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PERIODIC SOLUTIONS
FOR EVOLUTION COMPLEMENTARITY SYSTEMS:

A METHOD OF GUIDING FUNCTIONS

George Dinca — Daniel Goeleven

Abstract. A guiding function method for a class of variational inequali-

ties is developed.

1. Introduction

The problem of the existence of periodic solutions have been extensively
studied for differential equations of the form

(1.1)
du

dt
= f(t, u(t)),

where f : [0, T ]×Rn → Rn is a continuous vector field. In particular, M. A. Kras-
nosel’skĭı (see e.g. [8], [9]) has developed an approach using the Brouwer topo-
logical degree method applied to the Poincaré translation operator. Sufficient
conditions on f for the degree applied to the Poincaré operator PT to be differ-
ent from zero are needed to prove the existence of T -periodic solutions. Such
conditions can be obtained by using the guiding function method. A function
V ∈ C1(Rn;R) is called a guiding function for (1.1) provided that there exists
r0 > 0 such that 〈∇V (x), f(t, x)〉 > 0, for all x ∈ Rn, ‖x‖ ≥ r0 and all t ∈ [0, T ].
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The original approach reduces the computation of the degree of PT to the one
of f(0, · ) by using the homotopy

(λ, x)→ h(λ, x) := x− PλT (x)
λ

.

We have indeed h(1, x) = x−PT (x) and h(0, x) = −Tf(0, x). Moreover, it is also
clear that for large x, the qualitative behavior of the vector field f is similar to
that of ∇V . The details can be found in the expository article of J. Mawhin [10].
The original approach of M. A. Krasonel’skĭı has later been generalized so as

to obtain a continuation method for differential inclusions of the form

(1.2)
du

dt
∈ ϕ(t, u(t)),

where ϕ is a Caratheodory multivalued map with compact and convex values and
linear growth. We refer the reader to the expository article [7] of L. Górniewicz
for details and references.
In this paper, we consider the problem of existence of a solution u( · ) to the

following periodic problem:

u(t) ∈ C for t ∈ [0, T ],(1.3) 〈
du

dt
(t) + F (u(t))− f(t), u(t)

〉
= 0 a.e. t ∈ [0, T ],(1.4)

du

dt
(t) + F (u(t))− f(t) ∈ C∗ a.e. t ∈ [0, T ],(1.5)

u(0) = u(T )(1.6)

where C ⊂ Rn is a nonempty closed convex cone, C∗ denotes the dual cone of C,
i.e.

C∗ := {h ∈ Rn : 〈h, v〉 ≥ 0 for all v ∈ C},
F :Rn → Rn is a given map and f( · ) a given function.
The problem (1.3)–(1.5) is equivalent with that of the evolution variational

inequality

u(t) ∈ C, for t ∈ [0, T ],

〈
du

dt
(t) + F (u(t))− f(t), v − u(t)

〉
≥ 0, for all v ∈ C, a.e. t ∈ [0, T ],

i.e. with that of the differential inclusion

(1.7)
du

dt
(t) + F (u(t))− f(t) ∈ −∂ΨC(u(t)), a.e. t ∈ [0, T ],

where ΨC is the indicator function of C and ∂ΨC denotes the convex subdiffer-
ential of ΨC .
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However, the results obtained for problem (1.2) cannot be applied to the
problem in (1.7) since the multivalued map ∂ΨC has not a linear growth and for
x ∈ ∂C, has not compact values.
In Section 2 of this paper, we show that a Poincaré operator S(T ) can also

be defined for problem (1.7). In Section 3, the concept of guiding function is
generalized for problem (1.7) and a continuation method applicable to problem
(1.7) is developed.

2. The Poincaré operator

In the sequel the scalar product on Rn is denoted by 〈 · , · 〉 (with the as-
sociated norm ‖ · ‖). Let us first recall some general existence and uniqueness
result.

Theorem 2.1. Let C ⊂ Rn be a nonempty closed convex subset and F :Rn →
Rn be a continuous operator such that for some ω ≥ 0, F + ωI is monotone.
Suppose that f : [0,∞)→ Rn satisfies

f ∈ C0([0,∞);Rn), df

dt
∈ L1loc(0,∞;Rn).

Let y ∈ C and 0 < T < ∞ be given. There exists a unique u ∈ C0([0, T ];Rn)
such that

du

dt
∈ L∞(0, T ;Rn);(2.1)

u is right-differentiable on [0, T );(2.2)

u(t) ∈ C, t ∈ [0, T ];(2.3)

u(0) = y;(2.4)

(2.5)
〈
du

dt
(t) + F (u(t))− f(t), v − u(t)

〉
≥ 0, for all v ∈ C, a.e. t ∈ [0, T ].

Theorem 2.1 is a direct consequence of a Kato’s result (we refer the reader
to Brezis [2], [3] for the Kato’s result and to [5] for the proof of Theorem 2.1).

Remark 2.2. Suppose that F :Rn → Rn can be written as

F (x) = Ax+Φ′(x) + F1(x), for all x ∈ Rn,

where A ∈ Rn×n is a real matrix, Φ ∈ C1(Rn;R) is convex and F1 is Lipschitz
continuous, i.e.

‖F1(x)− F1(y)‖ ≤ k‖x− y‖, for all x, y ∈ Rn,

for some constant k > 0. Then F is continuous and F +ωI is monotone provided
that ω ≥ 0 is great enough, i.e.

ω ≥ sup
‖x‖=1

〈−Ax, x〉+ k.
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Remark 2.3. It follows from Theorem 2.1 that the unique solution of (2.1)–
(2.5) is Lipschitz continuous on [0, T ].

Theorem 2.1 enable us to define the one parameter family {S(t) : 0 ≤ t ≤ T}
of operators from C into C, as follows:

(2.6) S(t)y = u(t) ∈ C, for all y ∈ C,

u being the unique solution on [0, T ] of the evolution problem (2.1)–(2.5). Note
that

S(0)y = y for all y ∈ C.

Lemma 2.4 (see e.g. [11]). Let T > 0 be given and let a, b ∈ L1(0, T ;R) with
b(t) ≥ 0 a.e. t ∈ [0, T ]. Let the absolutely continuous function w: [0, T ] → R+
satisfy

(1− α)dw
dt
(t) ≤ a(t)w(t) + b(t)wα(t), a.e. t ∈ [0, T ],

where 0 ≤ α < 1. Then

w1−α(t) ≤ w1−α(0)e
R t
0 a(s)ds +

∫ t
0
e
R t
s
a(q)dqb(s)ds, for all t ∈ [0, T ].

Theorem 2.5. Suppose that the assumptions of Theorem 2.1 hold. Then

‖S(t)y − S(t)z‖ ≤ eωt‖y − z‖,

for all y, z ∈ C, t ∈ [0, T ].

Proof. Let y, z ∈ C be given. We know that

(2.7)
〈
d

dt
S(t)y + F (S(t)y)− f(t), v − S(t)y

〉
≥ 0,

for all v ∈ C, a.e. t ∈ [0, T ] and

(2.8)
〈
d

dt
S(t)z + F (S(t)z)− f(t), h− S(t)z

〉
≥ 0,

for all h ∈ C, a.e. t ∈ [0, T ]. Setting v = S(t)z in (2.7) and h = S(t)y in (2.8),
we obtain the relations:

−
〈
d

dt
S(t)y + F (S(t)y)− f(t), S(t)z − S(t)y

〉
≤ 0,

a.e. t ∈ [0, T ] and〈
d

dt
S(t)z + F (S(t)z)− f(t), S(t)z − S(t)y

〉
≤ 0,

a.e. t ∈ [0, T ]. It results that〈
d

dt
(S(t)z − S(t)y), S(t)z − S(t)y

〉
≤ 〈ωS(t)z − ωS(t)y, S(t)z − S(t)y〉

− 〈[F + ωI](S(t)z)− [F + ωI](S(t)y), S(t)z − S(t)y〉
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a.e. t ∈ [0, T ].
Our hypothesis ensure that F + ωI is monotone. It results that

d

dt
‖S(t)z − S(t)y‖2 ≤ 2ω‖S(t)z − S(t)y‖2, a.e. t ∈ [0, T ].

Let us first set w( · ) := ‖S( · )z−S( · )y‖2 and note that according to Remark 2.3
this function is absolutely continuous on [0, T ]. Using then Lemma 2.4 with
a( · ) := 2ω, b( · ) = 0 and α = 0, we get

‖S(t)z − S(t)y‖2 ≤ ‖z − y‖2e2ωt, for all t ∈ [0, T ].

The conclusion follows. �

Remark 2.6. It follows from theorem 2.5 that the unique solution of the
evolution problem (2.1)–(2.5) is Lipschitz continuously depending on the initial
data:

max
t∈[0,T ]

‖S(t)y − S(t)z‖ ≤ eωT ‖y − z‖, for all y, z ∈ C.

Remark 2.7. Let us now consider the Poincaré operator S(T ):C → C;
y → S(T )y. Theorem 2.5 ensures that S(T ) is Lipschitz continuous on C, i.e.

‖S(T )y − S(T )z‖ ≤ eωT ‖y − z‖, for all y, z ∈ C.

Remark 2.8. Note that if F is monotone and continuous then Theorem 2.5
holds with ω = 0. In this case, the Poincaré operator S(T ) is nonexpansive on C,
i.e.

‖S(T )y − S(T )z‖ ≤ ‖y − z‖, for all y, z ∈ C.

For such case, the fixed point theory of nonexpansive operators can be used so as
to give conditions ensuring the existence of periodic solutions for problem (1.7).
We refer the reader to [6] for details.

According to (2.6), the unique solution of the problem (2.1)–(2.5) satisfies,
in addition, the periodicity condition

u(0) = u(T )

if and only if y is a fixed point of S(T ), that is

S(T )y = y.

Thus the problem of the existence of a periodic solution for the evolution problem
(2.1)–(2.3), (2.5) is reduced to that of the existence of a fixed point for S(T ).
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3. A method of guiding functions for complementarity systems

Suppose that Ω ⊂ Rn is open but possibly unbounded. Let C̃(Ω) be the set
of all ϕ ∈ C0(Ω;Rn) such that ϕ−1(0) := {x ∈ Ω : ϕ(x) = 0} is compact.

Remark 3.1. If ϕ ∈ C0(Ω) and

sup
x∈Ω
‖x− ϕ(x)‖ <∞.

then ϕ ∈ C̃(Ω).

Let ϕ ∈ C̃(Ω) be given. If 0 /∈ ϕ(∂Ω) then the topological degree of ϕ with
respect to Ω and 0 is well-defined by (see e.g. [4]):

deg(ϕ,Ω, 0) := degB(ϕ,Ω ∩ Ω0, 0)

where degB denotes the Brouwer degree and Ω0 is any open bounded set that
contains ϕ−1(0). Recall that deg has all properties of degB and coincides with
degB as soon as Ω is bounded.
Let us now recall some properties of the topological degree we will use later

in this section.

(1) If 0 /∈ ϕ(∂Ω) and deg(ϕ,Ω, 0) 6= 0 then there exist x ∈ Ω such that
ϕ(x) = 0.

(2) Let Φ: [0, 1] × Ω → Rn, (λ, x) → Φ(λ, x), Φ ∈ C̃([0, 1] × Ω) and such
that, for each λ ∈ [0, 1], one has 0 /∈ Φ(λ, ∂Ω), then the map λ →
deg(Φ(λ, · ),Ω, 0) is constant on [0, 1].

(3) Let us denote by idRn the identity mapping on Rn. If 0 ∈ Ω then

deg(idRn ,Ω, 0) = 1.

(4) If 0 /∈ ϕ(∂Ω) and α > 0 then

deg(αϕ,Ω, 0) = deg(ϕ,Ω, 0), deg(−αϕ,Ω, 0) = (−1)ndeg(ϕ,Ω, 0).

Let C be a nonempty closed convex cone, i.e.

0 ∈ C, λC ⊂ C, for all λ > 0, C + C ⊂ C.

In this case, the problem in (1.3) and (1.5) is equivalent to the following com-
plementarity system:

u(t) ∈ C, t ∈ [0, T ],(3.1) 〈
du

dt
(t) + F (u(t))− f(t), u(t)

〉
= 0, a.e. t ∈ [0, T ],(3.2)

du

dt
(t) + F (u(t))− f(t) ∈ C∗, a.e. t ∈ [0, T ].(3.3)
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The projection operator PC :Rn → C; x → PC(x) is well-defined as the unique
solution of the variational inequality:

〈PC(x)− x, v − PC(x)〉 ≥ 0, for all v ∈ C.

For r > 0, we set

ΩC,r := {x ∈ Rn : ‖PC(x)‖ < r}.

Then

ΩC,r := {x ∈ Rn : ‖PC(x)‖ ≤ r}

and

∂ΩC,r := {x ∈ Rn : ‖PC(x)‖ = r}.

If ϕ ∈ C̃(ΩC,r) and 0 /∈ ϕ(∂ΩC,r) then deg(ϕ,ΩC,r, 0) is well-defined. Moreover,
if there exists r0 > 0 such that for every r ≥ r0, ϕ ∈ C̃(ΩC,r) and 0 /∈ ϕ(∂ΩC,r)
then deg(ϕ,ΩC,r, 0) is constant for r ≥ r0 and one defines the index of ϕ at
infinity ind(ϕ,∞) by

ind(ϕ,∞) := deg(ϕ,ΩC,r, 0), for all r ≥ r0.

If in addition ϕ(C) ⊂ C then we define

IC(ϕ,∞) := ind(idRn − PC − ϕ ◦ PC ,∞).

Note that IC(ϕ,∞) is well-defined. First, because if x ∈ ΩC,r then PCx ∈ ΩC,r
and ϕ is continuous on ΩC,r, it follows that the mapping x ∈ ΩC,r 7→ x−PCx−
ϕ(PCx) is continuous on ΩC,r. Moreover, (idRn −PC −ϕ ◦PC)−1(0) is compact
and 0 /∈ ∂ΩC,r. Indeed,

‖x− (x− PC(x)− ϕ(PC(x)))‖ = ‖PC(x) + ϕ(PC(x))‖

and thus

sup
x∈ΩC,r

‖x− (x− PC(x)− ϕ(PC(x)))‖ <∞

so that idRn−PC−ϕ◦PC ∈ C̃(ΩC,r). Moreover, 0 /∈ (idRn−PC−ϕ◦PC)(∂ΩC,r).
Indeed, suppose that there exists x ∈ ∂ΩC,r such that x−PC(x)−ϕ(PC(x)) = 0.
Then x = PC(x)+ϕ(PC(x)) ∈ C since C is cone. It results that ϕ(x) = 0 which
is a contradiction since 0 /∈ ϕ(∂ΩC,r).
We say that V ∈ C1(Rn,R) is a guiding function for (3.1)–(3.3) provided

that there exists R > 0 such that

〈F (x)− f(t),∇V (x)〉 < 0, for all x ∈ C, ‖x‖ ≥ R, t ∈ [0, T ].
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Theorem 3.2. Let C ⊂ Rn be a nonempty closed convex cone. Suppose
that f : [0,∞) → Rn satisfies f ∈ C0([0,∞);Rn), df/dt ∈ L1loc(0,∞;Rn). Let
F :Rn → Rn be a mapping satisfying the conditions of Theorem 2.1. Suppose in
addition that F has linear growth, i.e. there exist C1 > 0, C2 ≥ 0 such that

‖F (x)‖ ≤ C1‖x‖+ C2, for all x ∈ C.

Suppose that there exists V ∈ C1(Rn,R) and R > 0 such that

(a) 〈F (x)− f(t),∇V (x)〉 < 0, for all x ∈ C, ‖x‖ ≥ R, t ∈ [0, T ];
(b) ∇V (x) ∈ C, for all x ∈ C, ‖x‖ ≥ R.

Then there exists r0 > R such that

deg(idRn − S(T ) · ,ΩCr , 0) = IC(∇V,∞), for all r ≥ r0.

Proof. Let us set

r0 := ReC1T +
C2
C1
(eC1T − 1) +

∫ T
0
‖f(s)‖eC1s ds.

Part 1. We claim that if y ∈ C, ‖y‖ = r with r ≥ r0, then

‖S(t)y‖ ≥ R, for all t ∈ [0, T ].

Suppose by contradiction that there exists t∗ ∈ [0, T ] such that ‖S(t∗)y‖ < R.
We know that u( · ) ≡ S( · )y ∈ C satisfies

du

dt
(t) + F (u(t))− f(t) ∈ −∂ΨC(u(t)), a.e. t ∈ [0, T ],

and thus

du

dt
(t∗ − t) + F (u(t∗ − t))− f(t∗ − t) ∈ −∂ΨC(u(t∗ − t)), a.e. t ∈ [0, t∗].

Setting
Y (t) = u(t∗ − t), t ∈ [0, t∗],

we get

−dY
dt
(t) + F (Y (t))− f(t∗ − t) ∈ −∂ΨC(Y (t)), a.e. t ∈ [0, t∗].

Thus 〈
− dY
dt
(t), v − Y (t)

〉
≥ 〈−F (Y (t)) + f(t∗ − t), v − Y (t)〉,

for all v ∈ C, a.e. t ∈ [0, t∗]. Recalling that C is a cone, we may set v = 2Y (t) ∈ C
to obtain〈

dY

dt
(t), Y (t)

〉
≤〈F (Y (t))− f(t∗ − t), Y (t)〉

≤ (C1‖Y (t)‖+ C2)‖Y (t)‖+ ‖f(t∗ − t)‖‖Y (t)‖
=C1‖Y (t)‖2 + C2‖Y (t)‖+ ‖f(t∗ − t)‖‖Y (t)‖,



Periodic Solutions for Evolution Complementarity Systems 263

a.e. t ∈ [0, t∗]. Thus

1
2
d

dt
‖Y (t)‖2 ≤ C1‖Y (t)‖2 + C2‖Y (t)‖+ ‖f(t∗ − t)‖‖Y (t)‖, a.e. t ∈ [0, t∗].

Using Lemma 2.4 with w( · ) := ‖Y ( · )‖2, a( · ) := C1, b( · ) := C2 + ‖f(t∗ − · )‖
and α := 1/2, we obtain

‖Y (t)‖ ≤ ‖Y (0)‖eC1t +
∫ t
0
C2e

C1(t−s) ds+
∫ t
0
‖f(t∗ − s)‖eC1(t−s) ds,

for all t ∈ [0, t∗]. Since Y (t∗) = u(0) = S(0)y = y and Y (0) = u(t∗) = S(t∗)y,
we get

‖y‖ ≤‖S(t∗)y‖eC1t
∗
+
∫ t∗
0
C2e

C1(t∗−s) ds+
∫ t∗
0
‖f(t∗ − s)‖eC1(t

∗−s) ds

<ReC1T +
C2
C1
(eC1T − 1) +

∫ T
0
‖f(s)‖eC1sds = r0.

The contradiction ‖y‖ < r0 has thus been obtained.
Let r ≥ r0 be given.
Part 2. We claim that there exists ε > 0 and T ∗ ∈ (0, T ] such that

〈F (x)− f(t),∇V (y)〉 < 0,
for all x ∈ Rn, y ∈ C, ‖y‖ = r, ‖x− y‖ ≤ ε, t ∈ [0, T ∗].

Indeed, the mapping (t, x, y) → 〈F (x) − f(t),∇V (y)〉 is continuous on [0, T ] ×
Rn × Rn and if y ∈ C, ‖y‖ = r ≥ r0 > R then (by assumption (a)): 〈F (y) −
f(0),∇V (y)〉 < 0. Thus, for t > 0 closed to 0, let us say t ≤ T ∗ and x closed to
y, let us say ‖x− y‖ ≤ ε, ε > 0, small, we have 〈F (x)− f(t),∇V (y)〉 < 0.
Part 3. We claim that there exists T ∈ (0, T ∗] such that

‖S(t)y − y‖ ≤ ε, for all y ∈ C, ‖y‖ = r and all t ∈ [0, T ].

Indeed, if we suppose the contrary, then we may find sequences tn ∈ [0, T ∗/n]
(n ∈ N, n ≥ 1) and yn ∈ C, ‖yn‖ = r such that ‖S(tn)yn − yn‖ > ε. Along
a subsequence, we may assume that tn → 0+ and yn → y∗ ∈ ∂ΩC,r. On the
other hand, we have

‖S(tn)yn − yn‖ = ‖S(tn)yn − S(tn)y∗ + S(tn)y∗ − yn‖
≤‖S(tn)yn − S(tn)y∗‖+ ‖S(tn)y∗ − yn‖.

Then using Theorem 2.5, we obtain

‖S(tn)yn − yn‖ ≤ ewtn‖yn − y∗‖+ ‖S(tn)y∗ − yn‖.

Using the continuity of the map t → S(t)y, we see that ‖S(tn)yn − yn‖ → 0
which is a contradiction.
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(4) Let HT : [0, 1]×ΩC,r → Rn; (λ, y)→ HT (λ, y) := y−(1−λ)∇V (PC(y))−
S(λT )PC(y). We have

sup
(λ,y)∈[0,1]×ΩC,r

‖y −HT (λ, y)‖

= sup
(λ,y)∈[0,1]×ΩC,r

‖(1− λ)∇V (PC(y)) + S(λT )PC(y)‖ <∞.

We claim that the homotopy HT is such that 0 6= HT (λ, y), for all y ∈ ∂ΩC,r,
λ ∈ [0, 1]. By contradiction, suppose that there exists y ∈ Rn, ‖PC(y)‖ = r and
λ ∈ [0, 1] such that

y − (1− λ)∇V (PC(y))− S(λT )PC(y) = 0.

Then

y = (1− λ)∇V (PC(y)) + S(λT )PC(y) ∈ C
and thus y = PC(y). We obtain

S(λT )y − y = −(1− λ)∇V (y)

and thus

(3.4) 〈S(λT )y − y,∇V (y)〉 = −(1− λ)‖∇V (y)‖2 ≤ 0.

On the other hand, we know that

(3.5)
〈
d

dt
S(t)y, v − S(t)y

〉
≥ 〈−F (S(t)y) + f(t), v − S(t)y〉,

for all v ∈ C, a.e. t ∈ [0, T ].
We know that y ∈ C, S(t)y ∈ C, for all t ∈ [0, T ] and by assumption (b),

∇V (y) ∈ C. Recalling that C is a cone, we may set v = S(t)y + ∇V (y) ∈ C
in (3.5) to get〈

d

dt
S(t)y,∇V (y)

〉
≥ 〈−F (S(t)y) + f(t),∇V (y)〉, a.e. t ∈ [0, T ].

Thus 〈∫ λT
0

d

ds
S(s)y ds,∇V (y)

〉
≥
∫ λT
0
〈−F (S(s)y) + f(s),∇V (y)〉 ds.

Part 1 of this proof ensures that ‖S(t)y‖ ≥ R, for all t ∈ [0, λT ] ⊂ [0, T ]. Part 3 of
this proof garantees that ‖S(t)y− y‖ ≤ ε, for all t ∈ [0, λT ] ⊂ [0, T ]. Then using
part (2) of this proof, we may assert that the map s→ 〈−F (S(s)y)+f(s),∇V (y)〉
is continuous and strictly positive on [0, λT ]. Thus∫ λT

0
〈−F (S(s)y) + f(s),∇V (y)〉 ds > 0
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and we obtain

〈S(λT )y − y,∇V (y)〉 =
〈∫ λT
0

d

ds
S(s)y ds,∇V (y)

〉
> 0.

This is a contradiction to (3.4).
Part 5. Thanks to Part 4 of this proof, we may use the invariance by homo-

topy property of the topological degree and see that

deg(idRn − S(T )PC ,ΩC,r, 0) = deg(HT (1, · ),ΩC,r, 0) = deg(HT (0, · ),ΩC,r, 0)
= deg(idRn −∇V ◦ PC − PC ,ΩC,r, 0) = IC(∇V,∞).

Part 6. Let H: [0, 1] × ΩC,r → Rn; (λ, y) → H(λ, y) := y − S((1 − λ)T +
λT )PC(y). We have

sup
(λ,y)∈[0,1]×ΩC,r

‖y −H(λ, y)‖ = sup
(λ,y)∈[0,1]×ΩC,r

‖S((1− λ)T + λT )PC(y)‖ <∞.

We claim that H(λ, y) 6= 0, for all y ∈ ∂ΩC,r, λ ∈ [0, 1]. By contradiction,
suppose that there exists y ∈ Rn, ‖PC(y)‖ = r and λ ∈ [0, 1] such that y =
S((1 − λ)T + λT )PC(y). Then y ∈ C and PC(y) = y. Let us now set h :=
(1− λ)T + λT . We have

y = S(h)y

and thus

(3.6) V (y) = V (S(h)y).

On the other hand,

(3.7)
〈
d

dt
S(t)y, v − S(t)y

〉
≥ 〈−F (S(t)y) + f(t), v − S(t)y〉,

for all v ∈ C, a.e. t ∈ [0, T ]. We know that y ∈ C, S(t)y ∈ C, for all t ∈ [0, T ]
and by assumption (b), ∇V (S(t)y) ∈ C. Recalling that C is a cone, we may set
v = S(t)y +∇V (S(t)y) ∈ C in (3.7) to get

(3.8)
〈
d

dt
S(t)y,∇V (S(t)y)

〉
≥ 〈−F (S(t)y) + f(t),∇V (S(t)y)〉,

for all v ∈ C, a.e. t ∈ [0, T ].
Part 1 of this proof ensures that ‖S(t)y‖ ≥ R, for all t ∈ [0, T ]. The map

s → 〈−F (S(s)y) + f(s),∇V (S(s)y)〉 is continuous and (by assumption (b))
strictly positive on [0, T ]. Thus, using (3.8), we obtain

V (S(h)y)− V (y) =
∫ h
0

d

ds
V (S(s)y) ds =

∫ h
0

〈
d

ds
S(s)y,∇V (S(s)y)

〉
≥
∫ h
0
〈−F (S(t)y) + f(t),∇V (S(t)y)〉 > 0.

This is a contradiction to (3.6).
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Part 7. Thanks to Part 6 of this proof, we may use the invariance by homo-
topy property of the topological degree and see that

deg(idRn − S(T )PC ,ΩC,r, 0) = deg(H(0, · ),ΩC,r, 0)
= deg(H(1, · ),ΩC,r, 0) = deg(idRn − S(T )PC ,ΩC,r, 0).

In conclusion, for all r ≥ r0, we have

deg(idRn − S(T )PC ,ΩC,r, 0) = deg(idRn − S(T )PC ,ΩC,r, 0)

and
deg(idRn − S(T )PC ,ΩC,r, 0) = IC(∇V,∞).

Thus
deg(idRn − S(T )PC ,ΩC,r, 0) = IC(∇V,∞). �

Remark 3.3. In the case of differential equations, i.e. if C = Rn, then one
can easily prove the result by using the homotopy h(λ, y) := (y − S(λT )y)/λ.
Such homotopy cannot be used in the general case for our problem in (1.2) since
limλ→0+(x− S(λT )x)/λ ∈ −T (f(0) − F (x) − ∂ΨC(x)) and the continuity of
h(0, x) is not ensured.

Remark 3.4. If there exists V ∈ C1(Rn;R) satisfying conditions (a) and
(b) in Theorem 3.2 then necessarily F (x) − f(t) /∈ C∗, for all x ∈ C, ‖x‖ ≥ R,
t ∈ [0, T ].

Corollary 3.5. Let C ⊂ Rn be a nonempty closed convex cone. Suppose
that f : [0,∞) → Rn satisfies f ∈ C0([0,∞);Rn), df/dt ∈ L1loc(0,∞;Rn). Let
F :Rn → Rn be a mapping satisfying the conditions of Theorem 2.1. Suppose in
addition that F has linear growth. Suppose that there exists V ∈ C1(Rn,R) and
R > 0 such that

(a) 〈F (x)− f(t),∇V (x)〉 < 0, for all x ∈ C, ‖x‖ ≥ R, t ∈ [0, T ];
(b) ∇V (x) ∈ C, for all x ∈ C, ‖x‖ ≥ R;
(c) IC(∇V,∞) 6= 0.

Then there exists at least one u ∈ C0([0, T ];Rn) such that du/dt ∈ L∞(0, T ;Rn),

u(t) ∈ C, t ∈ [0, T ];
u(0) = u(T );〈

du

dt
(t) + F (u(t))− f(t), v − u(t)

〉
≥ 0, for all v ∈ C, a.e. t ∈ [0, T ].

Proof. Theorem 3.2 together with assumption (c) ensure that for r > 0
great enough, we have deg(idRn − S(T ) · ,ΩC,r, 0) 6= 0 and the existence of a
fixed point for the Poincaré operator follows from the existence property of the
topological degree. �



Periodic Solutions for Evolution Complementarity Systems 267

References

[1] H. Amann, Fixed point equations and nonlinear eignevalue problems in ordered Banach

spaces, SIAM Review 18 (1976), 620–709.
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