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POSITIVE PERIODIC SOLUTIONS
OF SUPERLINEAR SYSTEMS OF INTEGRAL EQUATIONS

DEPENDING ON PARAMETERS

Shugui Kang — Sui Sun Cheng

Abstract. A class of superlinear system of integral equations depending

on multi parameters is considered. It is shown that there are three mutually
exclusive and exhaustive subsets Θ1, Γ and Θ2 of the parameter space such

that there exist at least two positive periodic solutions associated with

elements in Θ1, at least one positive periodic solution associated with Γ
and none associated with Θ2.

1. Introduction

Coupled differential systems arise in a number of biological, ecological, eco-
nomical and other models which describe interactions. In [3], a coupled differ-
ential system of the form

x′(t) = −a(t)x(t) + λk(t)f(x(t− τ1(t)), y(t− σ1(t))),

y′(t) = −b(t)y(t) + νh(t)g(x(t− τ2(t)), y(t− σ2(t))),

is studied and the existence of positive periodic solutions corresponding to dif-
ferent values of the parameters λ and ν are derived by transforming the above
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system into an equivalent coupled system of integral equations

x(t) = λ

∫ t+ω

t

K(t, s)k(s)f(x(s− τ1(s)), y(s− σ1(s))) ds,(1.1)

y(t) = ν

∫ t+ω

t

H(t, s)h(s)g(x(s− τ2(s)), y(s− σ2(s))) ds.(1.2)

This prompts us to study more general coupled systems of integral equations.
For this purpose, we follow some of the ideas developed by the authors in [2] in
setting up our problem: First, RN is theN -dimensional Euclidean space endowed
with componentwise ordering ≤. For any u, v ∈ RN , the interval [u, v] is the set
{x ∈ RN | u ≤ x ≤ v}. Let T = (t1, . . . , tN ) ∈ RN with positive components
and let e(1) = (1, 0, . . . 0), . . . , e(N) = (0, . . . , 0, 1) be the standard orthonormal
vectors in RN . Let G be a closed subset of RN which has the following “periodic”
structure: for each x ∈ G,

x+ tie
(i) ∈ G,

and for each pair y, z ∈ G,

µ([y, y + T ] ∩G) = µ([z, z + T ] ∩G) > 0,

where µ is the Lebesgue measure, and we set

G(x) = [x, x+ T ] ∩G.

Examples of nontrivial G can be found in [2].
The system of integral equations of the form

(1.3) φj(x) = λj

∫
G(x)

Kj(x, s)fj(s, φ1(s− τj1(s)), . . . , φω(s− τjω(s)))ds,

for x ∈ G, j = 1, . . . , ω, will be considered. Here, the functions Kj , fj , τjk,
where j, k ∈ {1, . . . , ω}, satisfy the following ‘periodic’ conditions:

• for j ∈ {1, . . . , ω}, Kj ∈ C(G × G,R+), Kj(x + tie
(i), y + tie

(i)) =
Kj(x, y) for any (x, y) ∈ G×G and i ∈ {1, . . . N},

• for j ∈ {1, . . . , ω}, fj ∈ C(G × Rω, R), fj(x + tie
(i), u1, . . . , uω) =

fj(x, u1, . . . , uω) for i ∈ {1, . . . , N} and any x ∈ G,
• for j, k ∈ {1, . . . , ω}, τjk:G→ G is continuous, τjk(x+ tie

(i)) = τjk(x)
for any x ∈ G and i ∈ {1, . . . N},

the boundedness conditions:

inf
x,y∈G(t),t∈G

Kj(x, y) ≥ mj > 0, Mj = sup
x,y∈G(t),t∈G

Kj(x, y) <∞,

for j ∈ {1, . . . , ω}, and the “superlinear” conditions:

(H1) for j ∈ {1, . . . , ω}, fj(x, 0, . . . , 0) > 0 for any x ∈ G, fj(x, u1, . . . , uω) is
nondecreasing on (u1, . . . , uω) ∈ [0,∞)× . . .× [0,∞) (i.e. fj(x, u1, . . . ,

uω) ≤ fj(x, v1, . . . , vω) for 0 ≤ uj ≤ vj , j ∈ {1, . . . , ω}, and x ∈ G),
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(H2) for j ∈ {1, . . . , n}, limu1+...+uω→∞ fj(x, u1, . . . , uω)/(u1 + . . .+ uω) =
∞ uniformly with respect to all x ∈ G.

The numbers λ1, . . . , λω will be assumed to be nonnegative and treated as
parameters. Note that when λ1 = . . . = λω = 0, our system reduces to a system
of decoupled equations. For this reason, the case λ1 = . . . = λω = 0 will
be avoided in our subsequent discussions. Therefore our system (1.3) may be
regarded as a multi-state interactive model depending on the parameter vector
λ = (λ1, . . . , λω) in the set

Ξ = {(λ1, . . . , λω) : λj ≥ 0, j = 1, . . . , ω} \ {(0, . . . , 0)}.

For any (a1, . . . , am) and (b1, . . . , bm) in Rm, we will write (a1, . . . , am) ≥
(b1, . . . , bm) if aj ≥ bj for j ∈ {1, . . . ,m}. If (a1, . . . , am) ≥ (b1, . . . , bm) and
if ak > bk or some k ∈ {1, . . . ,m}, we will write (a1, . . . , am) > (b1, . . . , bm).
A vector function (φ1, . . . , φω):G→Rω is said to be positive if (φ1(x), . . . , φω(x))
≥ (0, . . . , 0) for all x ∈ G and (φ1(x0), . . . , φω(x0)) > (0, . . . , 0) for some x0 ∈ G.
It is said to be T -periodic if φ1, . . . , φω are T -periodic, that is, φj(x+ tie

(i)) =
φj(x) for x ∈ G, j ∈ {1, . . . , ω} and i ∈ {1, . . . , N}.

By a solution of (1.3) associated with the parameter vector (α1 . . . , αω) ∈ Ξ,
we mean a continuous vector function φ:G→ Rω which satisfies (1.3) for λj = αj

for j ∈ {1, . . . , ω}. As in [3], we will prove there exists a continuous surface Γ
splitting Ξ into disjoint subsets Θ1, Γ and Θ2 such that the system (1.3) has
at least two, at least one, or no positive T -periodic solutions according whether
λ is in Θ1,Γ or Θ2, respectively. We remark, however, that, the result in [3] is
only good for the coupled system (1.1)–(1.2) which is much less general than our
results below.

2. Some basic lemmas

Let X be the set of all real T -periodic continuous functions defined on G

which is endowed with the usual linear structure as well as the norm

‖ψ‖ = sup
x∈G(t), t∈G

|ψ(x)|.

Then Xω is also a Banach space with the norm

‖(φ1, . . . , φω)‖ = ‖φ1‖+ . . .+ ‖φω‖.

Furthermore, let Φ and Ω be defined respectively by

Φ = {(φ1, . . . , φω) ∈ Xω : φj(x) ≥ 0, x ∈ G, j = 1, . . . , ω},
Ω = {(φ1, . . . , φω) ∈ Φ : φ1(x) + . . .+ φω(x) ≥ α∗‖(φ1, . . . , φω)‖, x ∈ G},

where α∗ = minj=1,... ,ω{mj/Mj}. Then Φ and Ω are cones in Xω.
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Define, for each φ = (φ1, . . . , φω) ∈ Xω,

Tλ(φ)(x) = (Aλ1(φ)(x), . . . , Aλω (φ)(x)),

where

Aλj
(φ)(x) = λj

∫
G(x)

Kj(x, s)fj(s, φ1(s− τj1(s)), . . . , φω(s− τjω(s))) ds,

for j = 1, . . . , ω. Then our system (1.3) can be written as

φ(x) = Tλ(φ)(x).

For the sake of convenience, we will set

fj(s, φ(∗)) := fj(s, φ1(s− τj1(s)), . . . , φω(s− τjω(s)))

in the following discussions.
Let φ = (φ1, . . . , φω) ∈ Φ. For each j ∈ {1, . . . , ω},

Aλj (φ)(x) = λj

∫
G(x)

Kj(x, s)fj(s, φ(∗)) ds ≤ λjMj

∫
G(x)

fj(s, φ(∗)) ds

so that
1
Mj

‖Aλj
(φ)‖ ≤ λj

∫
G(x)

fj(s, φ(∗)) ds

and

Aλj
(φ)(x) =λj

∫
G(x)

Kj(x, s)fj(s, φ(∗)) ds

≥λjmj

∫
G(x)

fj(s, φ(∗)) ds ≥ α∗‖Aλj
(φ)‖.

That is, for each λ ∈ Ξ, TλΦ is contained in Ω.
Furthermore, by standard arguments, we may also show that Tλ is com-

pletely continuous. To see this, we may assume for the sake of simplicity that G
is a subset in R2. Recall that the interval [u, v] is the set {x ∈ R2| u ≤ x ≤ v}. Let
A = (x1, y1), B = (x2, y2) in G. We consider the case where (x1, y1) ≤ (x2, y2),
while the other cases can similarly be treated. We set C = (x2, y1), D = (x1, y2),
E = (x2, y1 + t2), F = (x1 + t1, y2 + t2), K = (x1 + t1, y1 + t2), H = (x1 + t1, y2),
I = (x2 + t1, y1 + t2), J = (x2 + t1, y2 + t2), and G1 = [A,B], G2 = [D,E],
G3 = [C,H], G4 = [B,K], G5 = [E,F ], G6 = [H, I], G7 = [K,J ].

We suppose that ∆ is a bounded set ofXω. Then there exists constant Ť > 0,
such that ‖φ‖ ≤ Ť for any φ ∈ ∆. In view of the theorem of Arzela–Ascoli, we
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only need to show that Aλj
(∆) is equicontinuous for any j ∈ {1, . . . , ω}. Indeed,

Aλj (φ)(B)−Aλj (φ)(A) =λj

{ ∫
G7

+
∫

G6

+
∫

G5

}
Kj(B, s)fj(s, φ(∗)) ds

+ λj

∫
G4

[Kj(B, s)−Kj(A, s)]fj(s, φ(∗)) ds

− λj

{ ∫
G3

+
∫

G2

+
∫

G1

}
Kj(A, s)fj(s, φ(∗)) ds.

Furthermore, fj ∈ C(G(x)×[−Ť , Ť ]×. . .×[−Ť , Ť ], R) and fj(x+tiei, u1, . . . , uω)
= fj(x, u1, . . . , uω) for any x ∈ G, then there exists constant Ĥ, such that

|fj(s, φ(∗))| ≤ Ĥ, for s ∈
7⋃

j=1

Gj ,

thus ∣∣∣∣λj

∫
G7

Kj(B, s)fj(s, φ(∗)) ds
∣∣∣∣ ≤ λjMjĤ|x2 − x1||y2 − y1|,∣∣∣∣λj

∫
G6

Kj(B, s)fj(s, φ(∗)) ds
∣∣∣∣ ≤ λjMjĤt2|x2 − x1|,∣∣∣∣λj

∫
G5

Kj(B, s)fj(s, φ(∗)) ds
∣∣∣∣ ≤ λjMjĤt1|y2 − y1|,∣∣∣∣λj

∫
G3

Kj(A, s)fj(s, φ(∗)) ds
∣∣∣∣ ≤ λjMjĤt1|y2 − y1|,∣∣∣∣λj

∫
G2

Kj(A, s)fj(s, φ(∗)) ds
∣∣∣∣ ≤ λjMjĤt2|x2 − x1|,∣∣∣∣λj

∫
G1

Kj(A, s)fj(s, φ(∗)) ds
∣∣∣∣ ≤ λjMjĤ|x2 − x1||y2 − y1|,

and∣∣∣∣λj

∫
G4

[Kj(B, s)−Kj(A, s)]fj(s, φ(∗)) ds
∣∣∣∣

≤ λjĤ

∫
G4

|Kj(B, s)−Kj(A, s)| ds ≤ λjĤ

∫
G(B)

|Kj(B, s)−Kj(A, s)| ds.

In view of the uniformity of Kj(x, y) in G(B), for any ε > 0, there is δ which
satisfies

0 < δ < min
{
t1, t2,

ε

λMjĤt2
,

ε

λMjĤt1
,

√
ε

λMjĤ

}
,

and for 0 < x2 − x1 < δ, 0 < y2 − y1 < δ, we have

|Kj(B, s)−Kj(A, s)| <
ε

λjĤt2t1
, for s ∈ G(B).
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Thus

|Aλj
(φ)(B) −Aλj

(φ)(A)| ≤
∣∣∣∣λj

∫
G7

Kj(B, s)fj(s, φ(∗)) ds
∣∣∣∣

+
∣∣∣∣λj

∫
G6

Kj(B, s)fj(s, φ(∗)) ds
∣∣∣∣ +

∣∣∣∣λj

∫
G5

Kj(B, s)fj(s, φ(∗))ds|

+
∣∣∣∣λj

∫
G4

[Kj(B, s)−Kj(A, s)]fj(s, φ(∗)) ds
∣∣∣∣

+
∣∣∣∣λj

∫
G3

Kj(A, s)fj(s, φ(∗)) ds
∣∣∣∣ +

∣∣∣∣λj

∫
G2

Kj(A, s)fj(s, φ(∗)) ds
∣∣∣∣

+
∣∣∣∣λj

∫
G1

Kj(A, s)fj(s, φ(∗)) ds
∣∣∣∣ ≤ 7ε

for any φ ∈ ∆. This means that Aλj
(∆) is equicontinuous.

Lemma 2.1. For any compact subset D of Ξ, there exists a constant bD > 0
such that any positive T -periodic solution φ = (φ1, . . . , φω) of (1.3) associated
with λ = (λ1, . . . , λω) ∈ D will satisfy ‖φ‖ < bD.

Proof. Suppose to the contrary that there is a sequence

{φ(n)} = {(φ(n)
1 , . . . , φ(n)

ω )}∞n=1

of positive T -periodic solutions of (1.3) associated with λ(n) = (λ(n)
1 , . . . , λ

(n)
ω )

such that λ(n) ∈ D for all n and limn→∞ ‖φ(n)‖ = ∞.
Since φ(n) = Tλ(n)(φ(n)) ∈ Ω, thus

φ
(n)
1 (x) + . . .+ φ(n)

ω (x) ≥ α∗‖φ(n)‖

for n ≥ 1. Since λ(n) ∈ D for all n, there is some k such that λ(n)
k > 0 for all

sufficiently large n. Then in view of (H2), we may choose Rfk
> 0, ηk and n0 ≥ 1

such that fk(x, u1, . . . , uω) ≥ ηk(u1 + . . . + uω) for all nonnegative u1, . . . , uω

and x ∈ G which satisfy u1 + . . .+uω ≥ Rfk
, α∗(||φ(n0)

1 ||+ . . .+ ||φ(n0)
ω ||) ≥ Rfk

,
and

α∗ηkmkλ
(n0)
k · µG(x) > 1.

Thus, we have

‖φ(n0)
k ‖ ≥φ(n0)

k (x)

=λ
(n0)
k

∫
G(x)

Kk(x, s)fk(s, φ(n0)
1 (s− τk1(s)), . . . , φ(n0)

ω (s− σkω(s))) ds

≥α∗ηkmkλ
(n0)
k · µG(x)(||φ(n0)

1 ||+ . . .+ ||φ(n0)
ω ||) > ‖φ(n0)

k ‖.

This is a contradiction. The proof is complete. �
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Lemma 2.2. . If (1.3) has a positive T -periodic solution associated with
λ∗ = (λ∗1, . . . , λ

∗
ω) > (0, . . . , 0), then for any λ = (λ1, . . . , λω) ∈ Ξ that satisfies

λ ≤ λ∗, equation (1.3) also has a positive T -periodic solution associated with
λ. The system (1.3) has a positive T -periodic solution associated with some
λ∗ = (λ∗1, . . . , λ

∗
ω) satisfying λ∗j > 0 for j = 1, . . . , ω.

Proof. Let φ∗ = (φ∗1, . . . , φ
∗
ω) be a positive T -periodic solution of (1.3)

associated with λ∗. Since λj ≤ λ∗j , we have

φ∗j (x) = Aλ∗j
(φ∗)(x) ≥ Aλj (φ

∗)(x)

for j ∈ {1, . . . , ω}. Let φ(0) = (φ∗1, . . . , φ
∗
ω) and

(2.1) φ(n+1) = Tλ(φ(n)), for n = 0, 1, . . .

Clearly, we have

φ(0)(x) ≥ φ(1)(x) ≥ . . . ≥ φ(n)(x) ≥ (0, . . . , 0).

Let φ(x) = limn→∞ φ(n)(x). In view of the Lebsegue dominated convergence
theorem, we see from (2.1) that φ is a nonnegative T -periodic function that
satisfies

φ(x) = Tλ(φ)(x).

It will thus be a solution of (1.3) if we can show it is continuous. To see the
proof, assume for the sake of simplicity that G is a subset of R2. Then we define
A, . . . , J G1, . . . , G7 as in the proof of the complete continuity of Tλ. Then

φj(B)− φj(A) =λj

{ ∫
G5

+
∫

G6

+
∫

G7

}
Kj(B, s)fj(s, φ(∗)) ds

+ λj

∫
G4

[Kj(B, s)−Kj(A, s)]fj(s, φ(∗)) ds

− λj

{ ∫
G1

+
∫

G2

+
∫

G3

}
Kj(A, s)fj(s, φ(∗)) ds

for j = 1, . . . , ω. Since φ(0)(x) ≥ φ(1)(x) ≥ . . . ≥ φ(n)(x) ≥ (0, . . . , 0),
we see that |φj(x)| ≤ |φ∗j (x)| ≤ ‖φ∗‖ for all x ∈ G. Furthermore, fj ∈
C(G(x)× [−‖φ∗‖, ‖φ∗‖]× . . .× [−‖φ∗‖, ‖φ∗‖], R) and fj(x+ tiei, u1, . . . , uω) =
fj(x, u1, . . . , uω) for any x ∈ G, thus there exists constant Ĥ, such that

|fj(s, φ(∗))| ≤ Ĥ, s ∈
7⋃

j=1

Gj , j = 1, . . . , ω.

By estimates similar to those in the proof of the complete continuity of Tλ, we
may then arrive at

|φj(B)− φj(A)| ≤ 7ε.
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Now that we have shown φ is a solution of (1.3), we need to show it is positive.
Indeed, since φ∗ is positive, φ(x) ≥ 0 for x ∈ G. Since each fj(x, 0, . . . , 0) > 0 for
x ∈ G by our assumption, φ cannot be the trivial solution. Thus, φ is positive.

To show the existence of a positive periodic solution associated with some
λ∗, let

αj(x) =
∫

G(x)

Kj(x, s)ds, j = 1, . . . , ω,

and

Mfj = max
x∈G(t),t∈G

fj(x, α1(x− τj1(x)), . . . , αω(x− τjω(x))), j = 1, . . . , ω.

Then clearly Mfj
> 0 for j ∈ {1, . . . , ω}.

Let (λ∗1, . . . , λ
∗
ω) = (1/Mf1 , . . . , 1/Mfω

). We have

αj(x) =
∫

G(x)

Kj(x, s) ds

≥λ∗j
∫

G(x)

Kj(x, s)fj(s, α1(s− τj1(s)), . . . , αω(s− τjω(s))) ds,

for j = 1, . . . , ω. Now let φ(0) = (α1(x), . . . , αω(x)) and φ(n+1) = Tλ∗(φ(n))(x)
as in (2.1). Then the same argument shows that φ(x) = limn→∞ φ(n)(x) is a
nonnegative T -periodic solution of (1.3) which satisfies φ(x) > (0, . . . , 0). The
proof is complete. �

Let Π be the subset of Ξ such that (1.3) has a positive T -periodic solution
associated with λ = (λ1 . . . , λω). Then by Lemma 2.2, Π contains some λ∗ =
(λ∗1, . . . , λ

∗
ω) such that (1.3) has a positive T -periodic solution associated it, and

hence it contains the subset

(2.2) Π∗ = {(λ1, . . . , λω) : (λ1, . . . , λω) > (0, . . . , 0), λj ≤ λ∗j , j = 1, . . . , ω}.

Lemma 2.3. The subset Π of Ξ is bounded.

Proof. Suppose to the contrary that there is a sequence

φ(n) = {(φ(n)
1 , . . . , φ(n)

ω )}

of positive T -periodic solutions of (1.3) associated with λ(n) = {(λ(n)
1 , . . . , λ

(n)
ω )}

such that limn→∞ λ
(n)
j = ∞ for some k ∈ {1, . . . , ω}. Then either there exists

a subsequence φ(nj) = {(φ(nj)
1 , . . . , φ

(nj)
ω )} such that ‖φ(nj)‖ → ∞ as j →∞ or

there is M > 0 such that ‖φ(n)‖ ≤M for all n. Since φ(n) ∈ Ω, thus

φ
(n)
1 (x) + . . .+ φ(n)

ω (x) ≥ α∗‖φ(n)‖.

By (H2), we may choose Rfk
> 0 such that fk(x, u1, . . . , uω) ≥ ηk(u1 + . . .+uω)

for all nonnegative numbers u1, . . . , uω and x ∈ G which satisfy u1 + . . . +
uω ≥ Rfk

and some ηk > 0. In view of (H1), there exists δk > 0 such that
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fk(x, 0, . . . , 0) ≥ δkMk for any x ∈ G. Let βk = min{ηk, δk}. On the other
hand, there exists a sequence {x(n)} ⊂ G(t), t ∈ G, such that φ(n)

k (x(n)) =
maxx∈G(t),t∈G φ

(n)
k (x) by the periodicity and differentiability of {φ(n)

k (x)}. Thus,
we have

‖φ(n)
k ‖ = φ

(n)
k (x(n)) =A

λ
(n)
k

(φ(n))(x(n)) ≥ λ
(n)
k mkβkα

∗‖φ(n)‖ · µG(x(n))

≥λ(n)
k mkβkα

∗‖φ(n)‖ · µG(x(n)) > ‖φ(n)
k ‖.

But this is a contradiction. The proof is complete. �

3. Main theorem

We may now show that there exists a continuous surface Γ separating Ξ
into two disjoint subsets Θ1 and Θ2 such that (0, . . . , 0) is a boundary point
of Θ1 and (1.3) has at least one positive T -periodic solution for λ ∈ Θ1 ∪ Γ
and no positive T -periodic solution for λ ∈ Θ2. First let e(1), . . . , e(ω) be the
standard orthonormal vectors in Rω. Let Λ be the set of all convex combinations
of e(1), . . . , e(ω), that is, Λ is the (ω−1)-simplex in Rω. For each µ ∈ Λ, the half
ray

Lµ = {λ ∈ Ξ : λ = tµ, t > 0}

has points which belong to Π∗ defined by (2.2) and points outside Π (in view of
Lemma 2.3). Thus the set {t > 0 : tµ ∈ Π} is nonempty and bounded above.
Let

t∗µ = sup{t > 0 : tµ ∈ Π} and λ∗µ = t∗µµ.

Then for each µ ∈ Λ, λ∗µ ∈ Π. Indeed, let {λ(n)}∞n=1 be a sequence which satisfies
λ(n) < λ(n+1) for n ≥ 1 and converges to λ∗µ. For each n, let φ(n) be a positive
T -periodic solution of (1.3) associated with λ(n). In view of Lemma 2.1, we know
that the set {φ(n)} is uniformly bounded in Xω. Thus, the sequence {φ(n)} has
a subsequence converging to φ ∈ Xω. Then we can easily show, by the Lebesgue
dominated convergence theorem, that φ is a positive T -periodic solution of (1.3)
at λ∗µ.

Next, we let ρ: Λ → (0,∞) be defined by

ρ(µ) = t∗µ > 0.

Then we may assert that ρ is continuous. In order to see this, we will assume for
the sake of simplicity that ω = 2 and that ζ = (ζ1, ζ2)∈ Λ such that ζ1, ζ2 > 0.
Let λ = (λ1, λ2) be a neighbouring vector of ζ in Λ such that λ1, λ2 > 0. Consider
first the case λ1 < ζ1 and λ2 > ζ2. We will compare the vectors t∗ζζ = (ζ∗1 , ζ

∗
2 )

and t∗λλ = (λ∗1, λ
∗
2). Since Lemma 2.2 asserts that for each ξ inside

{ξ ∈ Ξ : ξ ≤ t∗ζζ},
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there is a positive T -periodic solution of (1.3) associated with ξ, we see that

λ1ζ2
ζ1λ2

ζ∗1 ≤ λ∗1 and λ∗2 ≤
ζ1λ2

λ1ζ2
ζ∗2 .

If λ1 > ζ1 and λ2 < ζ2, by similar arguments, we may also show that

λ∗1 ≤
ζ2λ1

λ2ζ2
ζ∗1 and λ∗2 ≥

ζ1λ2

λ1ζ2
ζ∗2 .

In either cases, if (λ1, λ2) → (ζ1, ζ2), then (λ∗1, λ
∗
2) → (ζ∗1 , ζ

∗
2 ) as required.

Hence by defining

(3.1) Γ = {λ : λ = ρ(µ)µ, µ ∈ Λ},

we see that Γ is the desired continuous surface described above.
We intend to show that there are at least one more solution for each λ in Θ1.

To this end, we first recall the following lemmas for arguments involving the
topological degree. One may refer to Guo and Lakshmikantham [1] for proofs
and further discussion of the topological degree.

Lemma 3.1. Let X be a Banach space with cone K. Let Ω be a bounded and
open subset in X. Let 0 ∈ Ω and T:K ∩ Ω → K be condensing (or completely
continuous). Suppose that Tx 6= ξx for all x ∈ K ∩ ∂Ω and all ξ ≥ 1. Then
i(T,K ∩ Ω,K) = 1.

Lemma 3.2. Let X be a Banach space and K a cone in X. For r > 0, define
Kr = {x ∈ K : ‖x‖ < r}. Assume that T:Kr → K is a compact map such that
Tx 6= x for x ∈ ∂Kr. If ‖x‖ ≤ ‖Tx‖ for x ∈ ∂Kr, then i(T,Kr,K) = 0.

Let φ∗ be a positive T -periodic solution of (1.3) associated with λ∗ ∈ Γ.
Then for λ < λ∗ and λ ∈ Ξ, by the uniform continuity of fj on compact sets,
there exists ε0 > 0 such that

fj(s, 0, . . . , 0)(λ∗j − λj)
λj

> fj(s, φ∗1(s− τj1(s)) + ε, . . . , φ∗ω(s− τjω(s)) + ε)

− fj(s, φ∗1(s− τj1(s)), . . . , φ∗ω(s− τjω(s)))

for j ∈ {1, . . . , ω}, s ∈ G and 0 < ε ≤ ε0. Thus, we have

λj

∫
G(x)

Kj(x, s)fj(s, φ∗1(s− τj1(s)) + ε, . . . , φ∗ω(s− τjω(s)) + ε) ds

− λ∗j

∫
G(x)

Kj(x, s)fj(s, φ∗1(s− τj1(s)), . . . , φ∗ω(s− τjω(s))) ds

=λj

∫
G(x)

Kj(x, s)[fj(s, φ∗1(s− τj1(s)) + ε, . . . , φ∗ω(s− τjω(s)) + ε)

− fj(s, φ∗1(s− τj1(s)), . . . , φ∗ω(s− τjω(s)))] ds

− (λ∗j − λj)
∫

G(x)

Kj(x, s)fj(s, φ∗1(s− τj1(s)), . . . , φ∗ω(s− τjω(s))) ds



Superlinear Systems of Integral Equations 397

<fj(s, 0, . . . , 0)(λ∗j − λj)
∫

G(x)

Kj(x, s) ds

− (λ∗j − λj)
∫

G(x)

Kj(x, s)fj(s, φ∗1(s− τj1(s)), . . . , φ∗ω(s− τjω(s))) ds

=(λ∗j − λj)
∫

G(x)

Kj(x, s)[fj(s, 0, . . . , 0)

− fj(s, φ∗1(s− τj1(s)), . . . , φ∗ω(s− τjω(s)))] ds ≤ 0

and

λj

∫
G(x)

Kj(x, s)fj(s, φ∗1(s− τj1(s)) + ε, . . . , φ∗ω(s− τjω(s)) + ε) ds

≤λ∗j
∫

G(x)

Kj(x, s)fj(s, φ∗1(s− τj1(s)), . . . , φ∗ω(s− τjω(s))) ds

=φ∗j (x) < φ∗j (x) + ε.

Let

φ̃∗j (x) = φ∗j (x) + ε, for j = 1, . . . , ω,

and

Ψ = {(φ1, . . . , φω) ∈ Xω : −ε < φj(x) < φ̃∗j (x), j = 1, . . . , ω, x ∈ G}.

Then Ψ is bounded and open in Xω, (0, . . . , 0) ∈ Ψ and Tλ: Ω ∩ Ψ → Ω is
condensing (since it is completely continuous). Let φ = (φ1, . . . , φω) ∈ Ω ∩ ∂Ψ.
Then there exists x0 such that either φk(x0) = φ̃∗k(x0) for some k ∈ {1, 2, . . . , ω}.
Then, by (H1),

Aλk
(φ)(x0) =λk

∫
G(x0)

Kk(x0, s)fk(s, φ1(s− τk1(s)), . . . , φk(s− τkω(s))) ds

≤λk

∫
G(x0)

Kk(x0, s)fk(s, φ̃∗1(s− τk1(s)), . . . , φ̃∗k(s− τkω(s))) ds

< φ̃∗k(x0) = φk(x0) ≤ ξφk(x0)

for all ξ ≥ 1. Thus Tλ(φ) 6= ξφ for φ ∈ Ω ∩ ∂Ψ and ξ ≥ 1. In view of the
properties of the fixed point index (see Lemma 3.1), we have i(Tλ,Ω∩Ψ,Ω) = 1.

By (H2), we may choose Rfk
> 0 such that fk(x, u1, . . . , uω) ≥ ηk(u1 + . . .+

uω) for all u1 + . . .+ uω ≥ Rfk
, where ηk satisfies

α∗ηkmkλk · µG(x) > 1.

Let Rk = max{bD, Rfk
/α∗, ‖(φ̃∗1, . . . , φ̃∗ω)‖}, where bD is given in Lemma 2.1

with D a closed rectangle in Ξ containing λ. Let ΩRk
= {φ ∈ Ω : ‖φ‖ < Rk}.
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Then in view of Lemma 2.1, φ 6= Tλ(φ) for φ ∈ ∂ΩRk
. Furthermore, if φ ∈ ∂ΩRk

,
then φ1(x) + . . .+ φω(x) ≥ α∗‖φ‖ ≥ Rfk

. Thus, we have

Aλk
(φ)(x) =λk

∫
G(x)

Kk(x, s)fk(s, φ1(s− τk1(s)), . . . , φω(s− τkω(s))) ds

≥α∗ηkmkλk · µG(x)‖φ‖ > ‖φ‖.

Therefore ‖Tλ(φ)‖ ≥ ‖Aλk
(φ)‖ > ‖φ‖ and Lemma 3.2 then implies

i(Tλ,ΩRk
,Ω) = 0.

Consequently, by the additivity of the fixed point index,

0 = i(Tλ,ΩRk
,Ω) = i(Tλ,Ω ∩Ψ,Ω) + i(Tλ,ΩRk

\ Ω ∩Ψ,Ω).

Since i(Tλ,Ω∩Ψ,Ω) = 1, i(Tλ,ν ,ΩRk
\Ω ∩Ψ,Ω) = −1 and Tλ has a fixed point

in Ω ∩Ψ and another in ΩRk
\Ω ∩Ψ. Thus, we have the following result.

Theorem 3.3. There exists a continuous surface Γ of the form (3.1) sepa-
rating Ξ into two disjoint subsets Θ1 (which is bounded) and Θ2 (which is un-
bounded) such that (1.3) has at least two positive T -periodic solutions for λ ∈ Θ1,
at least one positive T -periodic solution for λ ∈ Γ, and no positive T -periodic
solution for λ ∈ Θ2.

As our final remark, note that the surface Γ is defined by the shooting
method. Therefore, numerical methods can be applied to calculate this surface.
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