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THE 8π-PROBLEM
FOR RADIALLY SYMMETRIC SOLUTIONS

OF A CHEMOTAXIS MODEL IN A DISC

Piotr Biler — Grzegorz Karch

Philippe Laurençot — Tadeusz Nadzieja

Abstract. We study the properties and the large time asymptotics of

radially symmetric solutions of a chemotaxis system in a disc of R2 when
the parameter is either critical and equal to 8π or subcritical.

1. Introduction

We investigate properties and large time asymptotics of radially symmetric
solutions to a parabolic-elliptic model of chemotaxis (the simplified Keller–Segel
system [15]) in a disc of R2. Denoting by u = u(x, t) ≥ 0 the density of microor-
ganisms (e.g. amoebae), and by ϕ = ϕ(x, t) the concentration of a chemoattrac-
tant secreted by themselves, the simplified Keller–Segel system we study herein
reads

ut =∇ · (∇u+ u∇ϕ),(1.1)

ϕ =E2 ∗ u,(1.2)

with the space variable x and the time variable t ranging in B(0, R) ≡ {x ∈
R2 : |x| < R}, R > 0, and (0,∞), respectively. Here E2(z) = (1/(2π)) log |z|
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denotes the fundamental solution of the Laplacian in R2, so that (1.2) leads to
the Poisson equation ∆ϕ = u. The system is supplemented with the no flux
boundary condition

(1.3)
∂u

∂ν
+ u
∂ϕ

∂ν
= 0,

where ν denotes the outward unit normal vector field to the boundary of B(0, R),
and with an initial condition

(1.4) u(x, 0) = u0(x).

Let us first recall some known results about the system (1.1)–(1.4) considered
more generally for x in a bounded domain Ω ⊂ R2. First, the nonnegativity of the
initial datum u0 is preserved by the system. Moreover, owing to the boundary
condition (1.3), the total mass of u(t) equal to the L1-norm |u(t)|1 is conserved,
that is, |u(t)|1 = M̂ ≡ |u0|1 for t ≥ 0. It is actually well known that the
properties of the solution (u, ϕ) to (1.1)–(1.4) strongly depend on the parameter
M̂ . Indeed, if M̂ > 8π, then solutions of (1.1)–(1.4) blow up in a finite time
T = T (u0), that is,

lim
t↗T
‖u(t)‖H1 = lim

t↗T
|u(t)|p = lim

t↗T

∫
Ω
u(x, t) log u(x, t) dx =∞

for each p > 1, cf. [14], [13], [8], [2], [10], [19]. This phenomenon can be
accompanied by a concentration of mass at the origin if Ω = B(0, R). On the
other hand, global solutions do exist if M̂ ∈ [0, 8π) [8], cf. [11] for the case of the
whole plane R2.
In this paper, we discuss the radially symmetric densities u(x, t) = u(|x|, t)

in the disc B(0, R) ⊂ R2 (we refer to the companion paper [7] for a discussion on
similar issues in the whole plane R2, cf. [17] for an alternative approach mainly
for the supercritical case in the plane). In this situation the nonlocal parabolic-
elliptic problem (1.1)–(1.2) can be reformulated as a single nonlinear parabolic
equation with singular coefficients for the cumulative mass distribution Q(r, t)
defined by

Q(r, t) ≡
∫
B(0,r)

u(x, t) dx, r ∈ [0, R],

which reads

(1.5) Qt = Qrr −
1
r
Qr +

1
2πr
QQr,

supplemented with the boundary conditions

(1.6) Q(0, t) = 0, Q(R, t) = M̂.

Here M̂ still denotes the total mass |u0|1 of the initial datum u0. Such a for-
mulation is also available in any space dimension, see [6, (6)–(7)]. The initial
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condition Q(r, 0) = Q0(r), r ∈ [0, R], is a positive nondecreasing function and
satisfies the obvious compatibility conditions Q0(0) = 0 and Q0(R) = M̂ .

It is worth mentioning at this point that the formulation (1.5) allows us to
consider some initial data for the density u which could be either unbounded or
singular (such as measures). Such initial data would correspond to unbounded
derivatives Q0,r or even discontinuous Q0. Other approaches allowing to consider
measures as initial data have been developed in [18], [10], [3]–[5]. We also remark
that our problem is equivalent to the problem of self-gravitating particles studied
in, e.g. [21], [8], [6], [2], [3], [10].

The scaling properties of (1.5) permit us to assume, without loss of generality,
that R = 1. Indeed, together with Q(r, t), the function Q(Rr,R2t) is a solution of
(1.5)–(1.6) with the same M̂ . Observe that (R times) larger domain implies (R2

times) slower evolution. Next, the problem (1.5)–(1.6) can be transformed, using
a new independent variable s = r2 (cf. [6, (12)]). Performing the transformation
M(r2, t) ≡ Q(r, t), we end up with

(1.7) Mt = 4sMss +
1
π
MMs

together with the boundary

(1.8) M(0, t) = 0, M(1, t) = M̂

and initial conditions

(1.9) M(s, 0) =M0(s).

The remainder of the paper is devoted to the study of the properties of the
solutions M to (1.7)–(1.9) when M̂ ∈ [0, 8π]. We first recall that, in the radially
symmetric case with M̂ > 8π, the occurrence of the blow up phenomenon for
u results in a concentration of mass at the origin. In terms of M , this means
that M(0+, t) becomes positive after some time T and the boundary condition
at s = 0 is no longer fulfilled. In other words, the degeneracy of the elliptic
operator 4sMss at s = 0 does not allow the diffusion to compensate the growth
induced by the convection term MMs/π. On the one hand, we will show that,
in the critical case M̂ = 8π, the blow up in the disc does not take place in finite
time but occurs in infinite time, i.e. the whole mass concentrates at s = 0 in
infinite time. We also obtain some temporal decay estimates on |M(t)− 8π|1 for
large times. Let us point out here that the situation is completely different in the
case of the whole plane, see [17], [7]. On the other hand, if M̂ ∈ [0, 8π), we show
the exponential convergence of M(t) towards the unique stationary solution to
(1.7)–(1.8).
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The plan of the paper is the following: Section 2 deals with the existence
and regularity of solutions issues, while Section 3 is devoted to uniqueness and
stability questions. Large time behaviour results are established in Section 4.

Notation. In the sequel | · |p will denote the Lp(Ω) norms, ‖ · ‖Hk will be
used for the Sobolev space Hk(Ω) norm, and ‖ · ‖Cε — for the Hölder space Cε

norm. The letter C will denote inessential constants which may vary from line
to line.

2. Existence and regularity of solutions

In this section we study the problem (1.7)–(1.9) on (0, 1)× (0,∞) rewritten
as

Mt = 4sMss +
1
π
MMs, (s, t) ∈ (0, 1)× (0,∞),(2.1)

M(0, t) = M̂ −M(1, t) = 0, t ∈ (0,∞),(2.2)

M(s, 0) =M0(s), s ∈ (0, 1),(2.3)

where the initial condition

(2.4) M0 ∈ C([0, 1]), M0(0) = 0 and M0(1) = M̂,

is a nondecreasing function.

We first establish the well-posedness of (2.1)–(2.3) whenever M̂ ∈ [0, 8π].

Theorem 2.1. Consider M̂ ∈ [0, 8π] and a function M0 satisfying (2.4).
There exists a unique function M ∈ C([0,∞);L2(0, 1)) ∩ C2,1s,t ((0, 1) × (0,∞))
such that

0 ≤M(s, t) ≤ M̂, Ms(s, t) ≥ 0 for (s, t) ∈ (0, 1)× (0,∞),(2.5)

M∗(t) ≡ inf
s∈(0,1)

M(s, t) = 0 a.e. in (0,∞),(2.6)

and

Mt = 4sMss +
1
π
MMs, (s, t) ∈ (0, 1)× (0,∞),(2.7)

M(1, t) = M̂, t ∈ (0,∞),(2.8)

M(s, 0) =M0(s), s ∈ (0, 1).(2.9)

The proof of the existence part of Theorem 2.1 relies on the analysis of a
regularized problem for M̂ ∈ [0, 8π]. More precisely, for ε ∈ (0, 1), we consider
M0,ε ∈ H1(0, 1) satisfying (2.4) and |M0,ε −M0|∞ ≤ ε. We then denote by Mε
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the unique classical solution to the uniformly parabolic problem

Mε,t = 4(s+ ε)Mε,ss +
1
π
MεMε,s, (s, t) ∈ (0, 1)× (0,∞),(2.10)

Mε(0, t) = M̂ −Mε(1, t) = 0, t ∈ (0,∞),(2.11)

Mε(s, 0) =M0,ε(s), s ∈ (0, 1),(2.12)

see, e.g. [1, Sections 14, 15]. In particular,

Mε ∈ C([0, 1]× [0,∞)) ∩ C2,1s,t ((0, 1)× (0,∞)),

and we infer from (2.4), (2.10), (2.11) and the comparison principle that

(2.13) 0 ≤Mε(s, t) ≤ M̂ and Mε,s(s, t) ≥ 0 for (s, t) ∈ [0, 1]× (0,∞).

We next observe that, if δ ∈ (0, 1), we have s + ε ≥ δ for s ∈ [δ, 1], which,
together with (2.10) and (2.13), allows us to apply classical parabolic regularity
results [16, Theorem VI.10.1] to deduce that

(2.14) ‖Mε‖C2+α,1+αs,t ([δ,1]×[τ,T ]) ≤ C(α, δ, τ, T )

for each T > 0, τ ∈ (0, T ) and α ∈ (0, 1), where C(α, δ, τ, T ) is a positive constant
depending on α, δ, τ and T but independent of ε ∈ (0, 1).
Next we turn to the behaviour of Mε for small s where the equation (2.1) is

no longer uniformly parabolic and establish the following key estimate.

Lemma 2.2. For each T ∈ (0,∞), there is a constant C1(T ) > 0 such that

(2.15) 0 ≤
∫ T
0

∫ 1
0

Mε(s, t)(8π −Mε(s, t))
s+ ε

ds dt ≤ C1(T )

for every ε ∈ (0, 1).

Proof. We multiply (2.10) by − log (s+ ε) and integrate over (0, 1) to ob-
tain

− d
dt

∫ 1
0
Mε log (s+ ε) ds = −4(1 + ε) log (1 + ε)Mε,s(1, t)

+ 4ε log (ε)Mε,s(0, t) + 4
∫ 1
0
(1 + log (s+ ε))Mε,s ds

− log (1 + ε)
2π

Mε(1, t)2 +
1
2π

∫ 1
0

M2ε
s+ ε

ds

≤ 4(1 + log (1 + ε))Mε(1, t)

− 4
∫ 1
0

Mε
s+ ε

ds+
1
2π

∫ 1
0

M2ε
s+ ε

ds

≤ 32π(1 + log (1 + ε))− 1
2π

∫ 1
0

Mε(8π −Mε)
s+ ε

ds.
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Observing that the integrand in the last term of the right-hand side of the above
inequality is nonnegative by (2.13), we integrate over (0, T ), and use (2.4) and
(2.13) to conclude that (2.15) holds true with some C1(T ) = CT + C(M̂). �

As a final step towards the proof of Theorem 2.1, we study the behaviour of
Mε for small times.

Lemma 2.3. For each T > 0, there is a constant C2(T ) > 0 such that

(2.16)
∫ T
0

∫ 1
0
(s+ ε)|Mε,s(s, t)|2 ds dt+

∫ T
0
‖Mε,t(t)‖2H−1 dt ≤ C2(T )

for every ε ∈ (0, 1).

Proof. For ε ∈ (0, 1) and (s, t) ∈ (0, 1)×(0,∞), we putNε(s, t) ≡Mε(s, t)−
M̂ s and notice that Nε(0, t) = Nε(1, t) = 0 by (2.2). We multiply (2.1) by Nε
and integrate over (0, 1). Using (2.13) we obtain

1
2
d

dt
|Nε|22 = − 4

∫ 1
0
(s+ ε)|Nε,s|2 ds

− 4
∫ 1
0
Nε Nε,s ds−

M̂3

6π
+
M̂

2π

∫ 1
0
M2ε ds

≤ − 4
∫ 1
0
(s+ ε)|Nε,s|2 ds+ C,

whence the first assertion in (2.16).
Consider next any ϕ ∈ H10 (0, 1). We multiply (2.1) by ϕ, integrate over

(0, 1), and infer from (2.13) that∣∣∣∣ ∫ 1
0
Mε,tϕds

∣∣∣∣ ≤ 4∣∣∣∣ ∫ 1
0
(s+ ε)ϕs Mε,s ds

∣∣∣∣+ 4∣∣∣∣ ∫ 1
0
ϕMε,s ds

∣∣∣∣+ 12π
∣∣∣∣ ∫ 1
0
M2εϕs ds

∣∣∣∣
≤C|ϕs|2

{
1 +
(∫ 1
0
(s+ ε)2|Mε,s|2 ds

)1/2}
+ 4
∣∣∣∣ ∫ 1
0
ϕs Mε ds

∣∣∣∣
≤C|ϕs|2

{
1 +
(∫ 1
0
(s+ ε)|Mε,s|2 ds

)1/2}
.

The second assertion in (2.16) then follows from the previous inequality and the
first assertion in (2.16). �

Proof of Theorem 2.1. By (2.14) and the Arzelà–Ascoli theorem, there
exists a subsequence of (Mε) (not relabeled) and a function

M ∈ C2,1s,t ((0, 1]× (0,∞))

such that

(2.17) Mε →M in C([δ, 1]× [τ, T ]) ∩ C2,1s,t ([δ, 1]× [τ, T ])
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for each δ ∈ (0, 1), T > 0 and τ ∈ (0, T ). It readily follows from (2.10), (2.11)
and (2.17) that

Mt =4sMss +
1
π
M Ms, (s, t) ∈ (0, 1)× (0,∞),

M(1, t) = M̂, t ∈ (0,∞),

and that

(2.18) 0 ≤M(s, t) ≤ M̂ and Ms(s, t) ≥ 0 for (s, t) ∈ (0, 1]× (0,∞).

We are thus left with identifying the initial datum and the boundary condi-
tion at s = 0.
First, let T > 0. Lemma 2.3 and the Arzelà-Ascoli theorem warrant that

we may assume that (Mε) converges towards M in C([0, T ];H−1(0, 1)), and thus
M( · , 0) = M0 in H−1(0, 1) by (2.12). In addition, Lemma 2.3 and a weak
compactness argument ensure that Ms ∈ L2(0, T ;H1(δ, 1)) for each δ ∈ (0, 1).
Consequently, M ∈ C([0, T ];L2(δ, 1)) and M( · , 0) = M0 in L2(δ, 1) for each
δ ∈ (0, 1). But, recalling (2.13), we actually conclude thatM ∈ C([0, T ];L2(0, 1))
with M( · , 0) =M0.
We next infer from (2.15), (2.17), (2.18) and the Fatou lemma that for each

T > 0

(2.19) 0 ≤
∫ T
0

∫ 1
0

M(s, t)(8π −M(s, t))
s

ds dt ≤ C1(T ).

Now, for t > 0, we put

(2.20) M∗(t) ≡ lim
s→0
M(s, t) = inf

s∈(0,1)
M(s, t) ∈ [0, M̂ ],

which is well defined by (2.18) and claim that

(2.21) M∗(t) ∈ {0, 8π} for a.e. t ∈ (0,∞).

Indeed, fix T > 0. If t ∈ (0, T ) is such that M∗(t) < 8π, there is s(t) ∈ (0, 1)
such that M(s, t) ≤ (M∗(t) + 8π)/2 for s ∈ (0, s(t)]. We then infer from (2.19)
that, for each ϑ ∈ (0, 1),

C1(T ) ≥
∫ T
0
1{M∗<8π}(t)

∫ s(t)
ϑs(t)

M(s, t) (8π −M(s, t))
s

ds dt

≥
∫ T
0
1{M∗<8π}(t)

∫ s(t)
ϑs(t)

M∗(t) (8π −M∗(t))
2s

ds dt

≥ | log (ϑ)|
2

∫ T
0
1{M∗<8π}(t) M

∗(t)(8π −M∗(t)) dt.

Letting ϑ → 0 yields 1{M∗<8π}(t)M∗(t)(8π − M∗(t)) = 0 for a.e. t ∈ (0, T ),
whence the claim (2.21).



140 P. Biler — G. Karch — Ph. Laurençot — T. Nadzieja

Now, either M̂ < 8π and (2.21) readily implies that M∗(t) = 0 for a.e.
t ∈ (0,∞). Or M̂ = 8π and, if t0 > 0 is such that M∗(t0) = 8π, it follows
from the monotonicity of M and (2.18) that M(s, t0) = 8π for s ∈ (0, 1). Then,
Ms(1, t0) = 0, which contradicts the strong maximum principle. Therefore,
M∗(t) = 0 for a.e. t ∈ (0,∞) and the proof of the existence statement in Theo-
rem 2.1 is complete. As for the uniqueness, it is a straightforward consequence
of Theorem 3.1 below. �

Note that, moreover, we have the following continuity property for M .

Proposition 2.4. Let t0 ∈ (0,∞) be such that M∗(t0) = 0. Then M is
continuous at (0, t0).

Proof. Consider any δ ∈ (0, 1). Since M∗(t0) = 0, there is s0 ∈ (0, 1) such
that M(s0, t0) ≤ δ/2. As s0 > 0, the continuity of t 7−→ M(s0, t) ensures that
there is α ∈ (0, 1) such that M(s0, t) ≤ δ for t ∈ (t0 − α, t0 + α). Then, if
s ∈ (0, s0) and t ∈ (t0 − α, t0 + α), the monotonicity of M with respect to the
variable s implies that M(s, t) ≤M(s0, t) ≤ δ, whence the claimed continuity.�

Note that the property M∗(t) = 0 a.e. is intimately connected with the
behaviour of the derivative Ms(s, t) near s = 0. Namely, the solution in Theo-
rem 2.1 satisfies for each T > 0 the property

(2.22) lim
s→0

∫ T
0
s Ms(s, t) dt = 0.

Proof of (2.22). Once we have the existence of the solution, we may
multiply (2.5) by − log σ and integrate over σ ∈ (s, 1) with s ∈ (0, 1/2). We have

d

dt

∫ 1
s

| log σ|M(σ, t) dσ = − d
dt

∫ 1
s

log σ M(σ, t) dσ

= − [4σ log σMs(σ, t)]1s + 4
∫ 1
s

(1 + log σ)Ms(σ, t) dσ

− 1
2π
[log σ M2(σ, t)]1s +

∫ 1
s

M2(σ, t)
2πσ

dσ

=4s log sMs(s, t) + 4[(1 + log σ)M(σ, t)]1s

− 4
∫ 1
s

M(σ, t)
σ
dσ +

log s
2π
M2(s, t) +

∫ 1
s

M2(σ, t)
2πσ

dσ

≤ − 4s| log s| Ms(s, t) + 4 M̂ − 4(1 + log s)M(s, t)

+
log s
2π
M2(s, t) +

∫ 1
s

M(σ, t)(M(σ, t)− 8π)
2πσ

dσ

≤ − 4s| log s|Ms(s, t) + 4M̂ +
log s
2π
M(s, t) (M(s, t)− 8π),
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where we have used the fact that 0 ≤ M(s, t) ≤ M̂ ≤ 8π. Integrating with
respect to time over (0, T ) and using the nonnegativity and monotonicity of M ,
we obtain

0 ≤ 4s| log s|
∫ T
0
Ms(s, t) dt

≤
∫ 1
s

| log σ| M(σ, 0) dσ + 4TM̂ + | log s|
2π

∫ T
0
M(s, t)(8π −M(s, t)) dt

≤ (1 + 4T )M̂ + | log s|
2π

∫ T
0
M(s, t)(8π −M(s, t)) dt,

whence

0 ≤ 4s
∫ T
0
Ms(s, t) dt ≤

(1 + 4 T )M̂
| log s|

+
∫ T
0

M(s, t)(8π −M(s, t))
2π

dt.

Since M(s, t) → 0 as s → 0 for almost every t ∈ (0, T ) and satisfies (2.18), the
Lebesgue dominated convergence theorem implies that the second term of the
right-hand side of the above inequality converges to zero as s→ 0. We may then
let s→ 0 in the previous inequality and conclude that

lim
s→0

∫ T
0
s Ms(s, t) dt = 0,

whence (2.22). �

Finally, there is a class of initial data for which M∗(t) = 0 holds true for
every t ∈ (0,∞).

Proposition 2.5. If there is δ ∈ (0, 1) such that M0(s) ≤ (8πs)/δ for
s ∈ (0, 1), then M∗(t) = 0 for each t ≥ 0.

Observe that if the derivative ofM0 is finite: M0,s(0) <∞, then the condition
on M0 is satisfied with a suitable δ > 0.

Proof. We denote by M̃ the solution to (2.1)–(2.3) with the initial datum
M̃(s, 0) = 8πs, s ∈ (0, 1). Observing that

4sM̃ss(s, 0) +
1
π
M̃(s, 0)M̃s(s, 0) ≥ 0

for s ∈ (0, 1), the maximum principle applied to M̃t ensures that M̃t(s, t) ≥ 0 for
(s, t) ∈ (0, 1) × (0,∞). Therefore, if t2 > 0 and t1 ∈ (0, t2), we have M̃(s, t2) ≥
M̃(s, t1) for s ∈ (0, 1) and thus

t 7→
∫ 1
0
M̃(s, t) ds is a nondecreasing function of time.

Since M̃∗(t) = 0 for a.e. t ∈ (0,∞), we conclude that M̃∗(t) = 0 for each
t ∈ (0,∞).
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Now, owing to the homogeneity properties of (2.1), the function M̃δ given by
M̃δ(s, t) = M̃(s/δ, t/δ) is the solution to (2.1)–(2.3) in (0, δ)× (0,∞) (instead of
(0, 1)×(0,∞)) with the initial datum s 7−→ 8πs/δ andM is clearly a subsolution
to (2.1)–(2.3) in (0, δ)× (0,∞). Since M0 ≤ M̃δ( · , 0), the comparison principle
entails that M(s, t) ≤ M̃δ(s, t) for (s, t) ∈ (0, δ)× (0,∞). Therefore

M∗(t) ≤ inf
s∈(0,δ)

M̃δ(s, t) = M̃∗(t/δ) = 0

for every t ≥ 0, and the proof of Proposition 2.5 is complete. �

Remark 2.6. Using the methods above, similar existence and regularity
results can be obtained for the problem considered in [10, Theorem 1(i)]. Namely,
the equation (2.1) with the boundary conditionsM(0, t) = m∗ ∈ (0, 4π), M(1, t)
= M̂ ≤ 8π −m∗, and suitable initial conditions, has global solutions satisfying
similar properties as those in Theorem 2.1.

3. Uniqueness and stability of solutions

Here we investigate the uniqueness of solutions to (2.1)–(2.3) in (0, 1) ×
(0,∞) for arbitrary initial data satisfying (2.4). Since (2.1) is a convection-
diffusion equation, we anticipate that it may enjoy some contraction property
with respect to some L1-norm. We actually show the following L1-stability
property for solutions.

Theorem 3.1. If Mj, j = 1, 2, are two solutions to (2.1)–(2.3) (as in
Theorem 2.1) with initial data M1(0) and M2(0) satisfying (2.4) with the same
M̂ , M̂ ∈ [0, 8π], then t 7→ |%(M1(t) −M2(t))|1 is a nonincreasing function of
time for each nonnegative, nonincreasing and concave weight % ∈ W 2,∞(0, 1).
Furthermore, if M̂ ∈ [0, 8π),

(3.1) |M1(t)−M2(t)|1 ≤ 2|M1(0)−M2(0)|1e−(4−(
cM/2π))t.

Proof. Consider the difference N =M1 −M2 which satisfies the equation

(3.2) Nt =
∂

∂s

(
4sNs +

1
2π
N(M1 +M2 − 8π)

)
with N(0, t) = N(1, t) = 0 for a.e. t ∈ (0,∞). For δ ∈ (0, 1) and r ∈ R, we put

Φδ(r) ≡


1
δ

(
|r| − δ

2

)2
+
if |r| ∈ [0, δ],

|r| − 3
4
δ if |r| ∈ (δ,∞),

which is a convex approximation of r 7→ |r|. Indeed, r 7→ Φδ(r) and r 7→ rΦ′δ(r)
converge uniformly to the absolute value |r| over R, and r 7→ rΦ′′δ (r) is bounded
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and converges a.e. to zero as δ → 0. We multiply (3.2) by %Φ′δ(N) and integrate
over (0, 1) to obtain

d

dt

∫ 1
0
%(s)Φδ(N) ds

=4s%(s)NsΦ′δ(N)|10 +
1
2π
%(s)Φ′δ(N)N(M1 +M2 − 8π)|10

−
∫ 1
0
4s%(s)Φ′′δ (N)N

2
s ds−

∫ 1
0
4s%′(s)Φ′δ(N)Ns ds

− 1
2π

∫ 1
0
%(s)Φ′′δ (N)NsN(M1 +M2 − 8π) ds

− 1
2π

∫ 1
0
%′(s)Φ′δ(N)N(M1 +M2 − 8π) ds

≤ − 1
2π

∫ 1
0
%(s)Φ′′δ (N)NNs(M1 +M2 − 8π) ds

− 1
2π

∫ 1
0
%′(s)Φ′δ(N)N(M1 +M2 − 16π) ds

+ 4
∫ 1
0
s%′′(s)Φδ(N) ds+ 4

∫ 1
0
%′(s)(Φδ(N)−NΦ′δ(N)) ds.

On the one hand, Ns belongs to L∞(0,∞;L1(0, 1)),M1,M2 and N are bounded,
and r 7→ r Φ′′δ (r) is bounded and converges a.e. towards zero as δ → 0. The
Lebesgue dominated convergence theorem ensures that the first term of the right-
hand side of the above inequality converges to zero as δ → 0. On the other hand,
both r 7→ Φδ(r) and r 7→ rΦ′δ(r) converge uniformly towards r 7→ |r| on R.
Thanks to the boundedness of M1, M2 and N , we can pass to the limit as δ → 0
in the other terms of the above inequality, and end up with

(3.3)
d

dt

∫ 1
0
%(s)|N | ds

≤ − 1
2π

∫ 1
0
%′(s)|N |(M1 +M2 − 16π) ds+ 4

∫ 1
0
s%′′(s)|N | ds.

Since M1+M2 ≤ 2M̂ ≤ 16π and %′ and %′′ are both nonpositive, the right-hand
side of (3.3)) is nonpositive, from which the first assertion of Theorem 3.1 follows.
We now turn to the decay rate (3.1) and assume that M̂ ∈ [0, 8π). We take

%(s) = 2− s in (3.3). Since M1 +M2 ≤ 2M̂ < 16π, we infer from (3.3) that

d

dt

∫ 1
0
(2− s)|N | ds ≤ 1

2π

∫ 1
0
|N |(2M̂ − 16π) ds ≤ M̂ − 8π

2π

∫ 1
0
(2− s)|N | ds ,

whence ∫ 1
0
(2− s)|N(t)| ds ≤

∫ 1
0
(2− s)|N(0)| ds e−(4−(cM/2π))t ,
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from which (3.1) readily follows. �

The exponential decay rate does not hold true for M̂ = 8π but the following
weaker assertion is available.

Proposition 3.2. Let M be the solution to (2.1)–(2.3) (as in Theorem 2.1)
with the initial datum M(0) satisfying (2.4) with M̂ = 8π. Then, for t ≥ 1, we
have

(3.4) |M(t)− 8π|1 ≤ 8π/t.

Proof. For (s, t) ∈ (0, 1) × (0,∞), we put N(s, t) = M − 8π, %(s) = 2 − s
and proceed as in the proof of Theorem 3.1. We notice that N solves

(3.5) Nt =
∂

∂s

(
4sNs +

1
2π
NM

)
with N(0, t) = −8π and N(1, t) = 0 for a.e. t ∈ (0,∞). Keeping the notations
from the proof of Theorem 3.1, we multiply (3.5) by %Φ′δ(N) and integrate over
(0, 1) to obtain

d

dt

∫ 1
0
%(s)Φδ(N) ds = 4s%(s)NsΦ′δ(N)|10 +

1
2π
%(s)Φ′δ(N)NM |10

−
∫ 1
0
4s%(s)Φ′′δ (N)N

2
s ds−

∫ 1
0
4s%′(s)Φ′δ(N)Ns ds

− 1
2π

∫ 1
0
%(s)Φ′′δ (N)NsNM ds−

1
2π

∫ 1
0
%′(s)Φ′δ(N)NM ds.

Since Φ′δ vanishes on a neighbourhood of 0 and M
∗(t) = 0, the boundary terms

vanish and

d

dt

∫ 1
0
%(s)Φδ(N) ds ≤ −

1
2π

∫ 1
0
%(s)Φ′′δ (N)NNsM ds

− 1
2π

∫ 1
0
%′(s)Φ′δ(N)NM ds+ 4

∫ 1
0
s%′′(s)Φδ(N) ds+ 4

∫ 1
0
%′(s)Φδ(N) ds.

We then proceed as in the proof of (3.3) to pass to the limit as δ → 0 and end
up with

d

dt

∫ 1
0
%(s)|N | ds ≤ 1

2π

∫ 1
0
%′(s)(8π −M)|N | ds,

i.e.
d

dt

∫ 1
0
(2− s)|N | ds ≤ − 1

2π

∫ 1
0
|N |2 ds.

We infer from the Cauchy–Schwarz inequality that

d

dt

∫ 1
0
(2− s)|N | ds ≤ − 1

2π

(∫ 1
0
|N | ds

)2
≤ − 1
8π

(∫ 1
0
(2− s)|N | ds

)2
,
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whence

|M(t)− 8π|1 ≤
∫ 1
0
(2− s)|N(t)| ds ≤ 8π

t+ 4π|8π −M0|−11
.

The assertion of Proposition 3.2 then readily follows. �

4. Asymptotics

The large time behaviour of solutions to (2.1)–(2.3) when M̂ ∈ [0, 8π] is
a straightforward consequence of Theorem 3.1 and Proposition 3.2.
We first consider the case M̂ < 8π and recall that (2.1)–(2.2) has a single

stationary solution

(4.1) Mb(s) = 8π
s

s+ b
, s ∈ (0, 1), with b = 8π

M̂
− 1 > 0.

Let M be the solution to (2.1)–(2.3) (as in Theorem 2.1) with the initial datum
M0 satisfying (2.4) with M̂ ∈ [0, 8π). Owing to Theorem 3.1, we have

|M(t)−Mb|1 ≤ 2|M0 −Mb|1 e−(4−(
cM/2π))t,

and M decays towards Mb exponentially fast in L1. The convergence holds also
in Lp(0, 1) for each p ∈ (1,∞) as a consequence of the boundedness of M and
Mb, and the Hölder inequality. As a further remark, let us recall that there are
initial data M0 satisfying (2.4) with M̂ ∈ [0, 8π) such that the solution M to
(2.1)–(2.3) (as in Theorem 2.1 enjoys the additional property supt≥0 |Ms|∞ <∞
[9], [12]. In that particular case, it follows from the exponential decay in L1(0, 1)
and the bound in W 1,∞(0, 1) by interpolation inequalities that |M(t) −Mb|∞
decays exponentially to zero as t→∞.
If M̂ = 8π, we infer from Proposition 3.2 that M(t) → 8π when t → ∞

in L1(0, 1). An alternative proof of this fact can be given by a comparison
argument. Indeed, if we take the initial conditions M0,δ = min(M0, 8π − δ),
δ ∈ (0, 1), in (2.4), then the corresponding solutions of (2.1)–(2.3) converge to
Mbδ with bδ → 0 as δ → 0. A diagonal argument then shows that M(s, t) →
8π a.e. on (0, 1) as t → ∞. However, the approach used in Proposition 3.2
provides an additional algebraic decay rate of the distance in L1(0, 1) between
M(t) and 8π. Seemingly, this decay estimate is far from being optimal since
formal computations performed in [20, Section 4.2] seem to indicate a temporal
decay as e−Ct

1/2
for large times.

For a restricted class of initial data, the pointwise convergence of M(t) to 8π
can be proved with the help of suitable subsolutions. In fact,

(4.2) M(s, t) = 8π
1 + a/(t+ T )
s+ a/(t+ T )

s
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is a subsolution of the equation (1.7) for each a ≥ 1/8 and T > 0. Thus, if
M0,s(0) > 8π (so that M0(s) > 8πs in a neighbourhood of 0), then one can find
a and T such thatM is a subsolution of the initial-boundary value problem (1.7)–
(1.9). Since limt→∞M(s, t) = 8π for each s > 0, we obtain asymptotics of M :
limt→∞M(s, t) = 8π for each s > 0. Observe, however, that |M(t)−8π|1 behaves
as log (t+ T )/(t+ T ) for large times and provides a weaker decay estimate.
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References

[1] H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value

problems, Function Spaces, Differential Operators and Nonlinear Analysis (H. Triebel,
H. J. Schmeisser, eds.), vol. 133, Teubner–Texte Math., Teubner, Stuttgart, 1993, pp. 9–

126.

[2] P. Biler, Existence and nonexistence of solutions for a model of gravitational interac-
tion of particles III, Colloq. Math. 68 (1995), 229–239.

[3] , The Cauchy problem and self-similar solutions for a nonlinear parabolic equa-
tion, Studia Math. 114 (1995), 181–205.

[4] , Local and global solvability of parabolic systems modelling chemotaxis, Adv.

Math. Sci. Appl. 8 (1998), 715–743.

[5] P. Biler, M. Cannone, I. A. Guerra and G. Karch, Global regular and singular

solutions for a model of gravitating particles, Math. Ann. 330 (2004), 693–708.

[6] P. Biler, D. Hilhorst and T. Nadzieja, Existence and nonexistence of solutions for

a model of gravitational interaction of particles II, Colloq. Math. 67 (1994), 297–308.
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