above results remain
true (except for the local compactness and the local Lipschitz property).

(b) Let for some countable dense subset {a1, a2, . . . } ⊆ ∂A on which f as-
sumes nonempty values be a selection yn ∈ f(an) such that each of the
sets

Cx := conv {yn : d(x, an) ≤ (1 + ε(x)) dist(x,A), n = 1, 2, . . . } (x ∈ X \A)

is complete. (This holds in particular if Y is complete).

Then all statements of the above results remain true (except for the local com-
pactness and the local Lipschitz property) provided that we replace everywhere
conv by conv . Moreover, in this case

(3.5) fε(x) ⊆ Cx (x ∈ X \A).

Proof. We consider first the second statement. Without loss of generality,
we assume that ε is bounded by 1. Let the metric in Y be generated by the
countable family ‖ · ‖k of seminorms. By our assumption, a sequence is a Cauchy
sequence (converges, or is bounded) in Y if and only if it is a Cauchy sequence
(converges, or is bounded, respectively) with respect to each seminorm ‖ · ‖k.

Choose {a1, a2, . . . } ⊆ ∂A and yn ∈ f(an) as in the hypothesis, and choose
numbers cn > 0 such that

∞∑
n=1

cn max{1, ‖yn‖1, . . . , ‖yn‖n} < ∞.

For x ∈ X \A, we define λn(x) := max{1+ε(x)−d(x, an)/dist(x, A), 0} and put

(3.6) fε(x) :=


f(x) if x ∈ A,{∑∞

n=1 cnλn(x)yn∑∞
n=1 cnλn(x)

}
if x ∈ X \A.
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Then fε is defined and continuous on X \A. Indeed, since {a1, a2, . . . } is dense
in ∂A, the function

wN (x) :=
∑N

n=1 cnλn(x)yn∑N
n=1 cnλn(x)

is defined for sufficiently large N , and wN (x) ∈ Cx. Moreover, wN forms a locally
uniform Cauchy sequence with respect to each seminorm ‖ · ‖k, since λn is
bounded by 2 and

∑
n 2cn‖yn‖k and

∑
n 2cn converge. In particular, wN is a

Cauchy sequence in Cx and thus convergent to an element of Cx. By the local
uniform convergence, the function fε is also continuous on X \A. Since we have
already proved (3.5) the last claim of Theorem 3.1 follows as in the proof of
Theorem 3.1.

For the first claim, we use the same proof observing that we have in this case
even

fε(x) ⊆ conv {yn : d(x, an) ≤ (1 + ε(x)) dist(x, A)} (x ∈ X \A)

(i.e. conv instead of conv ) in view of the following Lemma 3.6. �

Lemma 3.6. Let M be a convex (not necessarily closed) subset of a finite-
dimensional vector space Y . Let xn ∈ M and λn ≥ 0 be such that

∑∞
n=1 λn = 1

and x :=
∑∞

n=1 λnxn converges in Y . Then x ∈ M .

Proof. We prove the claim by induction on the (real) dimension N of Y .
For N = 0, the claim is trivial. For the induction step, we assume without loss
of generality that x = 0. Assume by contradiction that x = 0 /∈ M . Then there
is a nontrivial linear functional f on Y with f(y) ≤ f(0) = 0 for all y ∈ M .
Then λnf(xn) = 0 for all n. In fact, if this were not true, we would find some
N with λNf(xN ) < 0 which by the continuity of f yields the contradiction

0 =
∞∑

n=1

λnf(xn) <
∞∑

n=1
n 6=N

λnf(xn) ≤ 0.

Hence, we may assume that all xn belong to the null space of f . The contradic-
tion follows by applying the induction hypothesis to this null space which has
dimension N − 1 (and to the intersection of M with this null space). �

Using the Tietze extension theorem, we can also obtain a constructive proof
for the single-valued extension of real-valued multivalued maps when X is not
necessarily metric but only normal.

Recall that f :X ( Y is called lower semicontinuous at x0 ∈ X if for each
y ∈ f(x0) and each neighbourhood V ⊆ Y of y there is some neighbourhood
U ⊆ X of x0 such that f(x) ∩ V 6= ∅ for each x ∈ U .
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Theorem 3.7. Let X be a T4-space, A ⊆ X closed and nonempty, and
f :A ( R upper semicontinuous (or upper semicontinuous in the ε-sense). Sup-
pose that f |∂A is lower semicontinuous and has one of the following two proper-
ties:

(a) For each a ∈ ∂A the set f(a) is nonempty and has a minimum.
(b) For each a ∈ ∂A the set f(a) is nonempty and has a maximum.

Then f has an extension to an upper semicontinuous (or upper semicontinuous
in the ε-sense, respectively) map F :X ( conv f(A) which single-valued and
continuous and in case of metrizable X even locally Lipschitz on X\A. Moreover,
if ∂A 6= ∅, then

f(X \A) ⊆ conv {min f(a) : a ∈ ∂A}
or

f(X \A) ⊆ conv {max f(a) : a ∈ ∂A},
respectively.

Of course, there is no chance that the extension is lower semicontinuous, in
general:

Example 3.8. Let X = R, A := {0}, and f(0) := [0, 1]. Then f has no
lower semicontinuous extension to R which is single-valued on X \A.

Proof of Theorem 3.7. We may assume that ∂A 6= ∅. Replacing f by
−f if necessary, we may assume without loss of generality that for each a ∈ ∂A

the set f(a) is nonempty and has a minimum. Our hypothesis implies that the
function g: ∂A → R, defined by g(a) := min f(a), is continuous. By Tietze’s
extension theorem, we can extend g to a continuous function G:X → R with
G(X) ⊆ conv g(A). Then

F (x) :=

{
f(x) if x ∈ A,

{G(x)} if x ∈ X \A.

is the required extension. If X is metrizable, it may be arranged that G is locally
Lipschitz by the subsequent Lemma 3.9. �

The following lemma is essentially an examination of one of the standard
proofs of Tietze’s theorem for metric spaces. Since we found no reference con-
taining the details, we provide them for the reader’s convenience.

Lemma 3.9. Let X be a metric space, A ⊆ X closed and nonempty and
f :A → R be continuous. Then f has a continuous extension F :X → conv f(A)
which is locally Lipschitz on X\A and satisfies F (X\A) ⊆ conv f(∂A) if ∂A 6= ∅.

Proof. We may assume that ∂A 6= ∅. We assume first that f is bounded
from below on ∂A by some constant M > −∞. For c > 0, define F0:X \A → R
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by

(3.7) F0(x) := inf
{

f(a) + c

(
d(x, a)

dist(x,A)
− 1

)
: a ∈ ∂A

}
(x ∈ X \A).

In view of Lemma 2.5, F0 is locally Lipschitz, the local Lipschitz constant even
depending linear on c.

We prove now that F0(x) → f(a0) as x → a0 ∈ ∂A. For ε > 0 choose r > 0
with f(Br(a0) ∩A) ⊆ Bε(f(a0)) and δ > 0 such that

(3.8) (2 + ε)δ < r and M + c

(
r

δ
− 2

)
> f(a0)− ε.

For x ∈ X \ A with d(x, a0) < δ, note that dist(x, A) ≤ d(x, a0) < δ and choose
some ax ∈ ∂A with d(x, ax) ≤ (1 + ε) dist(x, A) < (1 + ε)δ; the choice a = ax

in (3.7) implies F0(x) ≤ f(ax) + cε. Since d(ax, a0) ≤ d(ax, x) + d(x, a0) <

(2 + ε)δ < r, we conclude F0(x) ≤ f(a0) + (1 + c)ε.
For a ∈ ∂A, we have in the case d(a, a0) ≥ r that d(x, a) ≥ r−d(x, a0) ≥ r−δ;

in view of (3.8), we obtain in this case

M + c

(
d(x, a)

dist(x, A)
− 1

)
≥ M + c

(
r − δ

δ
− 1

)
> f(a0)− ε.

In the opposite case d(a, a0) < r, we have f(a) > f(a0)− ε. Hence, in all cases,
we obtain from (3.7) that F0(x) ≥ f(a0)− ε.

By what we have proved, we can conclude that the function

F1(x) :=

{
f(x) if x ∈ A,

min{F0(x), sup f(A)} if x ∈ X \A,

has almost the required properties: It is continuous, locally Lipschitz on X \A,
and F1(X \ A) ⊆ conv f(∂A). We still must get rid of the closure in the last
inclusion by modifying F1. To this end, let Bmin, Bmax ⊆ X be the (possibly
empty) sets where F1 attains its minimum or maximum, respectively. Let B :=
Bmin, B := Bmax, B := Bmin ∪ Bmax, or B := ∅ depending whether f(∂A) has
no minimum, no maximum, neither, or both. Then B0 := B ∩ (X \A) is closed
and disjoint from A. Define λ:A ∪ B0 → [0, 1] as 1 on A and as 0 on B0. Then
λ is bounded from below, and by what we have proved so far, we can extend
λ to a locally Lipschitz function λ1:X → [0, 1]. Fix some y ∈ f(∂A). Then
F (x) := y + λ1(x)(F1(x)− y) has all required properties.

For general f , we can extend the function exp ◦f to a continuous func-
tion F :X → R which is locally Lipschitz on X \ A and satisfies F (X \ A) ⊆
conv exp(f(∂A)). In particular, F (x) > 0 for each x ∈ X (here it is impor-
tant that we were able to replace conv by conv ), and so log F is the required
extension of f . �
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4. Extensions of compact maps

We call a topological space Y a convex (neighbourhood) retract if it is homeo-
morphic to a retract (or neighbourhood retract, respectively) of a convex subset
of a locally convex space. Recall that if Y is metric, then such a set is called an
AR (or ANR). A topological space Y is called an AE (or ANE) for metric spaces,
if for each metric space X, each closed subset A ⊆ X, and each continuous map
f :A → Y there is a continuous extension f :X → Y (or f :U → Y for some
neighbourhood U ⊆ X of Y , respectively).

Remark 4.1. Since by the Arens–Eells embedding theorem [4], each met-
ric space Y is isometric to a closed subset A of a normed space X, it follows
that each metrizable AE/ANE is an AR/ANR. Moreover, using Dugundji’s ex-
tension theorem (Corollary 3.2) it is easy to see that conversely each AR/ANR
is an AE/ANE. However, it is good to distinguish the notions anyway, since
the proof of Corollary 3.2 requires the axiom of choice, and moreover, e.g. each
non-metrizable convex retract is an AE which is not an AR.

Although the following observation about extension of multivalued maps is
rather trivial, it appears very useful, since the results of Section 2 usually only
provide an extension to a neighbourhood of A:

Proposition 4.2. Let X be a metric space, A ⊆ X be closed, and suppose
that a multivalued map f :A ( Y has an extension to a map F0:U ( Y on
a neighbourhood U ⊆ X of A which is single-valued and continuous on U \ A.
If Y is an AE for metric spaces, then f even has an extension F :X ( Y

which is single-valued and continuous on X \ A and coincides with F0 in some
neighbourhood of A.

Proof. Since the metric space X is normal, U contains some closed neigh-
bourhood A0 ⊆ X of A. Since Y is an AE, the restriction of F0 to ∂A0 (con-
sidered as a continuous map) has an extension to a continuous map F1:X → Y ,
and so the map

F (x) :=

{
F0(x) if x ∈ A0,

{F1(x)} if x ∈ X \A0,
has the required properties by the glueing lemma. �

However, in particular in connection with degree theory, one not only needs
an upper semicontinuous extension of a certain map f but even a compact such
extension (provided, of course, that f is compact). If we understand compactness
relatively to the image space Y , we can prove the expected answer, using a deep
result of Girolo [11].

Theorem 4.3 (AC). Let X be a metric space, A ⊆ X be closed and Y be an
ANR. Suppose that a multivalued map f :A ( Y has an extension to an upper
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semicontinuous (in the ε-sense) map F0:U ( Y on a neighbourhood U ⊆ X of
A which is single-valued on U \ A. Suppose in addition that f(A) is contained
in a compact subset of Y .

(a) Then f has an extension to an upper semicontinuous (in the ε-sense,
respectively) map F :U0 ( Y to some neighbourhood U0 ⊆ X of A which
is single-valued on U0\A and such that F (U0) is contained in a compact
subset of Y .

(b) If Y is even an AR, then the above holds with U0 = X.

Proof. In view of the Arens–Eells embedding theorem, we may assume
that Y is a closed subset of a normed vector space Z. By [11], there is a com-
pact retract K ⊆ Z of Z containing f(A). We do not know whether K must
be contained in Y , but the identity map on K ∩ Y has a continuous extension
i:Y → K and a continuous extension j:V → Y where V ⊆ K is some closed
neighbourhood of K ∩ Y (in the space K) or even V := K if Y is an AR. By
Proposition 4.2, the map i ◦ F0:U ( K has an extension to an upper semicon-
tinuous (in the ε-sense) map F1:X ( K which is single-valued on X \A. Since
the set K ∩ Y is compact, the neighbourhood V ⊆ K contains a set of the form
Bε(K∩Y )∩K with some ε > 0. Since this set contains F1(A) = f(A), the upper
semicontinuity (in the ε-sense) of F1 implies that there is some neighbourhood
U0 ⊆ X of A with F1(U0) ⊆ V ; in case V = K (if Y is an AR), one may even
choose U0 := X. Then F := j ◦ F1:U0 ( Y has all required properties. Indeed,
since V ⊆ K is closed and thus compact, j(V ) ⊆ Y is compact and contains
F (U0). �

Remark 4.4. Our proof shows in view of Remark 3.4 and the fact that the
compact metric space K is separable that the general axiom of choice is not
needed for Theorem 4.3 if X \A is separable.

However, in some applications of degree theory, one would like to consider
also a subset Y of some larger space Z which is not necessarily closed, and
one knows only that f(A) is contained in a compact subset of Z (but then not
necessarily in a compact subset of Y ). One is then looking for an extension
F as in Theorem 4.3 with the difference that one wants to require only that
F (U0) is contained in a compact subset of Z. Even if f is single-valued and Z is
a Banach space, it seems to be unknown whether a corresponding extension of
Theorem 4.3 is true. However, at least there are nontrivial situations in which
this is the case:

Theorem 4.5 (AC). Let X be a metric space, A ⊆ X be closed, Z be
a locally convex space, and Y ⊆ Z possess some interior point and a metrizable
closure. Suppose that a multivalued map f :A ( Y has an extension to an upper
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semicontinuous (in the ε-sense) map F0:U ( Y on a neighbourhood U ⊆ X

of A which is single-valued on U \A. Suppose in addition that f(A) is contained
in a compact subset of Z. Then f has an extension to an upper semicontinuous
(in the ε-sense, respectively) map F :X ( Y which is single-valued on X \A and
such that F (X) is contained in a compact subset of Z.

Proof. Note that Y (closure in Z) is an AR. Hence, by Theorem 4.3, we find
an extension of f to an upper semicontinuous (in the ε-sense) map F1:X ( Y

which is single-valued on X \A and such that F1(X) is contained in a compact
subset K ⊆ Y . Let y0 be an interior point of Y . Define a homotopy h: [0, 1]×K →
Y by h(t, y) := (1− t)y + ty0. Then we have for each t ∈ [0, 1] and each y1 ∈ K

that h(t, y1) ∈ Y . In fact, since y0 is an interior point of Y , we find a finite
family P of seminorms in Y such that the set

V0 := {y ∈ Y : p(y − y0) ≤ 1 for each p ∈ P}

is contained in Y . Since y1 ∈ Y and t > 0, we find some y2 ∈ Y such that
p(y2 − y1)(1 − t) ≤ t for all p ∈ P . Then y3 := y0 + (1 − t)(y1 − y2)/t ∈ V0,
because p(y3− y0) = (1− t)p(y1− y2)/t ≤ 1 for all p ∈ P . Since Y is convex, we
conclude that ty3 + (1 − t)y2 = h(t, y1) belongs to Y , as claimed. We conclude
that for each x ∈ X \A the value

F (x) := h(min{dist(x, A), 1}, F1(x))

is contained in Y . Moreover, F (X) is contained in the compact set h([0, 1]×K).
For x ∈ A, we have F (x) = F1(x) = f(x) ⊆ Y , and so F has all required
properties. �

Remark 4.6. In view of Remark 4.4, the general axiom of choice is not
needed for Theorem 4.5 if X \A is separable.

For the case that X is not necessarily metrizable but f is lower semicontinu-
ous on ∂A, we can use the multivalued Tietze theorem (Theorem 3.7) to obtain
the following constructive extension result.

Theorem 4.7. Let X be a T4-space, A ⊆ X closed, and Y be a convex
(neighbourhood) retract. Let f :A ( Y be upper semicontinuous, and suppose
that f(A) is contained in a compact metrizable subset K ⊆ Y . Suppose that f

is lower semicontinuous on ∂A and that f(a) is nonempty and compact for each
a ∈ ∂A. Then for U := X (or some neighbourhood U ⊆ X of A, respectively),
there is an upper semicontinuous extension F :U ( Y of f which is single-valued
on U \ A and whose range is contined in a compact subset of Y . An analogous
result holds if Y is an AE (ANE) for metric spaces.

Proof. Since K is a separable metric space, it is homeomorphic to a subset
K0 of the Hilbert cube H := [0, 1]N. Let g:K → K0 be the corresponding
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homeomorphism. By the compactness of K, it follows that K0 is compact and
thus closed in H. Using Theorem 3.1 (more precisely, Remark 3.4, observing
that H is separable), it can easily be checked that we can extend the map
g−1:K0 → K to a continuous map G:V → Y where V ⊆ H is some open
neighbourhood of K0 (or where V := H, respectively, if Y is a convex retract
or an AE). For each n ∈ N, let πn:H → [0, 1] be the projection of the n-th
component. We can use Theorem 3.7 to extend the map πn ◦ g ◦ f :A ( [0, 1]
to an upper semicontinuous map fn:X ( [0, 1] which is single-valued on X \A.
Then F0 :=

∏
n∈N fn:X → H is upper semicontinuous on X and single-valued

on X \ A. Put U := {x ∈ X : F0(x) ⊆ V }. Since V is open and F0 is upper
semicontinuous, we conclude that U is open. Hence, F := G ◦ F0|U :U → Y

has the required properties. Note that F (U) is contained in the compact subset
G(V ) of Y . �
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