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APPROXIMATION OF SYMMETRIZATIONS
AND SYMMETRY OF CRITICAL POINTS

Jean Van Schaftingen

Abstract. We give a sufficient condition in order that a sequence of cap or
Steiner symmetrizations or of polarizations approximates some fixed cap or

Steiner symmetrization. This condition is used to obtain the almost sure

convergence for random sequences of symmetrization taken in an appro-
priate set. The results are applicable to the symmetrization of sets. An

application is given to the study of the symmetry of critical points obtained
by minimax methods based on the Krasnosel’skĭı genus.

1. Introduction

A symmetrization by rearrangement transforms a set or a function into
a more symmetric one, while some quantities remain under control. For exam-
ple, for each u ∈ W 1,p

0 (B(0, R)) with 1 ≤ p < ∞ and u ≥ 0, one can construct
a radial and radially decreasing function u∗ such that for every Borel-measurable
function f : R → R+, ∫

B(0,R)

f(u∗) dx =
∫

B(0,R)

f(u) dx.

In particular, u∗ ∈ Lp(B(0, R)) and ‖u∗‖p = ‖u‖p. While the map u 7→ u∗ is non-
linear, it is still non-expansive in Lp(B(0, R)). Furthermore, u∗ ∈ W 1,p

0 (B(0, R))
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and one has the Pólya–Szegő inequality:∫
B(0,R)

|∇u∗|p dx ≤
∫

B(0,R)

|∇u|p dx.

Other useful inequalities, such as the Riesz–Sobolev rearrangement inequality
hold. For symmetrization inequalities, we refer to [12], [16]. Symmetrizations
were defined for sets in the nineteenth century by Steiner and Schwarz. Sym-
metrizations of functions go back to Hardy, Littlewood and Pólya [11] and to
Pólya and Szegő [19].

Applications of symmetrization by rearrangement are multiple. Symmetriza-
tions were used by Talenti and Aubin to compute the optimal constants for the
Sobolev inequality [2], [27]. They can be used to obtain estimates on the first
eigenvalue of the Laplacian with Dirichlet boundary conditions (Faber–Krahn
inequality [19], [28], [33]). By symmetrization techniques, it is also possible
to prove that solutions of problems in the calculus of variations are symmetric
functions [23]. In some cases they provide also an alternative to concentration-
compactness [8].

Since symmetrizations and symmetrization inequalities are useful, it would
be nice to have general, simple and elegant methods to construct symmetrizations
and prove the associated inequalities. The main difficulty is that symmetrizations
are nonlinear and nonlocal transformations. One way to manage these problems
is the level-sets method. The functional for which an inequality is needed is
decomposed in integrals on level sets. For example, if u: Ω → R+ is nonnegative
and measurable and f ∈ C1(R+, R+), one has∫

Ω

f(u) dx =
∫

R+
LN ({x ∈ Ω : f(x) ≤ t})f ′(t) dt.

This can be thought as localizing the functional with respect to the u variable. As
long as the functionals in consideration do not involve gradients or convolution
products, the inequalities are proved trivially. — For example, the proof of the
Hardy–Littlewood inequality becomes very elegant [10], [33] — when it is not
the case any more, the set inequalities become nontrivial geometric inequalities.
For example, the Pólya–Szegö inequality follows from the classical isoperimetric
inequality [18], and the Riesz–Sobolev rearrangement inequality is a consequence
of the same inequality for characteristic functions of sets [16]. In those cases the
level set method does not essentially simplify the proof. The method of level-sets
is used extensively by Mossino [18].

Another method to study symmetrization is to approximate a symmetriza-
tion by a sequence of simpler symmetrizations — which are more localized than
more elaborated symmetrizations. This goes back to the original definition of
the Steiner symmetrization as a tool to prove the classical isoperimetric theorem.
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Later, inequalities for capacitors were proved by approximation of Steiner and
cap symmetrizations by lower-order Steiner and cap symmetrizations [21]; the
Riesz–Sobolev inequality was proved by approximation of a Steiner symmetriza-
tion by lower-order Steiner symmetrizations [5]. Recently, a still simpler trans-
formation, the polarization, was used to approximate many symmetrizations in
order to obtain simple proofs of the isoperimetric inequality, the Pólya–Szegő
inequality and a weak form of the Riesz–Sobolev rearrangement inequality [3],
[6], [23], [31].

In a recent work [30], we used approximation of symmetrization in order
to investigate the symmetry properties of critical points obtained by minimax
methods. The key point was the use of polarizations to obtain a continuous
approximation of a Steiner or cap symmetrization which is not continuous in
general in Sobolev spaces [1].

In this paper, we investigate further the approximation of symmetrizations
by simpler symmetrizations. We study which sequences of symmetrizations ap-
proximate a given symmetrization, and we give a simple sufficient condition.
Since almost every sequence of symmetrizations in a well-chosen set satisfies this
condition, we solve by the way a conjecture of Mani-Levitska concerning random
sequences of Steiner symmetrizations [17]. This sufficient condition allows us
to obtain some information about the symmetry of critical points of symmetric
functionals obtained by minimax methods using the Krasnosel’skĭı genus.

The paper begins by reviewing in Section 2 the main facts about symmetriza-
tions used in the sequel. We define in Section 2.1 the Steiner symmetrization
with respect to an affine subspace and cap symmetrizations with respect to a
closed affine half subspace. The set of affine subspaces and closed affine half
subspaces is denoted by S, and the symmetrization of u with respect to S ∈ S is
denoted by uS . The simplest cap symmetrizations are the polarizations; they are
symmetrizations with respect to H ∈ H, where H is the set of closed affine half-
spaces. Many of their properties are easy to prove (Section 2.2). We introduce
a partial order ≺, such that S ≺ T if the symmetrization with respect to T can
be used to approximate the symmetrization with respect to S (Definition 2.19
and Proposition 2.20). For S ∈ S, the set of T ∈ S (resp. ∈ H) such that S ≺ T

is denoted by SS (resp. HS). With these notations, we restate in a common
framework all the approximation results of [31]:

Theorem 2.28. Let S ∈ S and T ⊂ SS. If for every H ∈ HS, there exists
T ∈ T such that T ≺ H, then there exists a sequence (Tn)n≥1 ⊂ T such that if
Ω ⊂ RN is open, u ∈ K(Ω) and (u, S) is admissible, then

‖uT1...Tn − uS‖∞ → 0.
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The condition “(u, S) is admissible” simply means that the symmetriza-
tion uS is defined. In order to state a sufficient condition for a sequence of
symmetrizations to approximate a symmetrization, we define a metric d on S for
which the mapping (u, S) 7→ uS is continuous (Definition 2.35, Proposition 2.38
and Corollary 2.39).

With all the machinery of Section 2, we can state and prove the main result
of Section 3,

Theorem 3.2. Let S ∈ S, T ⊂ SS and (Tn)n≥1 ⊂ SS be such that

(a) for every H ∈ HS, there exists T ∈ T such that T ≺ H,
(b) for each m ≥ 1 and S1, . . . , Sm ∈ T , there exists k ≥ 0 such that for

every 1 ≤ i ≤ m, d(Si, Tk+i) ≤ δ.

Then for each open set Ω ⊂ RN and u ∈ K(Ω) such that (u, S) is admissible,

‖uT1...Tn − uS‖∞ → 0, as n →∞.

The proof relies on the fact that for every m ≥ 1 and δ > 0, the m first terms
of the sequence of Theorem 2.28 are contained up to an error δ in the sequence
(Tn)n≥1.

Given T , it is easy to construct sequences satisfying the hypotheses of The-
orem 3.2 In fact, if the approximating symmetrizations are symmetrization with
respect to random variables that are distributed throughout the whole of T , then
the convergence occurs almost surely (Theorem 3.4).

All the preceding results can be extended to the approximation of the sym-
metrization of compact sets in Hausdorff distance dH (Proposition 3.10). For
example, if K(RN ) denotes the set of compact sets of RN , one has:

Theorem 3.13. Let S ∈ S with ∂S = ∅ and let (E,Σ, P ) be a probability
space. Let ` > dim S and

T `
S = {T ∈ SS : ∂T = ∅ and dim T = `}.

If (Tn)n≥1 are independent random variables with values in T `
S whose distribution

functions are invariant under isometries that preserve S, then

P
({

e ∈ E : ∀K ∈ K(RN ), lim
n→∞

dH(KT1(e)...Tn(e),KS) = 0
})

= 1.

Finally, in Section 4, Theorem 3.2 is applied to the proof of symmetry prop-
erties of critical points obtained by minimax methods using the Krasnosel’skĭı
genus. If A is a symmetric (i.e. A = −A) set in a Banach space V , its Kras-
nosel’skĭı genus γ(A) is the least integer k such that there is an odd mapping in
C(A,Sk−1). The properties of γ are developed in Section 4.1.
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For ϕ:M ⊂ V → R, let

β` = inf
A⊂M

A is closed
γ(A)≥`

sup
u∈A

ϕ(u).

Theorem 3.2 allows us to construct, given a set of small Krasnosel’skĭı genus,
a set of more symmetric functions that has not a smaller Krasnosel’skĭı genus
(Propositions 4.7).

The main result is that when the functional ϕ satisfies some symmetry as-
sumptions, then there are symmetric critical points on the levels β` for small `:

Theorem 4.8. Let Ω = Ω′×Ω′′ ⊂ RN be open, with Ω′ ⊂ Rk invariant under
O(k). Let M ⊂ W 1,p(Ω) \ {0} be a complete symmetric C1,1-manifold. Suppose
ϕ ∈ C1(M) is an even functional that satisfies the Palais–Smale condition, and
is bounded from below on M . Also suppose that if H ∈ H, {0} × RN−k ⊂ ∂H

and u ∈ M , then uH ∈ M and ϕ(uH) ≤ ϕ(u). If ` ≤ k, then there is a critical
point u ∈ M and x ∈ Sk−1 such that ϕ(u) = β` and uSx = u.

Here Sx denotes the cap symmetrization with respect to Rx × RN−k. We
end with simple applications of this result. The method applies to Dirichlet and
Neumann problems (Theorems 4.9 and 4.10).

2. Symmetrizations

2.1. Definitions. In the following, Hk denotes the k-dimensional outer
Hausdorff measure, while for x ∈ RN and 0 ≤ r ≤ ∞, B(x, r) = {y ∈ RN :
|x−y| < r}. The extended set of real numbers is denoted by R = R∪{−∞,∞}.
The set of compactly supported continuous functions on the open set Ω is de-
noted by K(Ω) and the modulus of continuity of a function u ∈ K(Ω) is the
function ωu: R+ → R+ defined by

ωu(δ) = sup{|u(x)− u(y)| : x, y ∈ Ω and |x− y| ≤ δ}.

We define the Steiner and spherical cap symmetrizations according to Sar-
vas [21]. In contrast with Sarvas, our definition does not make difference between
compact and open sets, but is valid for any set, possibly non-measurable. This
ensures a good pointwise definition of the symmetrization of measurable sets and
functions.

Definition 2.1 (Steiner symmetrization). Let S be a k-dimensional affine
subspace of RN , 0 ≤ k ≤ N − 1. The symmetrization of a set A ⊂ RN with
respect to S is the unique set AS such that for any x ∈ S, if L is the (N − k)-
dimensional hyperplane orthogonal to S that contains x,

AS ∩ L = B(x, r) ∩ L,
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where 0 ≤ r ≤ ∞ is defined by HN−k(B(x, r) ∩ L) = HN−k(A ∩ L).

Remark 2.2. The symmetrization with respect to a 0-dimensional plane
is called point symmetrization or Schwarz symmetrization. (Some authors call
Schwarz symmetrization a symmetrization with respect to a 1-dimensional plane
and Steiner symmetrization a symmetrization with respect to a (N − 1)-dimen-
sional plane [16].)

Definition 2.3 (Cap symmetrization). Let S be a k-dimensional closed
affine half subspace of RN , 1 ≤ k ≤ N and let ∂S be the boundary of S inside
the affine plane generated by S. The symmetrization of a set A ⊂ RN with
respect to S is the unique set AS such that AS ∩ ∂S = A ∩ ∂S and for each
x ∈ ∂S, if L is the (N − k + 1)-dimensional hyperplane orthogonal to ∂S that
contains x and y is the unique point of the intersection ∂B(x, %) ∩ S, then for
every % > 0

AS ∩ ∂B(x, %) ∩ L = B(y, r) ∩ ∂B(x, %) ∩ L,

where r ≥ 0 is defined by

HN−k(B(y, r) ∩ ∂B(x, %) ∩ L) = HN−k(A ∩ ∂B(x, %) ∩ L).

Remark 2.4. The symmetrization with respect to a one dimensional closed
affine subspace is also called foliated Schwarz symmetrization [23].

Definition 2.5. The set of all the k-dimensional affine subspaces of RN for
0 ≤ k ≤ N − 1, and of all the k-dimensional closed affine half subspaces of RN

for 1 ≤ k ≤ N is denoted by S.

Symmetrizations have the following basic properties:

Proposition 2.6. Let A,B ⊂ RN and S ∈ S. If A ⊂ B, then AS ⊂ BS.

(a) If A is measurable, then AS is measurable and LN (AS) = LN (A).
(b) If A is open, then AS is open.

We need some condition to ensure that the symmetrization of a function is
meaningful.

Definition 2.7. Let Ω ⊂ RN , u: Ω → R and S ∈ S. The pair (u, S) is
admissible if ΩS = Ω, and, for every c > 0,

LN ({x ∈ Ω : |u(x)| > c}) < ∞

and either u ≥ 0, or ∂S 6= ∅ and (RN \ Ω)S = RN \ Ω.
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Definition 2.8. Let Ω ⊂ RN , u: Ω → R and S ∈ S. Suppose that (u, S) is
admissible. The symmetrization of u with respect to S is the unique function uS

such that, for each c ∈ R,

{x ∈ Ω : uS(x) > c} = {x ∈ Ω : u(x) > c}S .

Remark 2.9. The function uS can be defined as

uS(x) = sup{c ∈ R : x ∈ {y ∈ Ω : u(y) > c}S}.

The definitions with open balls of symmetrization of sets are of crucial impor-
tance in order to obtain the existence of uS satisfying Definition 2.8 (see [29]).

The symmetrization of a function does not essentially depend on the domain:

Proposition 2.10. Let u: Ω → R, ũ: RN → R be defined by ũ|Ω = u and
ũ|RN\Ω = 0 and S ∈ S. If (u, S) is admissible, then (ũ, S) is admissible and
ũS |Ω = uS.

The symmetrization of functions in Lp is a non-expansive nonlinear mapping
that preserves the norm:

Proposition 2.11 (Lp properties of symmetrizations). Let 1 ≤ p ≤ ∞,
Ω ⊂ RN be measurable and u, v ∈ Lp(Ω). If (u, S) and (v, S) are admissible,
then uS , vS ∈ Lp(Ω), ‖uS‖p = ‖u‖p, ‖vS‖p = ‖v‖p and ‖uS − vS‖p ≤ ‖u− v‖p.

Proof. See e.g. [10] and [32]. �

Remark 2.12. If u ∈ W 1,p(Ω) then uS ∈ W 1,p(Ω) and ‖∇uS‖p ≤ ‖∇u‖p,
but if ∂S = ∅, the mapping u 7→ uS is continuous in W 1,p(Ω) if and only if
dim S = N − 1 (see [9], [1], [7]). If ∂S 6= ∅, u 7→ uS is continuous if dim S = N

(see [30] and Corollary 2.40 below). If dim S < N − 1, then a reasoning in the
spirit of Lemma 2.33 and the results of Almgren and Lieb [1] shows that u 7→ uS

is not continuous. The case dim S = N−1 remains open, but it is likely that the
method of Burchard would show that the cap symmetrization is then continuous.

We introduce the complementary of a affine half subspace.

Definition 2.13. Let u ∈ S and S ∈ S with ∂S 6= ∅. The complementary
of S is the reflexion of S with respect to ∂S. It is denoted by S∗.

As a straightforward consequence of the definitions, one has

Proposition 2.14. Let S ∈ S and u: Ω → R. If (u, S) and (−u, S∗) are
admissible, then

(−u)S∗
= −(uS).

2.2. Polarizations. We recall briefly some facts about the simplest sym-
metrizations, the polarizations.
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Definition 2.15. The symmetrization with respect to H ∈ S is a polariza-
tion if ∂H is a hyperplane, or, equivalently, dim H = N . The reflexion of x ∈ RN

with respect to ∂H is denoted by xH . The set of H ∈ S such that dim H = N

is denoted by H.

Proposition 2.16. Let H ∈ H, Ω ⊂ RN and u: Ω → R. If (u, H) is
admissible, then

uH(x) =

{
max(u(x), u(xH)) if x ∈ H,

min(u(x), u(xH)) if x 6∈ H.

Remark 2.17. The characterization of Proposition 2.16 is the classical def-
inition of the polarization of a function (see [6]).

Proposition 2.18. Let H ∈ H, Ω ⊂ RN be open and u: Ω → R be measur-
able. If (u, H) is admissible, f : Ω×R → R+ is a Borel measurable function, and
for every t ∈ R and x ∈ Ω such that xH ∈ Ω, f(xH , t) = f(x, t), then∫

Ω

f(x, uH(x)) dx =
∫

Ω

f(x, u(x)) dx.

Furthermore, if 1 ≤ p < ∞, u ∈ W 1,p
0 (Ω) (resp. (−u, H) is admissible and

u ∈ W 1,p(Ω)) then uH ∈ W 1,p
0 (Ω) (resp. uH ∈ W 1,p(Ω)) and∫
Ω

|∇uH |p dx =
∫

Ω

|∇u|p dx.

If u ∈ K(Ω), then uH ∈ K(Ω) and for any δ > 0, ωuH (δ) ≤ ωu(δ).

Proof. See [6] and [30]. �

2.3. Approximating symmetrization. In order to study the approxi-
mations of a symmetrization by other symmetrizations we introduce a partial
order ≺ on the symmetrizations such that S ≺ T if the symmetrization with
respect to T can be used to approximate the symmetrization with respect to S.

Definition 2.19. Let S, T ∈ S. We write S ≺ T if S ⊆ T and ∂S ⊆ ∂T .
For S ∈ S, let

SS = {T ∈ S : S ≺ T} and HS = {H ∈ H : S ≺ H}.

This definition is justified by the next proposition.

Proposition 2.20. Let S, T ∈ S and suppose S ≺ T . If A is Borel measur-
able, then AST = ATS = AS. If Ω ⊂ RN and u: Ω → R are Borel measurable,
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and (u, S) is admissible, then (u, T ), (uT , S) and (uS , T ) are admissible and
uST = uTS = uS.

Proof. The definitions yields ATS = AST = AS for any Borel measurable
set A ⊂ RN . The conclusion follows from the definitions of the admissibility and
of the symmetrization of a function. �

Remark 2.21. By Proposition 2.11, if S ≺ T , then

‖uT − uS‖p ≤ ‖u− uS‖p,

i.e. T does not increase the distance between u and uS and T can be used to
approximate S.

Remark 2.22. If A is merely measurable, its intersection with some affine
subspace could be Hk-non-measurable, resulting in ATS ) AS = AST . However,
one can still conclude that AS ⊂ ATS and that LN (ATS \AS) = 0.

Many properties of the symmetrizations can be deduced from the next

Theorem 2.23. Let S ∈ S. There exists a sequence (Hn)n≥1 ⊂ HS such
that if Ω ⊂ RN is open, u ∈ K(Ω) and (u, S) is admissible, then

‖uH1...Hn − uS‖∞ → 0.

Proof. See [31]. �

Remark 2.24. Weaker forms of Theorem 2.23, where the sequence could
depend on the function to symmetrize were proved by Brock and Solynin [6] and
by Smets and Willem [23].

Corollary 2.25. Let S ∈ S and u ∈ K(Ω). If (u, S) is admissible, then
uS ∈ K(Ω) and for any δ > 0,

ωuS (δ) ≤ ωu(δ).

Proof. This follows from Proposition 2.18 and Theorem 2.23. �

Among the consequences, there is the compactness of the set of functions
obtained by symmetrizations compatible with a given symmetrization:

Proposition 2.26. Let S ∈ S, Ω ⊂ RN and u ∈ K(Ω). If (u, S) is admis-
sible, then

U = {uT1...Tn : n ≥ 1, Ti ∈ SS for each 1 ≤ i ≤ n}
is totally bounded in L∞(Ω).

Proof. By Proposition 2.11, if v ∈ U , then ‖v‖∞ = ‖u‖∞. Since u is
compactly supported, there exists x ∈ ∂S (x ∈ S if u ≥ 0) and r ≥ 0 such that
suppu ⊂ B(x, r). Since S ≺ T , B(x, r)T = B(x, r)ST = B(x, r)S = B(x, r).
By Proposition 2.6, for each v ∈ U , one has suppv ⊂ B(x, r). Finally, by
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Corollary 2.25, for every v ∈ U , we have v ∈ K(Ω) and ωv(δ) ≤ ωu(δ). The
conclusion comes from the Ascoli–Arzela Theorem. �

Remark 2.27. In fact, U is totally bounded in Lp(RN ) for every 1 ≤ p ≤ ∞.

Proposition 2.26 is one of the ingredients of

Theorem 2.28. Let S ∈ S and T ⊂ SS. If for every H ∈ HS, there exists
T ∈ T such that T ≺ H, then there exists a sequence (Tn)n≥1 ⊂ T such that if
Ω ⊂ RN is open, u ∈ K(Ω) and (u, S) is admissible, then

‖uT1...Tn − uS‖∞ → 0.

Proof. See [31]. �

Remark 2.29. For every 1 ≤ p < ∞, the convergence happens for any
u ∈ Lp(Ω) such that (u, S) is admissible.

2.4. The metric structure of S. In order to construct other sequences of
symmetrizations approximating a symmetrization by some kind of perturbation,
we give a metric structure to the set S. Since the definition of the metric on S
relies on isometries of RN , we briefly investigate the relationship between sym-
metrizations and isometries. We call i: RN → RN an isometry provided that for
every x, y ∈ RN , one has |i(x)− i(y)| = |x− y|.

Proposition 2.30. Let i: RN → RN be an isometry and S ∈ S. If A ⊂ RN ,
then i(AS) = i(A)i(S). If (u, i(S)) is admissible, then (u◦ i, S) is admissible, and
ui(S) ◦ i = (u ◦ i)S.

Proof. Since the definitions of the symmetrizations are invariant by isom-
etry, this is straightforward. �

Remark 2.31. The isometries is the largest class of transformations of RN

for which Proposition 2.30 holds for every S ∈ S.

We need also some information about elements of S which are identical in a
ball.

Proposition 2.32. There exist constants K1 > 1 and K2 > 0 that depend
only on the dimension of the space N such that the following holds: Let r ≥ 0,
R ≥ K1r, S, T ∈ S, x ∈ S, and u ∈ K+(Ω). If (u, S) and (u, T ) are admissible,
suppu ⊂ B(x, r) and B(x,R) ∩ S = B(x,R) ∩ T , then

‖uS − uT ‖∞ ≤ ωu(K2r
2/R).

Proof. This follows from the next Lemma applied to u|B(x,r) and from
Proposition 2.10, since uS and uT are the extensions by 0 outside of B(x, r) of
(u|B(x,r))S and (u|B(x,r))T . �
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Lemma 2.33. There exist constants K1 > 1 and K2 > 0 that depend only on
the dimension of the space N such that the following holds: Let r ≥ 0, R ≥ K1r,
S, T ∈ S, and x ∈ S. If B(x, R)∩S = B(x, R)∩ T then there exists an injective
map g:B(0, r) → RN such that for each x ∈ B(x, r), |g(x) − x| ≤ K2r

2/R.
Furthermore, for any A ⊂ B(x, r), g(AS) = g(A)T and if Ω ⊂ B(x, r), u: Ω → R
and (u, T ) is admissible, then (u ◦ g, S) is admissible and uT ◦ g = (u ◦ g)S.

Remark 2.34. This was proved by Sarvas when dim S = N − 1 (see [21]).

Proof. If ∂S ∩B(x,R) = ∂T ∩B(x, R) 6= ∅ the proposition is trivial. The
result is also trivial when dim S = dim T = N . Assume thus ∂S∩B(x, R) = ∂T∩
B(x,R) = ∅ and dim S < N . For any y, let CSy denote the circle that contains y,
whose center is in ∂S and that is contained in an affine (two-dimensional) plane
perpendicular to ∂S. If ∂S = ∅, define CSy to be the straight line perpendicular
to S that contains y. Define CTy analogously.

The mapping g is the unique mapping such that if y ∈ S ∩B(x, r), g(CSy ∩
B(x, r)) ⊂ CTx, and if A ⊂ CSy ∩B(x, r) is Borel measurable, then HN−k(A) =
HN−k(g(A)), where k is the dimension of S and of T . A direct computation
shows that for sufficiently large K1 and K2, the map g has the required proper-
ties. �

Now we define a distance on S.

Definition 2.35. Let S, T ∈ S and

%(S, T ) = inf
{

ln
(

1 + sup
x∈RN

|x− i(x)|
1 + |x|

+ sup
x∈i(S)∆T

1
1 + |x|

)
:

i: RN → RN is an isometry
}

.

The distance between S and T is d(S, T ) = %(S, T ) + %(T, S).

Proposition 2.36. The pair (S,d) is a separable metric space.

Remark 2.37. The metric space (S,d) is not complete, but it is locally
compact.

The symmetrization is continuous with respect to this distance. More pre-
cisely,

Proposition 2.38. Let Ω ⊂ RN be open. The mapping

{(u, S) ∈ (K(Ω), ‖ · ‖∞)× (S,d) : (u, S) is admissible}
→ (K(Ω), ‖ · ‖∞) : (u, S) 7→ uS

is continuous.
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Proof. Let (u, S) ∈ (K(Ω), ‖ · ‖∞)× (S,d) be admissible, and let ε > 0. By
Proposition 2.10, we can assume Ω = RN .

First suppose u ≥ 0. Let (u, S) ∈ K+(RN ) × S be admissible. Let K1

and K2 be given by Proposition 2.32. Fix x ∈ S and r ≥ εK1/K2 such that
suppu ∈ B(x, r). There exists δ > 0, depending only on ε, x and r, such
that if T ∈ S and d(S, T ) ≤ δ, then there is an isometry i: RN → RN with
|y − i(y)| ≤ ε for each y ∈ B(x, r) and i(T ) ∩B(x,K2r

2/ε) = S ∩B(x, K2r
2/ε).

By Proposition 2.32, since K2r
2/ε ≥ K1r, ‖uS − ui(T )‖∞ ≤ ωu(ε). Moreover,

since by Proposition 2.30, ui(T ) ◦ i = (u ◦ i)T ,

‖ui(T ) − uT ‖∞ = ‖ui(T ) ◦ i− uT ◦ i‖∞ = ‖(u ◦ i)T − uT ◦ i‖∞
≤‖(u ◦ i)T − uT ‖∞ + ‖uT − uT ◦ i‖∞.

Since by Proposition 2.11 the symmetrization is non-expansive in L∞(RN ),

‖(u ◦ i)T − uT ‖∞ ≤ ‖u ◦ i− u‖∞ ≤ ωu(ε).

By Corollary 2.25, the modulus of continuity does not increase by symmetriza-
tion:

‖uT − uT ◦ i‖∞ ≤ ωTu(ε) ≤ ωu(ε).

For any (v, T ) ∈ K+(RN ) × S, if d(T, S) ≤ δ and ‖u − v‖∞ ≤ ε, then, by the
non-expansiveness of the symmetrizations,

‖uS − vT ‖∞ ≤ ‖uS − uT ‖∞ + ‖uT − vT ‖∞ ≤ 3ωu(ε) + ε.

Since ε > 0 is arbitrary, our claim is proved.
If u 6≥ 0, then by definition of admissibility, ∂S 6= ∅. Let x ∈ ∂S and choose

r > 0 such that suppu ⊂ B(x, r). By definition of d, there is δ > 0 such that if
d(S, T ) ≤ δ, there exists an isometry i: RN → RN such that |y − i(y)| ≤ ε for
y ∈ B(x, r) and i(T ) ∩B(x, r) = S ∩B(x, r). Since x ∈ ∂S, S and T are closed
affine half subspaces, and i is an isometry, i(T ) = S. By Proposition 2.30,

‖uS − uT ‖∞ = ‖ui(T ) ◦ i− uT ◦ i‖∞ = ‖(u ◦ i)T − uT ◦ i‖∞.

The end of the proof is similar to the case when u ≥ 0. �

Corollary 2.39. Let Ω ⊂ RN be open and 1 ≤ p < ∞. The mapping

{(u, S) ∈ (Lp(Ω), ‖ · ‖p)× (S,d) : (u, S) is admissible}
→ (Lp(Ω), ‖ · ‖p): (u, S) 7→ uS

is continuous. This remains true if p = ∞, provided Lp(Ω) is replaced by C0(Ω).

As in [30], we can obtain the
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Corollary 2.40. Let Ω ⊂ RN be open and 1 < p < ∞. The mapping

{(u, H) ∈ W 1,p(Ω)× (H,d) : (u, H) and (−u, H) are admissible}
→ W 1,p(Ω): (u, H) 7→ uH

is continuous.

Proof. This is a consequence of Proposition 2.18, of Corollary 2.39 and of
the uniform convexity of the norm ‖∇u‖p. �

3. Constructing approximating sequences

3.1. A sufficient condition. Since the result of a symmetrization is stable
under small perturbations on the symmetrization (Proposition 2.38), we can
prove that some perturbations of an approximating sequence are approximating
sequences.

Proposition 3.1. Let S ∈ S, (Sn)n≥1 ⊂ SS and (Tn)n≥1 ⊂ SS. If for each
open set Ω ⊂ RN and u ∈ K(Ω) such that (u, S) is admissible,

‖uS1...Sn − uS‖ → 0, as n →∞,

and if for every δ > 0 and m ≥ 1, there exists k ≥ 0 such that for each 1 ≤ i ≤ m,

d(Si, Tk+i) ≤ δ,

then for each open set Ω ⊂ RN and u ∈ K(Ω) such that (u, S) is admissible,

‖uT1...Tn − uS‖ → 0, as n →∞.

Proof. Let u ∈ K(Ω) and ε > 0. Since by Proposition 2.26 the sequence
(uT1...Tn)n≥1 is totally bounded in L∞(Ω) and since by hypothesis

uT1...TnS1...Sm → uS , as m →∞,

there exists m ≥ 1 such that for every n ≥ 0,

‖uT1...TnS1...Sm − uS‖∞ ≤ ε.

By the continuity of symmetrization (see Proposition 2.38) and the fact that
(uT1...Tn)n≥1 is totally bounded, there exists δ > 0 such that for each 1 ≤ i ≤ m,
for each n ≥ 0 and for each T ∈ SS , if d(Si, T ) ≤ δ, then

‖uT1...TnSi − uT1...TnT ‖∞ ≤ ε/m.
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By hypothesis, there is k ≥ 0 such that for each 1 ≤ i ≤ m, d(Si, Tk+i) ≤ δ. We
can then use the non-expansiveness of symmetrizations (Proposition 2.11) and
the preceding estimates to obtain, for every ` ≥ m + k,

‖uS−uT1...T`‖∞ ≤ ‖uS − uT1...Tm+k‖∞

≤‖uS − uT1...TkS1...Sm‖∞ +
m∑

i=1

‖uT1...Tk+i−1Si...Sm − uT1...Tk+iSi+1...Sm‖

≤‖uS − uT1...TkS1...Sm‖∞ +
m∑

i=1

‖uT1...Tk+i−1Si − uT1...Tk+i‖ ≤ 2ε. �

Theorem 3.2. Let S ∈ S, T ⊂ SS and (Tn)n≥1 ⊂ SS be such that

(a) for every H ∈ HS, there exists T ∈ T such that T ≺ H,
(b) for each m ≥ 1 and S1, . . . , Sm ∈ T , there exists k ≥ 0 such that for

every 1 ≤ i ≤ m, d(Si, Tk+i) ≤ δ.

Then for each open set Ω ⊂ RN and u ∈ K(Ω) such that (u, S) is admissible,

‖uT1...Tn − uS‖∞ → 0, as n →∞.

Remark 3.3. Since (S,d) is separable, (T ,d) is also separable so that given
a countable dense set of T it is possible to construct explicitly a sequence (Tn)n≥1

satisfying the hypotheses of Theorem 3.2.

Proof. This follows from Theorem 2.28 and Proposition 3.1. �

3.2. Random sequences of symmetrizations. As a first application of
Theorem 3.2, we prove that symmetrizations can be approximated by random
sequences of symmetrizations.

Recall that if (E,Σ, P ) is a probability space, (M,d) is a metric space and
X:E → M is measurable, then X is called a random variable. The sequence
(Xn)n≥1 is a sequence of independent random variables if for any n ≥ 1 and for
any open sets U1, . . . , Un ⊂ M ,

P ({e ∈ E : (X1(e), . . . , Xn(e)) ∈ U1 × · · · × Un})

=
n∏

i=1

P ({e ∈ E : Xi(e) ∈ Ui}).

(See e.g. Stromberg [24]).

Theorem 3.4. Let S ∈ S, T ⊂ SS, (E,Σ, P ) be probability space and
Tn:E → T , n ≥ 1, be independent random variables. If for every H ∈ HS,
there exists T ∈ T such that T ≺ H and if for each T ∈ T and δ > 0,

lim
n→∞

P ({e ∈ E : d(Tn(e), T ) ≤ δ}) > 0,
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then

P
({

e ∈ E : for all open sets Ω ⊂ RN ,

for all u ∈ K(Ω) such that (u, S) is admissible,

lim
n→∞

‖uT1(e)...Tn(e) − uS‖ = 0
})

= 1.

Proof. This follows from Theorem 3.2 and from the next lemma, since
(T ,d) is a separable metric spaces by Proposition 2.36. �

Lemma 3.5. Let (E,Σ, P ) be a probability space, (M,d) be a separable metric
space and Xn:E → M , n ≥ 1, be independent random variables. If for each
x ∈ M and δ > 0,

lim
n→∞

P ({e ∈ E : d(Xn(e), x) ≤ δ}) > 0,

then

P ({e ∈ E : ∀m ≥ 1, ∀r ≥ 1, ∀x1, . . . , xm ∈ M,

∃k ≥ 0, ∀1 ≤ i ≤ m, d(Xk+i(e), xi) ≤ 1/r
}
) = 1.

Proof. Since M is separable, there exists a countable dense subset D ⊂ M .
Since D is dense,

P ({e ∈ E :∀m ≥ 1, ∀r ≥ 1, ∀x1, . . . , xm ∈ M,

∃k ≥ 0, ∀1 ≤ i ≤ m, d(Xk+i(e), xi) ≤ 1/r})
=P ({e ∈ E : ∀m ≥ 1, ∀r ≥ 1, ∀x1, . . . , xm ∈ D,

∃k ≥ 0, ∀1 ≤ i ≤ m, d(Xk+i(e), xi) ≤ 1/r})
= 1− P ({e ∈ E : ∃m ≥ 1, ∃r ≥ 1, ∃x1, . . . , xm ∈ D,

∀k ≥ 0, ∃1 ≤ i ≤ m, d(Xk+i(e), xi) > 1/r}).

Since D is countable,

P ({e ∈ E : ∃m ≥ 1, ∃r ≥ 1, ∃x1, . . . , xm ∈ D,

∀k ≥ 0, ∃1 ≤ i ≤ m, d(Xk+i(e), xi) > 1/r})

≤
∑
m≥1
r≥1

∑
x1,...,xn∈D

P ({e ∈ E : ∀k ≥ 0, ∃1 ≤ i ≤ m, d(Xk+i(e), xi) > 1/r}).

Let now m, r and x1, . . . , xm ∈ D be fixed. Since the random variables (Xn)n≥1

are independent,

P ({e ∈ E :∀k ≥ 0, ∃1 ≤ i ≤ m, d(Xk+i(e), xi) > 1/r})
≤P ({e ∈ E : ∀` ≥ 0, ∃1 ≤ i ≤ m, d(X`m+i(e), xi) > 1/r})

=
∏
`≥0

P ({e ∈ E : ∃1 ≤ i ≤ m, d(X`m+i(e), xi) > 1/r}).
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Since by hypothesis

lim
`→∞

P ({e ∈ E :∃1 ≤ i ≤ m,d(X`m+i(e), xi) > 1/r})

= 1− lim
`→∞

m∏
i=1

P ({e ∈ E : d(X`m+i(e), xi) ≤ 1/r})

≤ 1−
m∏

i=1

lim
`→∞

P ({e ∈ E : d(X`m+i(e), xi) ≤ 1/r})

≤ 1−
m∏

i=1

lim
n→∞

P ({e ∈ E : d(Xn(e), xi) ≤ 1/r}) < 1,

the conclusion follows. �

3.3. Approximation of the symmetrization of sets.

Proposition 3.6. Let u, v ∈ C(Ω), S ∈ S, c > 0. If (u, S) and (v, S) are
admissible and

{x ∈ Ω : u(x) ≥ c} = {x ∈ Ω : v(x) ≥ c},
then

{x ∈ Ω : uS(x) ≥ c} = {x ∈ Ω : vS(x) ≥ c}.

Definition 3.7. Let K ⊂ RN be compact and S. The compact symmetriza-
tion of K with respect to S is the set

{x : u(x) ≥ 1}

for any function u ∈ K(RN ), such that u ≤ 1 and u(x) = 1 if and only if x ∈ K.

This definition is equivalent to the classical definitions of symmetrization of
compact sets (see [19] and [6]). By an abuse of notation, throughout this section,
if K is compact, then KS denotes the compact symmetrization of K. We recall
some basic facts about the Hausdorff distance (see [14], [15]).

Definition 3.8. Let K1,K2 ⊂ RN be compact sets. The Hausdorff distance
between K1 and K2 is

dH(K1,K2) = inf{r > 0 : K1 ⊆ K2 + B(0, r) and K2 ⊆ K1 + B(0, r)}.

The set of compact subsets of RN is denoted by K(RN ). The metric space
(K(RN ),dH) is complete. One has

Proposition 3.9. Let A ⊂ K(RN ). The following are equivalent:

(a) A is totally bounded,
(b)

⋃
K∈A K is bounded,

(c) A is bounded.
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We are now in measure to prove how approximation of symmetrizations of
functions yields approximations of the symmetrizations of sets.

Proposition 3.10. Let S ∈ S, (Tn)n≥1 ⊂ SS, u ∈ K+(RN ) such that
‖u‖∞ = 1 and K = {x ∈ RN : u(x) = 1}. If ‖uT1...Tn − uS‖∞ → 0 as n → ∞,
then

dH(KT1...Tn ,KS) → 0, as n →∞.

Remark 3.11. By Tietze’s extension theorem, for every K ∈ K(RN ), there
exists u ∈ K+(RN ) such that ‖u‖∞ = 1 and K = {x ∈ RN : u(x) = 1}.

Proof. Since u is compactly supported, there exists x ∈ S and r ≥ 0 such
that suppu ⊂ B(x, r). Hence KT1...Tn ⊂ suppuT1...Tn ⊂ B(x, r). By Proposi-
tion 3.9 the sequence (KT1...Tn)n≥1 is conditionally compact in (K(RN ),dH).

Let K̃ be an accumulation point of the sequence (KT1...Tn)n≥1, let (Km)m≥1

be a subsequence of (KT1...Tn)n≥1 converging to K̃ and let (um)m≥1 denote the
corresponding subsequence of (uT1...Tn)n≥1. We are going to show that K̃ = KS .

Let % > 0. Since by Corollary 2.25, uS ∈ K(RN ), there exists ε > 0 such
that if uS(x) ≥ 1 − ε, there is y ∈ KS with |x − y| < %. Since um → uS in
L∞(RN ), for sufficiently large m, ‖um − uS‖ ≤ ε. By definition of Km, one has
Km ⊂ KS +B(0, %). Since this is valid for any % > 0, we conclude that K̃ ⊆ KS .

For every x ∈ S \ ∂S, let Cx denote the (N − k)-dimensional sphere that has
its center on ∂S, is contained in an affine plane orthogonal to ∂S and contains
the point x. (If ∂S = ∅, then Cx is the (N − k)-dimensional plane orthogonal
to S that contains the point x.) If K ∩ Cx = ∅, then KS ∩ Cx = ∅ ⊂ K̃ ∩ Cx.
If K ∩ Cx 6= ∅, then K̃ ∩ Cx 6= ∅, the set KS ∩ Cx is a closed geodesic ball
(possibly degenerate to a point), and, since the N − k-dimensional Hausdorff
measure restricted to Cx is a Radon measure, it is upper semicontinuous with
respect to the Hausdorff distance (see [4])

HN−k(K̃ ∩ Cx) ≥ lim
m→∞

HN−k(Km ∩ Cx) = HN−k(K ∩ Cx) = HN−k(KS ∩ Cx).

Since K̃ ∩ Cx ⊆ KS ∩ Cx, one concludes that K̃ ∩ Cx = KS ∩ Cx.
Since Km ∩ ∂S = K ∩ ∂S = KS ∩ ∂S, one has KS ∩ ∂S ⊆ K̃ ∩ ∂S. In view

of RN = ∂S ∪
⋃

x∈S\∂S Cx, one has K̃ = KS . This proves that the set KS is the
unique accumulation point of the sequence (KT1...Tn)n≥1. �

Remark 3.12. The proof of Proposition 3.10 is a simplification of a proof
of Brock and Solynin [6] who did not use the compactness of the sequence
(KT1...Tn)n≥1 in K(RN ). In particular, the proof of the inclusion K̃ ⊂ KS is
directly inspired by their proof.

As an easy consequence of Theorem 3.4 and Proposition 3.10, we have
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Theorem 3.13. Let S ∈ S with ∂S = ∅ and let (E,Σ, P ) be a probability
space. Let ` > dim S and

T `
S = {T ∈ SS : ∂T = ∅ and dim T = `}.

If (Tn)n≥1 are independent random variables with values in T `
S whose distribution

functions are invariant under isometries that preserve S, then

P
({

e ∈ E : ∀K ∈ K(RN ), lim
n→∞

dH(KT1(e)...Tn(e),KS) = 0
})

= 1.

This solves a conjecture of Mani-Levitska. He proved Theorem 3.13 under
the additional assumptions that K should be convex, S = {0} and ` = N − 1
(see [17]).

One can obtain similar theorems for the approximation by polarizations or
spherical cap symmetrizations.

4. Symmetry of critical points

This section is devoted to the proof of a symmetry result concerning critical
points obtained by a minimax theorem of Struwe based on the Krasnosel’skĭı
genus (see [26]). First we recall the definition and basic properties of the Kras-
nosel’skĭı genus (Section 4.1). Then we symmetrize approximately sets of small
Krasnosel’skĭı genus (Section 4.2) before going on to a minimax theorem with
symmetry information and an application (Section 4.3).

4.1. Krasnosel’skĭı genus. Let V be a Banach space. Define

A = {A ⊂ V : A is closed,A = −A}.

Definition 4.1. For A ∈ A, A 6= ∅, let

γ(A) = inf{m : there exists h ∈ C(A,Sm−1) such that h(−u) = h(u)},

with γ(A) = ∞ if the set on the right-hand side is empty and γ(∅) = 0.

The genus has the following properties

Proposition 4.2 (Krasnosel’skĭı, [13]). Let A,A1, A2 ∈ A, and let h ∈
C(V, V ) be an odd map. Then the following hold:

(a) γ(A) ≥ 0, γ(A) = 0 if and only if A = ∅,
(b) if A1 ⊂ A2, then γ(A1) ≤ γ(A2),
(c) γ(A1 ∪A2) ≤ γ(A1) + γ(A2),
(d) γ(A) ≤ γ(h(A)),
(e) if A ∈ A is compact and 0 6∈ A, then γ(A) < ∞ and there is a neigh-

borhood N of A such that N ∈ A and γ(A) = γ(N).
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It will be only possible to symmetrize sets with a small Krasnosel’skĭı genus.
In the following proposition it is shown that any set contains a subset of lower
Krasnoselskii genus that contains some prescribed points.

Lemma 4.3. If A ∈ A and if Y ⊂ A is finite, there exists A′ ∈ A such that
Y ⊂ A′ ⊂ A and γ(A′) = γ(A)− 1.

Proof. Let k = γ(A). By definition of γ(A), there exists an odd mapping
h ∈ C(A,Sk−1). Take m ∈ Sk−1 \ h(Y ) and let η = maxy∈Y |m · h(y)|. Since
m 6∈ h(Y ), one has η < 1. Define

A′ = {x ∈ A : |m · h(x)| ≤ η}.

Since h is odd and continuous, A′ ∈ A. For x ∈ A′, let σ(x) = h(x)−(m ·h(x))m
and ĥ(x) = σ(x)/|σ(x)|. It is clear that ĥ is odd and continuous on A′ and that
ĥ(A′) ⊂ Sk−2. Hence, γ(A′) ≤ γ(A)− 1.

Let l = γ(A′). By definition of γ(A′), there exists an even mapping h′ ∈
C(A′, Sl−1). For x ∈ A, let

h̃(x) =

{
((η − |m · h(x)|)h′(x),m · h(x)) if x ∈ A′,

(0,m · h(x)) if x 6∈ A′.

Then h̃:A → Rl+1 is continuous and odd on A. The function h̄ = h̃/|h̃|:A → Sl

is also continuous and odd. Hence γ(A) ≤ γ(A′) + 1. �

4.2. Almost-symmetrization of sets. Throughout this section we assume
that Ω = Ω′ × Ω′′, where Ω′ ⊂ Rk is invariant under the action of the group
of isometries O(k). To every any x ∈ Sk−1, we associate the closed affine half
subspace Sx = Rx× RN−k and a closed affine halfspace

ζ(x) = {y ∈ RN : x · y ≥ 0}.

Proposition 4.4. The map ζ:Sk−1 → {H ∈ H : {0} × RN−k ⊂ ∂H} is
a homeomorphism. For every x, y ∈ Sk−1, ζ(x) ∈ HSx if and only if x · y ≥ 0.

Lemma 4.5. There exists σ ∈ C(W 1,p(Ω)×Sk−1×R+;W 1,p(Ω)) such that

(a) for every u ∈ W 1,p(Ω), σ(u, x, t) → uSx in Lp(Ω) as t →∞, uniformly
in x ∈ Sk−1,

(b) for every (x, t) ∈ Sk−1 × R+, there exists H1, . . . ,Hbtc+1 ∈ HSx
such

that, for each u ∈ W 1,p(Ω),

σ(u, x, t) = uH1...Hbtc+1 ,

(c) for every (u, x, t) ∈ W 1,p(Ω)× Sk−1 × R+,

σ(−u,−x, t) = −σ(u, x, t).
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Proof. Let R = {R ∈ SO(k) : for all x ∈ Rk, x · R(x) ≥ 0}. With the
operator norm, R is a separable metric space. Consider a sequence (Rn)n≥1 ⊂ R
such that for every δ > 0, m ≥ 1 and Q1, . . . , Qm ∈ R, there exists k ≥ 0 such
that for each 1 ≤ i ≤ m,

‖Qi −Rk+i‖ ≤ δ.

This construction is possible becauseR is separable. SinceR is path-connected it
is possible to extend the definition of Rt for t ∈ R+ so that t 7→ Rt is continuous.
For (u, x, t) ∈ W 1,p(Ω)× Sk−1 × R+, let

σ(u, x, t) = uζ(R1(x))...ζ(Rbtc(x))ζ(Rt(x)).

The map σ is continuous by construction of Rt, by Proposition 4.4 and by
Corollary 2.40.

Fix x ∈ Sk−1. Let δ > 0, m ≥ 1 and y1, . . . , ym ∈ Sk−1 such that x · yi ≥ 0
for each 1 ≤ i ≤ m. For every 1 ≤ i ≤ m, there exists Qi ∈ R such that
Qi(x) = yi. By construction of the sequence (Rn)n≥1 there is k ≥ 0 such that
for every 1 ≤ i ≤ m,

|yi −Rk+i(x)| ≤ ‖Qi −Rk+i‖ ≤ δ.

Since ζ is continuous and ζ(Rn(x)) ∈ SSx , Theorem 3.2 is applicable and for
every (u, x) ∈ W 1,p(Ω)× Sk, we obtain

‖σ(u, x, n)− uSx‖p → 0, as n →∞.

Since ‖σ(u, x, n) − uSx‖p is decreasing with respect to n (see Remark 2.11),
‖σ(u, x, n)− uSx‖p is continuous with respect to x (Corollary 2.39) and Sk−1 is
compact, by Dini’s Lemma (see [25]), for every u ∈ W 1,p(Ω), we obtain

‖σ(u, x, n)− uSx‖p → 0, as n →∞, uniformly in x ∈ Sk−1.

Finally by Proposition 2.11, we conclude

‖σ(u, x, t)− uSx‖p ≤ ‖σ(u, x, btc)− uSx‖p → 0,

as t →∞, uniformly in x ∈ Sk−1.
The last conclusion is a consequence of Proposition 2.14. �

Lemma 4.6. For every ε > 0, there exists σ̃ ∈ C(W 1,p(Ω)× Sk−1;W 1,p(Ω))
such that, for every (u, x) ∈ W 1,p(Ω)× Sk−1,

(a) ‖σ̃(u, x)− uSx‖ < ε,
(b) there exists m ≥ 1 and H1, . . . ,Hm ∈ HSx such that

σ̃(u, x) = uH1...Hm ,

(c) σ̃(−u,−x) = −σ̃(u, x).
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Proof. By the previous lemma, for any u ∈ W 1,p(Ω), there exists tu ≥ 0
such that for every t ≥ tu and x ∈ Sk−1,

‖σ(u, t, x)− uSx‖ ≤ ε/3.

The space W 1,p(Ω) with the norm of Lp(Ω) is a metric space. It is thus paracom-
pact and there is a locally finite partition of the unity (%v)v∈W 1,p subordinate to
the covering {B(u, ε/3)}u∈W 1,p(Ω) (see [22]). For every u ∈ W 1,p(Ω), let

θ(u) =
1
2

∑
v∈W 1,p(Ω)

(%v(u) + %v(−u))tv.

It is clear that θ is continuous and even. For (u, x) ∈ W 1,p(Ω)× Sk, let

σ̃(u, x) = σ(u, x, θ(u)).

For every u ∈ W 1,p(Ω), there exists v ∈ W 1,p such that tv ≤ θ(u) and
either ‖v − u‖p ≤ ε/3, or ‖v − (−u)‖p ≤ ε/3. If ‖v − (−u)‖p ≤ ε/3, then using
successively Propositions 2.14, 2.11 and the properties of v, we obtain

‖σ̃(u, x)− uSx‖p = ‖σ(u, x, θ(u))− uSx‖p = ‖σ(−u,−x, θ(u))− (−u)S−x‖p

≤‖σ(−u,−x, θ(u))− σ(v,−x, θ(u))‖p

+ ‖σ(v,−x, θ(u))− vS−x‖p + ‖vS−x − (−u)S−x)‖p ≤ ε.

Similarly ‖σ̃(u, x)− uSx‖p ≤ ε whenever ‖v − u‖p ≤ ε/3.
The other conclusions follow easily from the properties of σ. �

Proposition 4.7. Let A ⊂ W 1,p(Ω). If there exists an odd mapping h ∈
C(A,Sk−1), then for every ε > 0, there exists σ ∈ C(A,W 1,p(Ω)) such that, for
every u ∈ A,

(a) ‖σ(u)− uSh(x)‖ < ε,
(b) there exists m ≥ 1 and H1, . . . ,Hm ∈ HSx

such that

σ(u) = uH1...Hm ,

(c) σ(−u) = −σ(u).

Proof. For every u ∈ A, let σ(u) = σ̃(u, h(u)), where σ̃ is given by the
previous lemma. The properties of σ follow from the properties of σ̃ and h. �

4.3. Minimax theorem with symmetry information. If ϕ is an even
functional of class C1 on a closed symmetric C1,1-submanifold M of the Banach
space V . For any ` ≤ γ(M),

F` = {A ∈ A : A ⊂ M, γ(A) ≥ `}.

Consider the values
β` = inf

A∈F`

sup
u∈A

ϕ(u).
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If the functional ϕ satisfies the Palais–Smale condition at the level β` and

1 ≤ ` ≤ γ̂(M) = sup{γ(K) : K ⊂ M is compact and symmetric}

then there is a critical point u ∈ M such that ϕ(u) = β` (see [26]).

Theorem 4.8. Let Ω = Ω′ × Ω′′ ⊂ RN be open, with Ω′ ⊂ Rk invariant
under O(k). Let ` ≤ k. Let M ⊂ W 1,p(Ω) \ {0} be a complete symmetric C1,1-
manifold. Suppose ϕ ∈ C1(M) is an even functional that satisfies the Palais–
Smale condition at the level β`, and is bounded from below on M . Also suppose
that if H ∈ H, {0}×RN−k ⊂ ∂H and u ∈ M , then uH ∈ M and ϕ(uH) ≤ ϕ(u).
If ` ≤ k, then there is a critical point u ∈ M and x ∈ Sk−1 such that ϕ(u) = β`

and uSx = u.

Proof. The theorem is proved by Struwe without the conclusion uSx = u

(see [26]). By a close inspection of his proof, for each sequence (An)n≥1 of F`

such that supu∈An
ϕ(u) → β`, up to a subsequence of the sequence (An)n≥1,

there exists a sequence (un)n≥1 in M such that un ∈ An, un → u, ϕ(un) → β`

and u is a critical point.
By Proposition 4.3, we can find a sequence (An)n≥1 ⊂ F` such that γ(An) = `

and supu∈An
ϕ(u) → β`. Since ϕ decreases by polarization, by Proposition 4.7,

we can take A′
n = σ(An) with ε = 1/n, so that for each u ∈ A′

n, there exists
xn ∈ Sk−1 such that ‖u − uSxn‖p < 1/n. Since supu∈A′

n
ϕ(u) ≤ supu∈An

ϕ(u)
and γ(A′

n) ≥ γ(An), there exists a sequence (un)n≥1 such that un ∈ A′
n, un → u,

ϕ(un) → β` and u is a critical point of ϕ. Moreover, for each n there exists xn

such that‖un − uSxn‖p < 1/n. Up to a subsequence, xn → x ∈ Sk−1, so that
‖u− uSx‖p = 0. �

For an application, let f ∈ C(Ω× R) such that

(f1) there is C > 0 and 1 ≤ p ≤ (N + 2)/(N − 2) such that for every
(x, s) ∈ Ω× R, f(x, s) ≤ C(1 + |s|p),

(f2) for every (x, t) ∈ Ω× R, f(x, s)s < 0,
(f3) for every (x, t) ∈ Ω× R, f(x,−s) = −f(x, s).

Let F (x, s) =
∫ s

0
f(x, σ) dσ.

First consider the functional

ϕ:W 1,2
0 (Ω) → R, u 7→ 1

2

∫
Ω

F (x, u) dx

restricted to the set M = {u ∈ W 1,2
0 (Ω) : ‖∇u‖2

2 + λ‖u‖2
2 = 1}. Let λ0 denote

the first eigenvalue of −∆ with Dirichlet boundary conditions.

Theorem 4.9. Let Ω be as before. For 0 ≤ ` ≤ k and λ > −λ0(Ω), the
functional ϕ has a critical point u` such that ϕ(u`) = β` and u` is invariant by
the symmetrization with respect to Sx, for some x ∈ Sk−1.
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Proof. Since λ > −λ0(Ω), M is a C1,1 manifold in W 1,2
0 (Ω). The functional

ϕ is even, satisfies the Palais–Smale condition at any level c 6= 0 and is bounded
from below (see Rabinowitz [20]). Since by (f3), ϕ(u) < 0 for u 6= 0, then β` < 0.
Furthermore, if u ∈ M , then uH ∈ W 1,2

0 (Ω) and ‖uH‖Lp(Ω) = ‖u‖Lp(Ω) = 1.
Therefore, the conclusion follows from Theorem 4.8. �

Since uSx = u for some x ∈ Sk−1, the function u depends on N − k + 2,
variables: u(y, z) = u(|y|, x · y, z). In particular, when k = N , Ω is a ball or an
annulus, u depends on two variables. (Similar results were proved by Smets and
Willem in [23].)

Similarly we can consider the functional associated to a Neumann problem

ϕ:W 1,2(Ω) → R, u 7→
∫

Ω

F (x, u) dx

restricted to the set M = {u ∈ W 1,2(Ω) : ‖∇u‖2
2 + λ‖u‖2

2 = 1}.

Theorem 4.10. Let Ω be as before. For 0 ≤ ` ≤ k and λ > 0, the functional
ϕ has a critical point u` ∈ M such that ϕ(u`) = β` and u` is invariant by the
symmetrization with respect to Sx, for x ∈ Sk−1.

The restriction ` ≤ k of Theorems 4.9 and 4.10 seems natural when one
considers the particular case f(x, s) = −s. If Ω is a sufficiently thin annulus,
then the critical points associated to βN+1 are of the form u(|x|)H(x/|x|), where
u is a fixed function and H is a spherical harmonic of order two. Among the
spherical harmonics, there are the zonal harmonics, which are invariant under
O(N − 1), but there is also the function H(x) =

∑N−1
i=1 ix2

i − N(N − 1)x2
N/2.

The latter has a discrete symmetry group. Since some of the critical points
associated to βN+1 are nonsymmetric in the linear case, it is quite possible that
for some nonlinear problems the critical points at the level βN+1 are not invariant
under any N − 1-dimensional spherical cap symmetrization. The same kind of
heuristic arguments can be developed for βk+1 when k < N . (The analysis of
the symmetry of critical points obtained by the linking theorem lead to similar
considerations, see [30].)
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