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A SHARKOVSKII-TYPE THEOREM
FOR MINIMALLY FORCED INTERVAL MAPS

Roberta Fabbri — Tobias Jäger

Russel Johnson — Gerhard Keller

Abstract. We state and prove a version of Sharkovskĭı’s theorem for

forced interval maps in which the forcing flow is minimal (Birkhoff re-
current). This setup includes quasiperiodically forced interval maps as a

special case. We find that it is natural to substitute the concept of “fixed
point” with that of “core strip.” Core strips are frequently of almost auto-

morphic type.

1. Introduction

A well-known theorem of Sharkovskĭı regarding continuous maps f : I → I

of an interval into itself states that, if f admits a periodic point x of minimal
period p, then f admits a periodic point of minimal period q if q lies below p in
the Sharkovskĭı ordering of the natural numbers:

3 > 5 > . . . > 2n+ 1 > . . . > 6 > 10 > . . . > 2 · (2n+ 1)

> . . . > 2m · 3 > 2m · 5 > . . . > 2m · (2n+ 1) > . . . > 2n > . . . > 2 > 1.
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Key words and phrases. Sharkovskĭı theorem, almost automorphic set, core.
R. Fabbri and R. Johnson were supported by grants from the G.N.A.M.P.A. and the

M.I.U.R.
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In particular, if f admits a periodic point of period 3, then it admits periodic
points of all integer periods.

This theorem can be proved by a simple-looking but subtle analysis of the
f -images of those subintervals of I whose endpoints are elements of the orbit of
the periodic point x; see ([7], [14], [4]). Our purpose in this note is to extend
the Sharkovskĭı theorem to the case of certain mappings of skew-product form
defined on a product space Θ × I. Precisely, let Θ be a compact metric space,
and let R: Θ → Θ be a minimal homeomorphism with the property that every
power Rl (l = 1, 2, . . . ) is minimal. Let I ⊂ R be a compact interval, and let
T : Θ×I → Θ×I be a continuous map with the property that, if π: Θ×I → Θ is
the projection onto the first factor, then π(T (θ, x)) = R(θ) for all θ ∈ Θ, x ∈ I.
We propose to generalize the statement and the proof of the Sharkovskĭı theorem
in the context of such mappings T .

We were motivated to study this question by recent work on “forced” interval
maps ([9]–[11], [13]). Many such maps are of the form we consider here. Numeri-
cal studies of such maps indicate that they often give rise to so-called non-chaotic
strange attractors. It has recently been emphasized that these attractors appear
to have a topological structure of almost automorphic type ([9], [10]). While we
do not address directly the properties of attractors for maps of the form T , we do
find a strong connection between phenomena of Sharkovskĭı type and the pres-
ence of almost automorphic subsets of Θ × I which have periodicity properties
with respect to T .

The connection arises as follows. To realize a generalization of Sharkovskĭı’s
theorem, it is necessary to determine an appropriate analogue of the concept of
“periodic point” for a skew-product mapping of the form T . It turns out that the
notion of measurable section φ: Θ → Θ× I of the trivial fiber bundle Θ× I → Θ
does not provide a useful analogue of the concept of periodic point. We will see,
however, that a version of Sharkovskĭı’s theorem for skew-product maps T can
be stated and proved in which periodic points are substituted by “periodic core
strips”. Here a strip is a certain type of compact subset A ⊂ Θ× I which covers
Θ in the sense that π(A) = Θ, and a core strip satisfies further conditions to be
discussed in Section 3. A particular type of core strip is defined by a continuous
section φ if one sets A = Imφ; however, in developing our theory, we will need
to consider core strips A which are not necessarily images of continuous sections.
Indeed we will be led in a natural way to core strips of almost automorphic
type. It should be noted that, even when each Tθ: I → I:x → π2T (θ, x) is
strictly monotone, the map T may admit an invariant set which is of almost
automorphic type but is not a section (here π2: Θ× I → I is the projection onto
the second factor). For concrete examples illustrating this phenomenon see [17]
and [12].
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We were also motivated by the work of Andres and his collaborators ([1]–[3])
on Sharkovskĭı-type results for differential inclusions. These authors work with
points which are periodic in the sense of the theory of differential inclusions.

The paper is organized as follows. In Section 2 we give all definitions neces-
sary to state abridged versions of the main results. In Section 3 we first introduce
cores and strips and prove some of their basic properties, and at the end of that
section we give an example which discourages the consideration of measurable
sections in the context of a Sharkovskĭı-type theory for skew-product maps T .
Section 4 contains a detailed analysis of strips and their semicontinuous bounding
sections. Finally, in Section 5 we state and prove our Sharkovskĭı-type theorem.

Acknowledgements. We would like to thank H. Fujisaki for his very careful
reading of this manuscript.

2. The main concepts and results

In this preliminary section, we let Θ and I be as above, and set Ω = Θ× I.
(In Section 3 we will sometimes impose weaker conditions on Θ and Ω.) Let R
be a homomorphism of Θ onto itself, let π: Ω → Θ be the natural projection,
and let T : Ω → Ω be a continuous mapping such that π(T (θ, x)) = R(θ) for all
(θ, x) ∈ Ω.

As usual, we say that a subset G ⊆ Θ is residual if it contains the intersection
of a countable family of open dense subsets of Θ. Let G be the family of all such
subsets of Θ. We introduce the following notions:

Cores. A set M ⊆ Ω is a core, if

M =
⋂

G∈G
M ∩ π−1(G).

(Solid) strips, pinched sets.

(a) A closed subset A ⊆ Ω is called a strip, if {θ ∈ Θ : Aθ is an interval} is
residual. Here Aθ is the fiber {x ∈ I | (θ, x) ∈ Ω}.

(b) A strip A is solid, if each fiber of A is an interval and if δ(A) := inf{|Aθ| :
θ ∈ Θ} > 0.

(c) A closed subset A ⊆ Ω is called pinched, if PA := {θ ∈ Θ : cardAθ = 1}
is dense in Θ. (In this case, PA is residual; that is, each pinched set is
a strip.)

(Strongly) T -invariant, minimal. A subset M ⊆ Ω is said to be T -
invariant if T (M) ⊆ M . It is said to be strongly T -invariant, if T (M) = M .
The set M ⊆ Ω is said to be minimal if it is nonempty, T -invariant, closed, and
does not strictly contain any other non-empty, T -invariant, closed subset of Ω.
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Almost automorphic. Let A be a core strip; say that A is T -almost au-
tomorphic if it is pinched and minimal with respect to T . (Our usage of this
notion is a bit more general than that in the literature, where it is also required
that the base homeomorphism R: Θ → Θ is almost periodic. See [15] for general
properties of almost automorphic dynamical systems.)

The following theorem, which is a corollary to Theorem 4.11, provides a
structure dichotomy for strongly invariant core strips.

Theorem 2.1 (Structure dichotomy for core strips). Let R be a minimal
homeomorphism of Θ, and let A be a strongly invariant core strip. Then A is
either almost automorphic, or it is solid.

To formulate our main result we need two more more definitions.

Ordered strips. Say that two strips A and B satisfy A < B if there is a
residual set G such that for all θ ∈ G, x ∈ Aθ, and y ∈ Bθ there holds x < y.
We say that the strips are ordered, if either A < B or B < A.

Periodic strips. Let p > 1 be an integer. A strip A ⊆ Ω is called p-periodic
if T p(A) = A and if the image sets A, T (A), . . . , T p−1(A) are pairwise disjoint
and pairwise ordered.

Now we can state our main result, which is a corollary to Theorem 5.6.

Theorem 2.2 (Sharkovskĭı for strips). Suppose that T admits a p-periodic
strip B and that p > q in the Sharkovskĭı ordering. Then T admits a q-periodic
core strip C. This strip C is either T q-almost automorphic or solid. In the latter
case it is “bounded” above and below by a pair of T 2q-almost automorphic strips.

The difficulty of the proof is to replace the intermediate value theorem – the
only piece of real analysis in the proof of the classical Sharkovskĭı theorem, used
there to guarantee the existence of fixed points – by a (constructive) procedure
that provides, under suitable assumptions, invariant core strips. The combina-
torial part of the proof is – modulo certain details – essentially the same as for
the classical theorem.

3. Preliminaries on strips and cores

In this section we will collect some basic definitions and results, and give an
example which indicates that it is pointless to try to formulate an analogue of
the Sharkovskĭı theorem in which the concept of periodic point is substituted by
that of measurable section of the bundle Θ× I → Θ.

We begin with some rather general considerations. Let Θ and Ω be complete
separable metric spaces, and let π: Ω → Θ be a continuous surjective map. If
M ⊆ Ω, let Mθ := M ∩π−1{θ} the fiber of M over θ. Say that a subset G ⊆ Θ is
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residual if it contains the intersection of a countable family of open dense subsets
of Θ. Let G be the family of all such subsets of Θ.

Definition 3.1 (Core). If M ⊆ Ω, the core of M (relative to π) is defined
to be

MC =
⋂

G∈G
M ∩ π−1(G).

If M = MC , then we say that M is a core.

Lemma 3.2. For M ⊆ Ω, define GM := {G ∈ G : MC = M ∩ π−1(G)}.

(a) For each M ⊆ Ω there is a G ∈ G such that MC = M ∩ π−1(G). That
is, GM is not empty.

(b) If G ∈ GM and G0 ∈ G, then G ∩G0 ∈ GM . In particular GM ∩ GN 6= ∅
if M and N are subsets of Ω.

(c) If π(M) = Θ and if M is compact, then π(MC) = Θ.
(d) If M ⊆ Ω is closed and G ∈ GM , then M ∩ π−1(G) = MC ∩ π−1(G).
(e) Let M,N ⊆ Ω. If there exists G ∈ G such that M ∩ π−1(G) = N ∩

π−1(G), then MC = NC .
(f) If M,N ⊆ Ω are closed, then MC = NC if and only if there exists

G ∈ G such that M ∩ π−1(G) = N ∩ π−1(G).

Proof. (a) Let (Uj)j∈N be a basis for the topology of Ω. If G ∈ G, let
JG := {j ∈ N : Uj ∩ M ∩ π−1(G) = ∅}. Let J :=

⋃
G∈G JG. Then MC =⋂

j∈J(Ω \ Uj). Use the axiom of choice to choose, for each j ∈ J , a set Gj ∈ G
such that j ∈ JGj

. Then J =
⋃∞

j=1 JGj
, and for the residual set G :=

⋂
j∈J Gj

one has M ∩ π−1(G) ⊆
⋂

j∈J M ∩ π−1(Gj) ⊆
⋂

j∈J(Ω \ Uj) = MC . Hence
MC = M ∩ π−1(G).

(b) The proof is quite simple.
(c) Let G ∈ GM and θ ∈ Θ. Choose sequences θn ∈ G and xn ∈M such that

θn → θ and π(xn) = θn. Let x be a limit point of (xn). Then x ∈M ∩ π−1(G) =
MC and π(x) = θ.

(d) Observe that M ∩ π−1(G) ⊆ M ∩ π−1(G) ⊂ M = M , from which it
follows that M ∩ π−1(G) = M ∩ π−1(G) ∩ π−1(G) = MC ∩ π−1(G).

(e) Set G1 = G ∩ GM ∩ GN , GM ∈ GM , GN ∈ GN . Then G1 ∈ GM ∩ GN so
that MC = M ∩ π−1(G1) = N ∩ π−1(G1) = NC .

(f) Let GM ∈ GM , GN ∈ GN , and set G0 := GM ∩ GN . Suppose first
that MC = NC . Then using (d), one has M ∩ π−1(G0) = MC ∩ π−1(G0) =
NC ∩ π−1(G0) = N ∩ π−1(G0). The reverse implication follows from (e). �

Remark 3.3. Let A be a compact subset of Ω such that π(A) = Θ. Let d
be a metric on Ω, and let 2Ω be the family of nonempty compact subsets Y ⊆ Ω,
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endowed with the Hausdorff metric ρ:

ρ(Y,Z) = max{max
y∈Y

min
z∈Z

d(y, z),max
z∈Z

min
y∈Y

d(y, z)}.

It is well-known that the set G ⊆ Θ consisting of those points θ′ such that the
map θ 7→ Aθ: Θ → 2Ω is ρ-continuous at θ′ is residual in Θ.1 It follows that A is
a core if and only if A ∩ π−1(G) = A.

Suppose now that T : Ω → Ω is a continuous map, and that R: Θ → Θ is
a homeomorphism such that π ◦ T = R ◦ π. Since π is surjective we have

π ◦ T (π−1(U)) = RU for each U ⊆ Θ.

It follows that T (π−1(U)) ⊆ π−1(RU) and that

(3.1) TM ∩ π−1(RU) = T (M ∩ π−1(U)) whenever U ⊆ Θ and M ⊆ Ω.

While the “⊇” inclusion is trivial, we show the other direction: For y ∈ T (M)∩
π−1(R(U)) there exists x ∈ M such that y = T (x) and π(y) ∈ R(U). Hence
R(π(x)) = π(T (x)) = π(y) ∈ R(U) so that π(x) ∈ U and thus x ∈M ∩ π−1(U).

Lemma 3.4. Let M and N be subsets of Ω.

(a) If T (M) ⊆ N , then T (MC) ⊆ NC .
(b) If T (M) ⊇ N and if MC is compact, then T (MC) ⊇ NC .
(c) If MC is compact, then (T (M))C = T (MC).

Proof. (a) Let GM ∈ GM , GN ∈ GN , and set G = GM ∩ R−1(GN ).
Then G ∈ GM , R(G) ∈ GN , and T (M ∩ π−1(G)) ⊆ T (M) ∩ T (π−1(G)) ⊆
N ∩ π−1(R(G)) ⊆ NC . Therefore T (MC) = T (M ∩ π−1(G)) ⊆ NC = NC .

(b) In a similar way, N ∩ π−1(R(G)) ⊆ T (M)∩ π−1(R(G)) ⊆ T (MC). Since
MC is compact this implies that NC = N ∩ π−1(RG) ⊆ T (MC) = T (MC).

(c) This follows from (a) and (b) when applied to N = TM . �

Corollary 3.5. If M is a compact core, then T (M) is a compact core.

Proof. It follows from Lemma 3.4(c) that (T (M))C = T (MC) = T (M). �

Definition 3.6 ((Strongly) T -invariant, minimal). A subset M ⊆ Ω is said
to be T -invariant if T (M) ⊆M . It is said to be strongly T -invariant, if T (M) =
M . The set M ⊆ Ω is said to be minimal if it is nonempty, T -invariant, closed,
and does not strictly contain any other non-empty, T -invariant, closed subset
of Ω.

It is easy to see that, if M ⊆ Ω is compact and minimal, then it is strongly in-
variant: if this were not so, then

⋂∞
n=1 T

n(M) would be a nonempty, T -invariant,
compact subset of Ω which is strictly contained in M .

1See e.g. [6, Theorem 7.10] and note that the same proof given there works for upper

semicontinuous functions as well as for lower semicontinuous ones.



A Sharkovskĭı-Type Theorem 169

For later use we note some simple consequences of Lemmas 3.2 and 3.4.

Corollary 3.7. If A is a minimal compact T -invariant set, then either
AC = A or AC = ∅.

Proof. This follows from Lemma 3.4(c). �

Corollary 3.8. If M and N are cores and if T (M ∩ π−1(G)) = N ∩
π−1(R(G)) for some G ∈ G, then T (M) ⊆ N . If MC is also compact, then
T (M) = N .

Proof. Observe first that T (M∩π−1(G)) = T (M)∩π−1(R(G)) by equation
(3.1). Without loss of generality we can assume that R(G) ∈ GT (M) ∩ GN ,
see Lemma 3.2. Hence the assumption implies that T (M)C = NC . Therefore
T (M) = T (MC) ⊆ (T (M))C = NC = N by Lemma 3.4, and if M = MC is
compact the same lemma also yields the converse inclusion. �

General assumption. From now on, let I ⊆ R be a compact interval, and
set Ω = Θ× I. Let π: Θ× I → Θ be the natural projection.

Definitions 3.9 ((Solid) strip, pinched set).

(a) A closed subset A ⊆ Ω is called a strip, if {θ ∈ Θ : Aθ is an interval} is
residual. (In particular there exists G ∈ GA such that Aθ is an interval
for all θ ∈ G.) We denote

G̃A := {G ∈ GA : Aθ is an interval for all θ ∈ G}.

(Observe that π(A) = Θ if A is a strip.)
(b) A strip A is called solid, if each fiber of the strip is an interval and if

δ(A) := inf{|Aθ| : θ ∈ Θ} > 0.

(c) A closed subset A ⊆ Ω is called pinched, if PA := {θ ∈ Θ : cardAθ = 1}
is dense in Θ. (In this case, PA ∈ G; that is, each pinched set is a strip.)

Lemma 3.10. Let A ⊆ Ω be a strip.

(a) AC is a strip.
(b) A minimal T -invariant strip is a core.

Proof. (a) Since AC ⊆ A we have A∩π−1(G) ⊆ AC∩π−1(G) ⊆ A∩π−1(G)
for G ∈ G̃A and therefore AC is a strip. (b) The statement follows from part (a)
and Lemma 3.4. �

General assumption. From now on we assume that Θ is a compact metric
space, so that Ω = Θ× I is compact as well.
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Lemma 3.11. Every T -invariant strip contains at least one minimal T -
invariant core strip. Each minimal T -invariant core strip is strongly invariant.

Proof. We prove only the first statement; the second statement follows
from a remark made earlier.

Let A be a T -invariant strip, and let {Ai : i ∈ I} be a nested family of
T -invariant strips contained in A – thus if i, j ∈ I then either Ai ⊆ Aj or
Aj ⊆ Ai. Let A∞ =

⋂
i∈I Ai. Then A∞ is compact, non-empty, T -invariant,

and π(A∞) = Θ. There is a countable directed subset i1 < . . . < in < . . . of I
such that A∞ =

⋂∞
n=1Ain , and it follows that A∞ is a strip.

By Zorn’s lemma there exists a minimal T -invariant strip B ⊆ A. By
Lemma 3.10(b) B is a core. This completes the proof. �

Let us now recall that a homeomorphism R: Θ → Θ of a compact metric
space Θ is called minimal if there is no proper nonempty closed subset Θ1 ⊂ Θ
such that R(Θ1) ⊆ Θ1. It is easy to see that R is minimal if and only if, for each
θ ∈ Θ, the forward orbit of {Rk(θ) : k = 1, 2, . . . } is dense in Θ. This condition
is equivalent to the seemingly less restrictive one that, for each θ ∈ Θ, the full
orbit {Rk(θ) : k = 0,±1,±2, . . . } is dense in Θ. A homeomorphism R: Θ → Θ
is called totally minimal if each power Rl: Θ → Θ is minimal (l = 1, 2, . . . ).

As an example of a totally minimal homeomorphism, let Θ = R/Z be the
circle, and let R: Θ → Θ be the rotation θ 7→ Θ+γ where γ is an irrational num-
ber. More generally, let Θ = Rm/Zm be the m-torus with angular coordinates
(θ1, . . . , θm) = θ, and let R: Θ → Θ, θ 7→ θ + γ where (γ1, . . . , γm) is a vector of
real numbers with the property that the components γ1, . . . , γm are independent
over the rational field Q.

Lemma 3.12. Suppose that R is minimal. Then the intersection of two T -
invariant strips is either empty or is a T -invariant strip.

Proof. If A and B are two T -invariant strips such that A ∩ B 6= ∅, then
π(A ∩ B) is compact and non-empty. It is also R-invariant because A and
B are T -invariant. Since R is a minimal homeomorphism of Θ we must have
π(A∩B) = Θ. It is now clear that, for a generic set of θ ∈ Θ, the fiber (A∩B)θ

is a compact non-empty subinterval of I. We conclude that, if A ∩ B 6= ∅, then
A ∩B is a T -invariant strip. �

Definition 3.13 (Ordered strips). Say that two strips A and B satisfy
A < B if there is a set G ∈ G such that for all θ ∈ G, x ∈ Aθ, and y ∈ Bθ there
holds x < y. We say that the strips are ordered, if either A < B or B < A.

While two disjoint core strips need not be ordered even if Θ is connected and
locally connected, we do have the following
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Lemma 3.14. Suppose that Θ is connected, and that A and B are disjoint
full strips, i.e. Aθ and Bθ are intervals for all θ ∈ Θ. Then either A > B or
B > A.

Proof. Fix θ ∈ Θ. Then either Aθ > Bθ in the sense that x > y whenever
x ∈ Aθ and y ∈ Bθ, or Bθ > Aθ in the same sense. Let V = {θ ∈ Θ : Aθ > Bθ}
so that Θ\V = {θ ∈ Θ : Bθ > Aθ}. By the compactness of A and B, both these
sets are open in Θ. So one of them is empty. �

Definition 3.15 (Periodic strip). Let p > 1 be an integer. A strip A ⊆ Ω
is called p-periodic if T p(A) = A and if the image sets A, T (A), . . . , T p−1(A) are
pairwise disjoint and pairwise ordered.

If A happens to be a full strip and if Θ is connected, then A is p-periodic
if and only if T p(A) = A and the image sets A, T (A), . . . , T p−1(A) are pairwise
disjoint (Lemma 3.14).

In Section 5 we will state and prove a generalization of the Sharkovskĭı the-
orem for skew-product maps, where the concept of periodic point is replaced
by that of periodic strip. We will see that periodic strips of almost automor-
phic type (i.e. those which are pinched cores) arise naturally in this context. We
finish this section by giving an example which clearly indicates that another pos-
sible analogue of “periodic point” – namely, the concept of measurable section
φ : Θ → Θ× I – cannot be fruitfully used to generalize the Sharkovskĭı theorem
for such maps.

Example 3.16. Let Θ = T1 = R/Z be the circle, and let R(θ) = θ+γ where
γ ∈ R is irrational. Let I = [0, 1], and let Tθ : I → I be the full tent map for
each θ ∈ Θ. Thus

Tθ(x) = f(x) = 1− |2x− 1| (0 ≤ x ≤ 1).

The map T : Θ × I → Θ × I, (θ, x) 7→ (θ + γ, Tθ(x)) = (θ + γ, f(x)) satisfies all
the conditions imposed so far.

Write I0 = [0, 1/2], I1 = [1/2, 1]. To each infinite sequence a0, a1, . . . of
binary digits in {0, 1} we associate the unique point x = x(a0, a1, . . . ) ∈ [0, 1]
such that fn(x) ∈ Ian

for all n = 0, 1, . . . . Let B ⊂ [0, 1] be any measurable set,
and set

φB(θ) = x(1B(θ),1B(R(θ)),1B(R2(θ)), . . . )

where 1B is the indicator function of B. Then φB defines a measurable section
of the trivial bundle Θ×I π−→ Θ which is invariant in the sense that f(φB(θ)) =
φB(R(θ)) for all θ ∈ Θ.

Next let B,C ⊂ [0, 1] be measurable sets whose symmetric difference has
positive Lebesgue measure: |B4C| > 0. Then for Lebesgue-a.e. θ the two
sequences (1B(θ),1B(R(θ)),1B(R2(θ)), . . . ) and (1C(θ),1C(Rθ),1C(R2θ), . . . )
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differ in infinitely many places. Fix such a θ; if it were true that x := φB(θ) =
φC(θ), then the point fn(x) would be in I0 ∩ I1 = {1/2} for infinitely many n,
which is impossible because fk(1/2) = 0 for k ≥ 1. Thus φB(θ) 6= φC(θ) a.e.
and we must conclude that our map T admits uncountably many measurable
invariant sections.

The fact that this phenomenon occurs motivates our search for another ana-
logue of the concept of fixed point and for the concept of periodic point.

4. Results on strips and their bounding sections

In this section, we state and prove basic results concerning strips and core
strips. Throughout the section, Θ denotes a compact metric space; R : Θ → Θ
is a homeomorphism of Θ onto itself; Ω = Θ× I; and T : Ω → Ω is a continuous
map satisfying π ◦ T = R ◦ π where π: Ω → Θ is the natural projection.

Definition 4.1 (Sections). Let φ: Θ → Θ × I be a section (which a priori
need not even be measurable). If π2: Θ × I → I is the projection onto I, then
π2 ◦ φ is a map from Θ to I which we also denote by φ and which we also call a
section.

(a) Let A ⊆ Ω be compact with π(A) = Θ. The upper and lower bounding
sections of A are given by υA(θ) = supAθ and λA(θ) = inf Aθ, respec-
tively. Observe that υA is upper semicontinuous (u.s.c.) and λA lower
semicontinuous (l.s.c.).

(b) For a section φ: Θ → Θ× I, let Φ = {(θ, φ(θ)) : θ ∈ Θ} be the image of
φ, let Φ be the topological closure of Φ in Θ×I, and let φ+, resp. φ− be
the upper and lower bounding sections of Φ. Instead of (φ+)− we write
φ+− etc. If λ and υ are sections we write Λ and Υ for their images, etc.
If φ is a section we set (Tφ)(R(θ)) = Tθ(φ(θ)).

(c) If φ, ψ are sections then φ ≤ ψ has the natural meaning φ(θ) ≤ ψ(θ) for
all θ ∈ Θ.

If φ, ψ are sections, then we will use the notation {φ ≤ ψ} for the set {θ ∈
Θ : φ(θ) ≤ ψ(θ)} and analogously for other order relations.

Remark 4.2. If φ ≤ υ are two sections and if υ is u.s.c., then φ+ ≤ υ. An
analogous remark is true for l.s.c. sections. We will use this remark repeatedly
without further comment.

Lemma 4.3. Let φ be a semicontinuous section.

(a) Φ is pinched.
(b) ΦC = Φ

C
.

(c) If φ is u.s.c. then φ− = λΦ = λΦC ; in particular, {φ = φ−} = PΦ ∈ G
(is residual in Θ).
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(d) If φ is l.s.c. then φ+ = υΦ = υΦC ; in particular, {φ = φ+} = PΦ ∈ G.

Proof. (a) Suppose that φ is u.s.c. We need only show that PΦ is dense in Θ.
For this let θ ∈ Θ. There is a sequence θn → θ such that limn→∞ φ(θn) = φ−(θ).
Since φ− is l.s.c., we also have lim infn→∞ φ−(θn) ≥ φ−(θ). This shows that
limn→∞ |φ(θn)− φ−(θn)| = 0. Since θ is an arbitrary point of Θ, we have that,
for each ε > 0, the open set {φ−φ− < ε} is dense in Θ. So PΦ =

⋂∞
k=1{φ−φ− <

k−1} is residual in Θ. The proof is similar if φ is l.s.c.
(b) We now know that PΦ is residual, so there exists G ⊆ PΦ, G ∈ GΦ.

Since (θ, φ(θ)) ∈ Φθ we have Φθ = {(θ, φ(θ))} = Φθ for all θ ∈ G. Hence
Φ ∩ π−1(G) = Φ ∩ π−1(G). By (the proof of) Lemma 3.2(f) we have ΦC = Φ

C
.

(c) We have λΦ ≤ λΦC because ΦC = Φ
C ⊆ Φ. On the other hand, let

θ ∈ Θ and G ⊆ PΦ, G ∈ GΦ. Since φ is u.s.c. there is a sequence θn ∈ G such
that θn → θ and λΦ(θ) = limn→∞ φ(θn). Therefore (θ, λΦ(θ)) ∈ ΦC so that
λΦ ≥ λΦC .

(d) The proof is analogous to the previous one. �

Lemma 4.4.

(a) If A is a pinched subset of Ω, then ΛC
A = ΥC

A = AC .
(b) If A is a pinched core, then ΛA = ΥA = A. In particular, λ+

A = υA and
υ−A = λA.

Proof. (a) Since A is pinched we have (ΛA)θ = (ΥA)θ = Aθ for a residual
set of θ. Hence Λ

C

A = Υ
C

A = AC by Lemma 3.2(f). The statement now follows
from Lemma 4.3(b).

(b) If A is a pinched core, then A = AC = ΛC
A ⊆ ΛA ⊆ A. Arguing similarly

one proves ΥA = A. �

Lemma 4.5. Let φ be a semicontinuous section.

(a) If φ is u.s.c. then φ−+ = υΦC .
(b) If φ is l.s.c. then φ+− = λΦC .

Proof. By Lemma 4.3(c) we have φ−+ = λ+
ΦC . By Lemma 4.4(b) applied

to the pinched core ΦC we have λ+
ΦC = υΦC . This proves part (a); part (b) is

proved in a similar way. �

Lemma 4.6. Let A be a strip.

(a) υ−+
A = υAC = υΥC

A
.

(b) λ+−
A = λAC = λΛC

A
.

Proof. It suffices to prove part (a). Let G ∈ GA. In view of Lemma 4.3(c)
also G′ := G ∩ {υA = υ−A} ∈ GA. For each (θ, x) ∈ AC , there is a sequence
(θn, xn) ∈ A ∩ π−1(G′) such that (θn, xn) → (θ, x). As xn ≤ υA(θn) = υ−A(θn)
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we see that x = limn→∞ xn ≤ υ−+
A (θ). But this holds for each (θ, x) ∈ AC ,

whence υAC ≤ υ−+
A . The identity υ−+

A = υΥC
A

follows from Lemma 4.5(a), and
υΥC

A
≤ υAC follows from the observation that ΥC

A ⊆ AC . �

We have the following immediate corollary to this lemma:

Corollary 4.7. Let A be a core strip, and let υA resp. λA be the upper
resp. lower bounding section of A.

(a) υA is also the upper bounding section of ΥC
A.

(b) λA is also the lower bounding section of ΛC
A.

Combining Lemmas 4.3, 4.5, and Corollary 4.7 we obtain

Proposition 4.8. Let A be a core strip. Then υ−+
A = υA and λ+−

A = λA.
In particular one has

(a) Aθ = [λ+
A(θ), υ−A(θ)] for θ in a residual G ⊆ Θ.

(b) ΛA = ΛC
A and ΥA = ΥC

A.

Lemma 4.9. Let A be a core strip, and denote Ã = {(θ, x) : λA(θ) ≤ x ≤
υA(θ)} the corresponding “filled in” strip. Then A = ÃC .

Proof. Aθ is an interval for θ in a residual G ⊆ Θ. Hence Aθ = [λA(θ),
υA(θ)] = Ãθ for θ ∈ G. Now Lemma 3.2(f) implies A = AC = ÃC . �

Before stating the next result we introduce some terminology.

Definition 4.10 (Almost automorphic). Let A be a core strip; say that A
is T -almost automorphic if it is pinched and minimal with respect to T . (Our
usage of this notion is a bit more general than that in the literature, where it
is also required that the base homeomorphism R: Θ → Θ is almost periodic.
See [15] for general properties of almost automorphic dynamical systems.)

Theorem 4.11. Let R be a minimal homeomorphism of Θ, and let A be
a strongly invariant core strip. Define ΘA := {θ ∈ Θ : λ+

A(θ) < υ−A(θ)}. Then
ΘA is open and either

(a) ΘA is empty and A is almost automorphic, or
(b) ΘA is dense in Θ and A is solid.

Proof. The set ΘA is open because υ−A − λ+
A is lower semicontinuous.

Suppose first that ΘA 6= Θ. Then υ−A ≤ λ+
A on some open set U ⊆ Θ\ΘA. By

Proposition 4.8, υA = υ−+
A ≤ λ+

A ≤ υA on U . Using Proposition 4.8 again, one
has that Aθ = [υA(θ), υ−A(θ)] consists of exactly one point for a residual subset
of θ ∈ U . In particular, the pinching set PA is non-empty. Since A is strongly
invariant, we have R(PA) ⊆ PA and so, by minimality of R, PA is dense in Θ;
that is A is pinched. Since ΘA is open and PA ∩ΘA = ∅ we must have ΘA = ∅.
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We must still show that A is minimal invariant if ΘA = ∅. Let B ⊆ A

be a closed invariant set. Then λA ≤ υB ≤ υA, hence λ+
A ≤ υB ≤ υA. By

Lemma 4.4(a) one has υA = λ+
A, hence υB = υA. Therefore A = ΥA = ΥB ⊆ B,

where we have used Lemma 4.4(b).
Let us now consider the case where ΘA = Θ. We claim that Aθ = [λA(θ),

υA(θ)] for each θ ∈ ΘA. To see this, let G ∈ G̃A. Let θ ∈ ΘA, and choose
a sequence (θn, xn) in A ∩ π−1(G) which converges to (θ, υA(θ)). Then the
interval [λA(θn), xn] ⊆ Aθn for each n, and lim supn→∞ λA(θn) ≤ λ+

A(θ). Hence
[λ+

A(θ), υA(θ)] ⊆ Aθ. In a similar way one proves that [λA(θ), υ−A(θ)] ⊆ Aθ.
Since θ ∈ ΘA, these two intervals overlap, and therefore [λA(θ), υA(θ)] ⊆ Aθ.
The reverse inclusion is trivial, so indeed Aθ = [λA(θ), υA(θ)] if θ ∈ ΘA. This
shows that the set Θ′ of those θ for which Aθ is an interval contains the open set
ΘA. As A is strongly invariant under T , thet set Θ′ is forward invariant under R.
Now the minimality of R−1 implies that Θ′ = Θ, i.e. all Aθ are intervals.

Observe now that ΘA =
⋃∞

k=1 Θk
A where Θk

A := {θ ∈ ΘA : λ+
A(θ) < υ−A(θ)−

1/k} are open sets. As ΘA 6= ∅, there is some k such that Θk
A 6= ∅. Because R

is minimal (and Θ compact), there is some N > 0 such that Θ =
⋃N

n=0R
−nΘk

A,
and in view of the uniform continuity of T there is for each n some ε = ε(k, n) > 0
such that R−nΘk

A ⊆ {θ ∈ Θ : λA(θ) < υA(θ) − ε}. It follows that A is a solid
strip. �

Remark 4.12. With reference to the preceeding proof: if A is a solid strip
then ΘA = Θ. If ΛC

A and ΥC
A are T -invariant, we can say more: Suppose that

ΛC
A∩ΥC

A, which is also a T -invariant set, is nonempty. Then π(ΛC
A∩ΥC

A) is a non-
empty, closed R-invariant set. Therefore π(ΛC

A ∩ΥC
A) = Θ by minimality of the

homeomorphism R. In view of Lemma 4.3(c) and (d) this implies λ+
A(θ) ≥ υ−A(θ)

for all θ ∈ Θ which contradicts the assumption ΘA = Θ.
It follows that, if ΛC

A and ΥC
A both are invariant, then λ+

A < υ−A everywhere.
Thus the sets ΛC

A and ΥC
A have strictly positive distance; i.e. they are “separated

by an open tube.” By Proposition 4.8 the same is true for ΛA and ΥA.
In the next theorem we will see that the same conclusion holds also if ΛC

A

and ΥC
A are not invariant provided T satisfies some nondegeneracy condition.

Theorem 4.13. Suppose that in the situation of Theorem 4.11 the map T

has the following additional property: For each θ ∈ Θ and each nondegenerate
interval J ⊆ I the interval TθJ is nondegenerate. Suppose that A is a solid
invariant core strip. Then the sets ΛC

A and ΥC
A have strictly positive distance

and are separated by an open “tube.” By Proposition 4.8 the same holds for ΛA

and ΥA.

Proof. Since A is solid the open set ΘA is nonempty. Hence we find a
compact set K ⊆ Θ with nonempty interior and a nondegenerate interval [a, b] ⊆
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I such that W := K × [a, b] ⊆ A. Let N > 0 be such that
⋃N

n=0R
n(intK) = Θ.

In view of the skew product structure of T each Tn(W ) is a compact set with
π(Tn(W )) = RnK and fibers which are nondegenerate intervals. We will show
below that λT n(W ) and υT n(W ) are continuous functions from Rn(K) to I. Given
this fact it follows that each θ ∈ Θ has a neighbourhood on which the sets ΛC

A

and ΥC
A have strictly positive distance, and the compactness of Θ concludes the

argument.
It remains to show that λT n(W ) and υT n(W ) are continuous functions from

Rn(K) to I. We carry out the argument for λT n(W ), that for υT n(W ) is the
same. Since Tn(W ) is compact, λT n(W ) is l.s.c. Now we fix Rn(θ) ∈ Rn(K) and
consider any sequence θj ∈ K that converges to θ. Let (θ, x) ∈W be a preimage
of (Rn(θ), λT n(W )(Rn(θ))) under Tn. Because of the product structure of W all
(θj , x) are in W so that

(Rn(θ), λT n(W )(Rn(θ))) =Tn(θ, x) = lim
j→∞

Tn(θj , x)

= (Rn(θ), lim
j→∞

π2(Tn(θj , x))).

It follows that

lim sup
j→∞

λT n(W )(Rn(θj)) ≤ λT n(W )(Rn(θ)).

Since (Rn(θj))j is an arbitrary sequence converging to Rn(θ), this proves the
upper semicontinuity of λT n(W ). �

Now we turn to the construction of invariant core strips in a situation which
will arise in Section 5.

Definition 4.14 (Strips mapped over another). Let A0 and A be core
strips.

(a) We say that T maps A upward over A0 if

(4.1) T (λA) ≤ λ+
A0

and T (υA) ≥ υ−A0
.

In this case we write A u.o.−→ A0, or A u.o.−→ A0 with respect to (w.r.t.) T .
(b) We say that T maps A downward over A0 if

(4.2) T (λA) ≥ υ−A0
and T (υA) ≤ λ+

A0
.

In this case we write A d.o.−→ A0, or A d.o.−→ A0 with respect to (w.r.t.) T .
(c) We say that T maps A over A0 if either A u.o.−→ A0 or A d.o.−→ A0 w.r.t. T .

In this case we write A o.−→ A0 or A o.−→ A0 w.r.t. T .



A Sharkovskĭı-Type Theorem 177

Lemma 4.15. Let A and A0 be core strips. If A o.−→ A0, then T (A) ⊇ A0.
Thus the terminology “mapped over” is justified.)

Proof. Let G ∈ G̃A. For all θ ∈ G the set Tθ(Aθ) is an interval. Also, by
Proposition 4.8, (A0)θ = [λ+

A0
(θ), υ−A0

(θ)] for a residual subset of G0 ⊆ R(G).
Hence A0 ∩ π−1(G0) ⊆ T (A), and so A0 = AC

0 ⊆ T (A) = T (A). �

In Definition 3.13 we introduced a strict order relation A < B between strips.
With the notation introduced in this section we can characterize that relation
as follows:

A < B if {υA < λB} ∈ G.
This motivates the following definition.

Definition 4.16 (Weakly ordered strips). Let A and B be strips. Then
A ≺ B if {υ−A ≤ λ+

B} ∈ G, and A � B if {λ+
A ≥ υ−B} ∈ G. We say that A and B

are weakly ordered.

(If A is a core strip, then A ≺ A if and only if A is pinched.)
A closer look at this definition reveals that the weak order (in contrast to

the strict order) is not really a notion depending on the residual subsets of Θ.

Lemma 4.17. If A ≺ B, then υ−A(θ) ≤ λ+
B(θ) for all θ ∈ Θ.

Proof. The set {υ−A ≤ λ+
B} is closed because of the semicontinuity proper-

ties of υ−A and λ+
B . At the same time it is residual because A ≺ B. Hence it is

all of Θ. �

Obviously, A < B implies A ≺ B. Here is a kind of reverse implication:

Lemma 4.18. If A and B are disjoint strips and if A ≺ B, then A < B.

Proof. As A and B are disjoint strips, the set {υA < λB} ∪ {υB < λA} is
residual. By Lemma 4.17, {υB < λA} ⊆ {λ+

B < υ−A} = ∅. Hence {υA < λB} is
residual, i.e. A < B. �

We now formulate and prove a key result.

Lemma 4.19. Suppose that the core strip A is mapped upwards (downwards)
over the core strip A0.

(a) There is a core strip A1 ⊆ A with T (A1) = A0 which is mapped up-
wards (downwards) over A0. If A1

u.o.−→ A0, then T (ΛC
A1

) ⊆ ΛC
A0

and

T (ΥC
A1

) ⊆ ΥC
A0

; if, on the other hand, A1
d.o.−→ A0, then T (ΛC

A1
) ⊆ ΥC

A0

and T (ΥC
A1

) ⊆ ΛC
A0

.
(b) Let A∗0 be another core strip and suppose that A is mapped upwards

(downwards) over A0 and A∗0. If A0 and A∗0 are weakly ordered, then
the core strips A1 and A∗1 which are mapped over A0 and A∗0 as in (a) can
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be chosen weakly ordered as well. More precisely, if A0 ≺ A∗0 (A∗0 ≺ A0),
then A1 ≺ A∗1 (A∗1 ≺ A1).

Proof. Assume first that A u.o.−→ A0. By Lemma 4.15, we have ΥC
A0
⊆ A0 ⊆

T (A). Therefore π(A ∩ T−1(ΥC
A0

)) = Θ. Set

φ(θ) = inf(A ∩ T−1(ΥC
A0

))θ.

As the lower bounding section of a compact set, φ is l.s.c.
Let Ã := {(θ, x) ∈ A : x ≤ φ(θ)} and A′ := ÃC . A′ is a core by definition,

and we show now that it is a strip. To this end let G ∈ GA ∩ G
eA be such that

Aθ = [λ+
A(θ), υ−A(θ)] for all θ ∈ G, see Proposition 4.8. It suffices to show that

A′
θ = [λA(θ), υA′(θ)] for θ ∈ G. As A′ = ÃC ⊆ AC = A, the inclusion “⊆” is

obvious. For the other direction we must show that each x with λA(θ) < x <

υA′(θ) belongs to A′θ. Now x < υA′(θ) implies that there are θn ∈ G converging
to θ with x < φ(θn) ≤ υA(θn) = υ−A(θn). As λA(θ) = λ+

A(θ) for θ ∈ G, the
inequality x > λA(θ) implies that x > λ+

A(θn) for sufficiently large n. Hence

(θn, x) ∈ Ã for large n, and it follows that (θ, x) ∈ Ã ∩ π−1G = ÃC = A′.
Let us show that

(4.3) υA′ = υΦC = φ+

First of all, ΦC ⊆ A′ by definition of φ and Ã, hence υΦC ≤ υA′ . On the
other hand, let (θ, x) ∈ A′. There is a sequence (θn, xn) in A with xn ≤ φ(θn)
such that (θn, xn) → (θ, x). Hence x ≤ lim supn→∞ φ(θn) ≤ φ+(θ). Therefore
υA′ ≤ φ+(θ). By Lemma 4.3(d) we have φ+ = υΦC , which finishes the proof
of (4.3).

Next, Lemma 4.4(a) implies that ΥC
A′ = ΥC

ΦC = ΦC , hence T (ΥC
A′) =

T (ΦC) ⊆ ΥC
A0

where we have observed that TΦ ⊆ ΥC
A0

by the definition of
φ. By Corollary 4.7(a) we have ΥA′ ⊆ ΥC

A′ , hence T (υA′) ≥ λΥC
A0

= υ−A0
. In

order to see that also T (λA′) = T (λA) ≤ λ+
A0

we show

(4.4) λA = λA′ .

As A′ ⊆ AC = A by definition, λA ≤ λA′ is obvious. For the converse inequality
observe first that ΛA ⊆ Ã by definition. So ΛC

A ⊆ A′, and it follows from
Corollary 4.7(b) that λA = λΛC

A
≥ λA′ .

We now apply the above procedure to the “lower boundary” of A′ rather
than to the “upper boundary” of A0. Specifically, define

ψ(θ) = sup(A′ ∩ T−1(ΛC
A0

)) .

Then ψ is u.s.c. and ψ ≤ υA′ . Set Ã1 = {(θ, x) ∈ A′ : x ≥ ψ(θ)} and A1 = ÃC
1 .

As in the first part of the proof one checks that A1 is a core strip, that T (ΛC
A1

) ⊆
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ΛC
A0

, that T (λA1) ≤ λ+
A0

, and that

(4.5) λA1 = λΨC = ψ−.

As in (4.4) one shows

(4.6) υA1 = υA′ .

This is all one needs to check that A1 has all the properties required in
Lemma 4.19(a) in the case A u.o.−→ A0, except for the property T (A1) = A0.

In order to prove this we observe that the above construction (and fur-
ther choices as in Proposition 4.8 furnish a set G ∈ G such that (A1)θ =
[λA1(θ), υA1(θ)], λA0(R(θ)) = λ+

A0
(R(θ)) and υA0(R(θ)) = υ+

A0
(R(θ)) for all

θ ∈ G. Hence T (A1)θ ⊇ (A0)R(θ) for each θ ∈ G in such a way that the
endpoints of (A1)θ are mapped onto the corresponding endpoints of (A0)R(θ).
Without loss of generality we can also assume that φ(θ) = φ+(θ) for θ ∈ G

(see Lemma 4.3(d)), so that indeed φ(θ) = υA′(θ) in view of equation (4.3). But
this excludes the possibility that there is x ∈ A′

θ for which Tθx > υA0(R(θ)).
With an analoguous argument on the “lower boundaries” one finally shows that
indeed T (Aθ

1) = (A0)R(θ) for all θ ∈ G. Now T (A1) = A0 follows from Corol-
lary 3.8.

There remains to reduce the “downward over” case to the “upward over”
one. Suppose without loss of generality that I is symmetric about x = 0, and let
τ(x) = −x be the symmetry. Set Ã0 := τ(A0) and T̃ := τ ◦ T . Then A

u.o.−→ Ã0

w.r.t. T̃ , so there exists a core strip A1 ⊆ A with T̃ (A1) = A0 and A1
u.o.−→ Ã0

w.r.t. T̃ . But then T (A1) = A0 and A1
d.o.−→ A0 w.r.t. T . The other properties

required in Lemma 4.19(a) can be checked immediately.
We turn to the proof of the second part of Lemma 4.19. We denote the

auxiliary objects in the above construction applied to A∗0 by φ∗, ψ∗, etc. Then
TΨ∗ ⊆ ΛC

A∗0
by definition of ψ∗. Hence, observing (4.5) and Lemma 3.4(a),

TΛA∗1
⊆ T (Ψ∗C) ⊆ ΛC

A∗0
. Now, by assumption, υ−A0

≤ λ+
A∗0

. As A∗0 is a core strip,
this implies λA∗0

= λ+−
A∗0

≥ υ−A0
, see Proposition 4.8. Hence Tλ+

A∗1
≥ υ−A0

so that
{λ+

A∗1
≥ φ} ∈ G by definition of φ. (Observe that generically Aθ is an interval and

λ+
A0

(Rθ) ≤ υ−A0
(Rθ), see Proposition 4.8.) Hence λ+

A∗1
≥ φ+ = υA′ = υA1 ≥ υ−A1

,
see also (4.3) and (4.4). This finishes the proof of Lemma 4.19. �

Remark 4.20. Let A and A0 be core strips such that either

(a) A u.o.−→ A0 w.r.t. T , T (ΛC
A) ⊆ ΛC

A0
, and T (ΥC

A) ⊆ ΥC
A0

; or

(b) A d.o.−→ A0 w.r.t. T , T (ΛC
A) ⊆ ΥC

A0
and T (ΥC

A) ⊆ ΛC
A0

.

Then we write A � A0, or A � A0 w.r.t. T . Note that � is a transitive
relation: if A � A0 w.r.t. T and A0 � A1 w.r.t. T1, then A � A1 w.r.t. T1 ◦ T .
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We note also that one can replace the inclusions in (a) and (b) above by
equalities without changing anything. This follows from Corollary 3.8. (For
the first inclusion, for example, apply this corollary to the residual set G =
PΛC

A
∩R−1PΛC

A0
.)

Now we state and prove the main result of this section.

Theorem 4.21. Let R be a homeomorphism of Θ. Suppose that the core
strip A is mapped upwards (downwards) over itself by T . Then there is a core
strip A∞ ⊆ A with T (A∞) = A∞ which is mapped upwards (downwards) over
itself. In fact, A∞ � A∞ w.r.t. T .

Proof. In view of the fact that A o.−→ A, we can apply Lemma 4.19 to
find a core strip A1 ⊆ A with A1 � A w.r.t. T . In particular, A1

o.−→ A1.
Applying Lemma 4.19 to A1 we find a core strip A2 ⊆ A1 such that A2 � A1,
and inductively we construct a sequence of core strips A = A0 ⊇ A1 ⊇ . . . such
that Ai � Ai−1 w.r.t. T (i = 0, 1, . . . ). Let Ã∞ :=

⋂∞
i=0Ai, and set A∞ := ÃC

∞.
Then T (Ã∞) = Ã∞ and hence T (A∞) = A∞ by Lemma 3.4(c). As a countable
decreasing intersection of strips, the set Ã∞ is a strip, hence A∞ is a core strip
by Lemma 3.10(a).

Let us show that, if A u.o.−→ A, then T (ΥC
A∞

) ⊆ ΥC
A∞

and that T (ΛC
A∞

) ⊆
ΛC

A∞
. Observe first that, for each θ ∈ Θ,

(T (υ
eA∞

))(θ) = lim
i→∞

(T (υAi
))(θ) ≥ lim sup

i→∞
υ−Ai−1

(R(θ)) ≥ υ−
eA∞

(R(θ))

i.e. T (υ
eA∞

) ≥ υ−
eA∞

so that also T (υ−+
eA∞

) ≥ υ−
eA∞

. Next, Lemma 4.5 implies that

υ−+
eA∞

= υ
eAC
∞

= υA∞ . Also υ−
eA∞

≥ υ−
eAC
∞

= υ−A∞ (because Ã∞ ⊇ ÃC
∞ which

implies that υ
eA∞

≥ υ
eAC
∞

). Therefore T (υA∞) ≥ υ−A∞ . Since T (A∞) = A∞, this
means that

(4.7) υ−A∞ ≤ T (υA∞) ≤ υA∞ .

But {υ−A∞ = υA∞} ∈ G by Lemma 4.3(c), so also {T (υA∞) = υA∞} ∈ G. Hence
T (ΥC

A∞
) = (T (ΥA∞))C = ΥC

A∞
by Lemmas 3.4(c) and 3.2(e). In the same way

one proves TΛC
A∞

= ΛC
A∞

.
The “downward” case can be reduced to the “upward” one as in the proof

of Lemma 4.19. �

Corollary 4.22. Let R be a minimal homeomorphism of Θ.

(a) If the core strip A is mapped upward over itself, then A contains a core
strip which is pinched and minimal w.r.t. T ; that is, which is T -almost
automorphic.

(b) If A is mapped downwards over itself and if A does not contain a T -
almost automorphic core strip, then it contains a solid T -invariant core
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strip A∞ for which ΥC
A∞

and ΛC
A∞

are permuted under the action of T .
If R2 is a minimal homeomorphism of Θ, then both sets are almost
automorphic under T 2.

Proof. We need only to note that, if A u.o.−→ A, then ΥC
A∞

and ΛC
A∞

are
T -almost automorphic; they may coincide. �

We do not know of any example for the second case of this corollary. When
the map θ 7→ Tθ is only required to be measurable – so also the sections need
only to be measurable – it is known that such situations can occur (see [13]).

5. A Sharkovskĭı type theorem

In this section Θ denotes a compact metric space and R: Θ → Θ is a totally
minimal homeomorphism of Θ. Also Ω = Θ × I, and T : Ω → Ω is a continuous
map such that π ◦ T = R ◦ π where π: Ω → Θ is the projection.

Let B ⊂ Ω be a strip, and let p > 1 be an integer. Recall (Definition 3.15)
that B is p-periodic if T p(B) = B and if the image sets B, T (B), . . . , T p−1(B)
are pairwise disjoint and pairwise ordered. Suppose that q is an integer which is
below p in the Sharkovskĭı ordering. Thus if p = 3, then q can be any positive
integer. Our goal is to determine a strip C which is q-periodic for T ; that
is, T q(C) = C and the images C, T (C), . . . , T q−1(C) are pairwise disjoint and
pairwise ordered.

We begin the analysis. By Lemma 3.11, we can assume that B is a minimal
strongly T p-invariant core strip. We order the core strips B, T (B), . . . , T p−1(B)
in the natural way:

B0 < B1 < . . . < Bp−1

where Bj = T kj (B) for a unique integer kj ∈ {0, . . . , p − 1} (0 ≤ j ≤ p − 1).
Let λj resp. υj be the lower resp. upper bounding section of Bj . Observe that
Bj−1 < Bj implies Bj−1 ≺ Bj so that υ−j−1 ≤ λ+

j , see Lemmas 4.17 and 4.18.
Set [υ−j−1, λ

+
j ] = {(θ, x) ∈ Ω | υ−j−1(θ) ≤ x ≤ λ+

j (θ)}, then define Ij =
[υ−j−1, λ

+
j ]C . By Lemma 3.10(a), Ij is a core strip. Using Lemma 4.6 and Re-

mark 4.2, one checks that, for 1 ≤ j ≤ p− 1,

υIj
= υ−+

[υ−j−1,λ+
j ]

= λ+−+
j = λ+

j ,(5.1)

λIj = λ+−
[υ−j−1,λ+

j ]
= υ−+−

j−1 = υ−j−1,(5.2)

υ−Ij
= λ+−

j ≤ υ−+
j = λ+

Ij+1
.(5.3)

This implies that the strips Ij are weakly ordered, see Definition 4.16. For later
use we note that if Ii ∩ Ij contains a strip for some i 6= j, then |i− j| = 1.

Comparing with Definition 4.14(a), one now sees that, if 0 ≤ j < p − 1 and
if T (Bj−1) = Br and T (Bj) = Bs with Bs > Br, then T maps Ij upwards over
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each strip Ir+1, . . . , Is. Similarly one can show that, if Bs < Br, then T maps
Ij downward over each strip Is+1, . . . , Ir.

We will apply the results of Section 4 together with the arguments exposed
in [4], [7], [14] in proving our version of Sharkovskĭı’s theorem. Set [Bj , Bj+1] =
[υ−j , λ

+
j+1] ∪ {(θ, x) ∈ Ω | x ∈ Bθ

j ∪ Bθ
j+1} for 0 ≤ j ≤ p − 1. Motivated by a

standard construction in the theory of interval maps, we introduce the directed
graph (digraph) of B whose vertices are the strips I1, . . . , Ip−1 and whose edges
Ij → Ik are stipulated as follows: Ij → Ik just when T [Bj , Bj+1] contains
[Bk, Bk+1] in the set-theoretic sense.

Let us compare this use of the symbol “→” with that of the symbol “ o.−→”
given in Definition 4.14(c). According to the preceding discussion, if T (Bj) = Br

and T (Bj+1) = Bs, then Ij
o.−→ Ik in the sense of Definition 4.14(c) whenever Ik

is “between” Ir and Is in the obvious sense. However the digraph may contain
edges which are defined neither by the upward over nor by the downward over
relation. Thus the sense of the symbol “→” in the context of the digraph of B is
more inclusive than the sense attached to the symbol “ o.−→” in Definition 4.14(c).

In the developments below we follow [7] though we could just as well read
in [4, pp. 22–25]. We introduce some standard terminology, following Coppel
[7]. First, we construct the standard p-cycle. Let us view Bj−1 and Bj as
the endstrips of Ij (1 ≤ j ≤ p − 1). We define vertices J0, . . . , Jp−1, Jp = J0

in the following way. Put J0 = I1; let J1 be that vertex Ij contained in the
strip {T (B0), T (B1)}, such that (with slight imprecision of language) T (B0)
is an endstrip of Ij , etc. Here and below we use the brackets to indicate the
strip defined by the appropriate boundary sections of T (B0) and T (B1). We
obtain a cycle J0 → J1 → · · · → Jp−1 → J0 of length p in the digraph of
B. This is the standard p-cycle; it is characterized uniquely as that p-cycle
J0 → J1 → · · · → Jp−1 → J0 in the digraph of B having the property that J0

(now not necessarily assumed to be I1) admits an endstrip C such that T k(C)
is an endstrip of Jk for 1 ≤ k < p. If J0 is chosen as I1, then C = B0. Note
that each arrow “→” in the standard p-cycle satisfies the condition of Definition
41.4(c); thus we actually have J0

o.−→ J1
o.−→ · · · o.−→ J0.

We say that a cycle in the digraph of B is primitive if it does not consist
entirely of a cycle of smaller length repeated several times.

Lemma 5.1. Let q an integer. Suppose that the digraph of B contains
a primitive cycle J0

o.−→ J1
o.−→ · · · o.−→ Jq−1

o.−→ J0 of length q where all
arrows are as in Definition 4.14(c). Then there exists a core strip C such that
T k(C) ⊂ Jk (0 ≤ k ≤ q − 1) and such that either C is q-periodic, or C = Bi

for some i and q is an integer multiple of p. Moreover, C � C w.r.t. T q (see
Remark 4.20).
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Proof. Suppose first that q = 1. Then the primitive cycle J0
o.−→ J0 is a

loop. We can apply Theorem 4.21 strongly T -invariant core strip C such that
C � C. Suppose from now on that q ≥ 2.

Let Jk = Jk mod q for k ≥ q. We use Lemma 4.19(a) to define recursively core
strips J`

i ⊆ Ji (` = 0, 1, 2, . . . ):

(5.4) J0
i = Ji, J`+1

i ⊆ J`
i , J

`+1
i � J`

i+1 w.r.t. T (` ≥ 0).

We claim that, for all `, i, j ≥ 0 either J`
i = J`

j or these two strips are weakly
ordered. The proof is by induction on `: for ` = 0 this is obvious, because all J0

i

are among the intervals I1, . . . , Ip−1. So suppose that the claim holds true for
` and consider J`+1

i and J`+1
j . If J`

i 6= J`
j , then J`

i and J`
j are weakly ordered

by the inductive assumption, and as J`+1
i ⊆ J`

i , J`+1
j ⊆ J`

j , also J`+1
i and J`+1

j

are weakly ordered. We turn to the case where J`
i = J`

j . Suppose first that
J`

i+1 = J`
j+1. Then both, J`+1

i and J`+1
j , are constructed by Lemma 4.19(a)

with the same “ingredients”, and so they coincide. It remains to treat the case
where J`

i = J`
j but J`

i+1 6= J`
j+1. In this case J`

i+1 and J`
j+1 are weakly ordered

by the inductive assumption, and Lemma 4.19(b) tells us that also J`+1
i and

J`+1
j are weakly ordered.

A first consequence of this construction is that J2q
0 � Jq

0 � J0 w.r.t. T q by
Remark 4.20 and J2q

0 ⊆ Jq
0 ⊆ J0. So we can apply Theorem 4.21 to A = J2q

0

to find a core strip C ⊂ J2q
0 such that T q(C) = C and also C � C w.r.t. T q.

The previous construction yields also T k(C) ⊆ J2q−k
k ⊆ J`

k ⊆ Jk for 0 ≤ ` ≤
2q−k. Because of Corollary 4.22 we may also assume that either C is T q-almost
automorphic or C is solid and contains no T q-almost automorphic substrip.

Let 0 ≤ i < j < q. Suppose for a contradiction that J`
i = J`

j for ` = 0, . . . , q.
As

J`
i � J`−1

i+1 � J`−2
i+2 � . . . � J0

i+` = Ji+`,

we conclude that Ji+` = Jj+` for ` = 0, . . . , q. But, as we assumed that the Ji

form a primitive cycle, this leads to the contradiction i = j.
Hence there exists ` ∈ {0, . . . , q} such that J`

i 6= J`
j . We argued above that

this implies that J`
i and J`

j are weakly ordered. As T i(C) ⊆ J`
i and T j(C) ⊆ J`

j ,
it follows that T i(C) and T j(C) are weakly ordered.

Suppose first that for all 0 ≤ i < j < q the two strips T i(C) and T j(C) are
disjoint. Since they are weakly ordered, they are then indeed (strictly) ordered
in view of Lemma 4.18. Hence the core strip C is q-periodic in this case.

Now suppose that D := T i(C) ∩ T j(C) 6= ∅ for some 0 ≤ i < j < q. As
intersection of two T q-invariant strips D is a T q-invariant strip, see Lemma 3.12.
Then D̃ := T `(D) ⊆ Ji+` ∩ Jj+` for all ` ≥ 0. As the Ji form a primitive cycle,
there is some ` ≥ 0 such that Ji+` 6= Jj+`. Let Ji+` = Ir, Jj+` = Is. Then
Ir ∩ Is 6= ∅ so that |r − s| = 1.
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Without loss of generality s = r + 1. Then D̃ ⊆ Ir ∩ Is ⊆ [υ−r , λ
+
r ] so

that ∅ 6= D̃C ⊆ [υ−r , λ
+
r ]C . In view of Theorem 4.11 this implies that Br

is T p-almost automorphic, and it follows from Lemmas 4.4(b) and 4.9 that
D̃C ⊆ [λr, υr]C = Br. Hence D̃C = Br and the T q-almost automorphic strip
T 2q−i−`(Br) is contained in T 2q(C) = C. This excludes the possibility that
C is a solid strip. Hence C is T q-automorphic, and we can conclude that
T i(C) = T j(C) = Br. It follows that C coincides with some Bi and q is an
integer multiple of p.

This completes the proof of Lemma 5.1. �

Remark 5.2. According to Corollary 4.22, either C is T q-almost automor-
phic or it contains a core strip which is T 2q-almost automorphic.

Our goal now is to determine primitive cycles with arrows o.−→ whose lengths
correspond to the numbers q which are below p in the Sharkovskĭı ordering. We
proceed using the arguments of [7]. As a warm-up exercise (strictly speaking not
needed in what follows), we show that there is a vertex Ĩ such that Ĩ o.−→ Ĩ. To
see this, write again the strips B, T (B), . . . , T p−1(B) in their natural order:

B0 < B1 < . . . < Bp−1

where, as before, Bj = T kj (B) for a unique integer kj ∈ {0, . . . , p− 1} (0 ≤ j ≤
p − 1). Let u = max{i : T (Bi) > Bi}. Then u is well-defined by assumption.
Set Ĩ := Iu+1 = [υ−u , λ

+
u+1]

C . Since T (Bu) > Bu and T (Bu+1) ≤ Bu, Ĩ is
mapped directed over Ĩ by T ; i.e. Ĩ o.−→ Ĩ. Indeed, as λ

eI = υ−u by (5.2), we have
T (λ

eI) = T (υ−u ) ≥ λu+1, and λu+1 = λ+−
u+1 = υ−

eI
in view of Lemma 4.6(b) and

equation (5.1). Similarly, T (υ
eI) ≤ λ+

eI
.

We now formulate a version of the key lemma of [7] (see [7, Proposition 3]).

Lemma 5.3. Suppose that B is a p-periodic strip with p odd, p > 1. Suppose
that T admits no periodic strip of odd period q strictly between 1 and p. Then the
vertices of the digraph of B admit a labelling J1, . . . , Jp−1 with respect to which
the digraph has the following form:

J177
// J2

// J3
// . . . // Jp−3 // Jp−2 // Jp−1

ffgghh

All the arrows in the digraph are of the “directed over” type (Definition 4.14(c)).
The digraph admits the following paths:

(a) J1
o.−→ J2

o.−→ · · · o.−→ Jp−1
o.−→ J1

o.−→ J1
o.−→ · · · o.−→ J1

(b) Jp−1
o.−→ J2i whenever 2i+ 1 < p.

Proof. We follow the arguments of ([7, pp. 8–10]). Consider the standard
p-cycle J0

o.−→ J1
o.−→ · · · o.−→ Jp−1

o.−→ J0 introduced earlier. It contains some
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vertex Ĩ at least twice because there are only p− 1 vertices. On the other hand,
any vertex can occur at most two times because a vertex has only two end-strips.
If the standard p-cycle contains a vertex twice, then it can be decomposed into
two cycles of smaller length, each of which contains Ĩ just once and is hence
primitive.

In the case at hand, the standard p-cycle decomposes into two smaller prim-
itive cycles, one of which must have length 1 because there is no periodic strip
with period q if q ∈ {3, . . . , p − 1} (use Lemma 5.1). We can thus re-label the
standard p-cycle and write it in the form

J1
o.−→ J1

o.−→ J2
o.−→ · · · o.−→ Jp−1

o.−→ J1

where J1 = Ĩ defines the 1-cycle and Ji 6= J1 if 1 < i < p. Suppose for
contradiction that Ji = Jk for some 1 < i < k < p. Then by omitting the
intermediate vertices one obtains a shorter primitive cycle with arrows o.−→, and
by omitting the loop at J1 if necessary one obtains a primitive cycle of odd length
strictly between 1 and p with arrows o.−→. This together with Lemma 5.1 leads
to a contradiction with the hypothesis of the present lemma. So we conclude
that J1, . . . , Jp−1 is a permutation of I1, . . . , Ip−1.

If k > i+ 1 we cannot have Ji
o.−→ Jk because if we did we could construct a

primitive cycle of odd length strictly between 1 and p. For the same reason we
cannot have Ji

o.−→ Jk if k = 1 and i 6= 1, i 6= p− 1.
Now let C be the middle strip among the strips B0 < . . . < Bp−1. We

claim that J1 = {C, T (C)} where we use the brackets to indicate the core strip
determined by C and T (C). We also claim that Jk = {T k−2(C), T k(C)} for
2 ≤ k ≤ p − 1. These statements can be proved by basically following word-
for-word the arguments given in ([7, pp. 9–10]). For the reader’s convenience we
give them here.

Write J1 = Ih = [A,B] where A,B ∈ {B0, . . . , Bp−1} and where we commit
an obvious abuse of notation. We know that J1 is o.−→ -connected only to J1

and J2 in the digraph of B. It follows that J2 is adjacent to J1 in the natural
sense, and T must map one end strip of J1 to the other end strip of J1, while it
maps the other end strip of J1 to an end strip of J2. Thus there are only two
possibilities:

(∗) Bh−1 = A, Bh = T (A), Bh−2 = T 2(A)

or

(∗∗) Bh = B, Bh−1 = T (B).

Consider the first possibility. If p = 3 then it is easily seen that T 2(C) < C <

T (C) and that J1 = [C, T (C)], J2 = [T 2(C), C]. If p > 3 we argue as follows. If
T 3(A) < T 2(A) then we must have J2

o.−→ J1, which does not happen. Hence
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T 3(A) > T 2(A). Since J2 is not mapped over Jk for k > 3, we must have that
J3 = [T (A), T 3(A)] is adjacent to J1 on the right. If T 4(A) > T 3(A) then we
must have J3

o.−→ J1, which does not happen. Hence T 4(A) < T 3(A). Since J3

is not mapped over Jk for k > 4 we must have J4 = [T 4(A), T 3(A)] is adjacent
to J2 on the left. Continuing in this way we obtain

Jp−1 = [T p−1(A), T p−3(A)] < . . . < J4 = [T 4(A), T 2(A)] < J2

= [T 2(A),A] < J1 = [A, T (A)] < . . . < Jp−2 = [T p−4(A), T p−2(A)].

This shows that A = C and that Jk = {T k−2(C), T k(C)} (2 ≤ k ≤ p− 1).
We see now that Jp−1 → Jk if and only if k is odd. We also see that there

are no arcs in the digraph other than those already found. Moreover, all the
arrows in the digraph are of the directed over type. This completes the proof of
the Lemma if (∗) holds.

If (∗∗) holds, one argues analogously, and finds that, if C is the middle strip
among {B0, . . . , Bp−1}, then

T p−2(C) < T p−4(C) < . . . < T (C) < C < T 2(C) < . . . < T p−3(C) < T p−1(C).

Setting J1 = {C, T (C)}, one also finds that Jk = {T k−2(C), T k(C)}, and that
Lemma 5.3 holds in this case. �

Proposition 5.4. Let p > 1 be an odd integer, and let B be a p-periodic
strip for T . Assume that T admits no q-periodic strip if q ∈ {2, . . . , p − 1} is
odd. Then T admits a q-periodic strip whenever q > p (in the natural ordering
on the positive integers) and whenever q ∈ {2, . . . , p− 1} is even.

Proof. It is sufficient to recognize that the paths of (a) and (b) in Lemma 5.3
are primitive, and apply Lemma 5.1. �

We continue to follow the arguments of [7].

Lemma 5.5. Let B be a periodic strip for T of period p. Then for each
positive integer h, B is a periodic strip of Th of period p/(h, p), where (h, p) is
the greatest common divisor of h and p. Conversely, if B is a periodic strip of
Th of period m, then B is a periodic strip of T of period mh/d, where d divides
h and is relatively prime to m.

Proof. Consider the first statement. Suppose B has period p for T and
that m = p/(h, p). Then Tmh(B) = B. If T kh(B) = B then p divides kh and so
m divides k.

Passing to the second statement, suppose B has period m for Th. Then B

has period p for T where p divides mh. Write p = mh/d. Then by the previous
statement, p/(h, p) = pd/h, and therefore (h, p) = h/d. Hence we can write
h = de where (de,me) = e; that is, d is relatively prime to m. �
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Theorem 5.6 (Sharkovskĭı for strips). Suppose that T admits a p-periodic
strip B and that p > q in the Sharkovskĭı ordering. Then T admits a q-periodic
core strip C such that C � C w.r.t. T q. In addition, either C is T q-almost
automorphic or it contains a core strip which is T 2q-almost automorphic.

Proof. The last statement follows from the preceding ones and Corol-
lary 4.22.

Note that the existence of a strongly T -invariant core strip C such that
C � C w.r.t. T follows from Lemma 5.1 together with the existence of a loop
Ĩ → Ĩ in the digraph of B satisfying Ĩ do Ĩ.

Next we show that T admits a 2-periodic strip. If p = 2 the standard p-cycle
contains a primitive cycle of length 2. By Lemma 5.1 we obtain a 2-periodic core
strip C satisfying C � C w.r.t. T 2. Suppose that B is a periodic strip of least
period p > 2. Then the standard p-cycle decomposes into two primitive cycles,
at least one of which has length strictly between 1 and p, and by Lemma 5.1
we obtain a periodic core strip with period less than p (natural ordering). This
shows that in fact T admits a 2-periodic core strip C such that C � C w.r.t. T 2.

Next write p = 2d ·s where s is odd. Suppose first that s = 1 and that q = 2e

where 0 ≤ e < d. We can assume that e > 1 by what has already been proved.
Consider the map S = T q/2. By Lemma 5.5, S admits a periodic strip of period
2d−e+1. Therefore S admits a periodic core strip C of period 2 such that C � C

w.r.t. S2. Using Lemma 5.5 again, we see that this last strip is q-periodic for T ,
and moreover C � C w.r.t. T q.

Now suppose that s > 1. We write q = 2dr and consider the following
cases: (a) r is even; (b) r is odd and r > s. Consider the map S = T 2d

. Tt
admits a periodic strip of period s, and hence also a periodic strip C of period r
(Proposition 5.4); one has C � C w.r.t. S. In the case (a) this strip has period
q = 2dr for T (Lemma 5.5), and one checks that C � C w.r.t. T q. In the case
(b) it has period 2er for T , for some e ≤ d. If e < d, replace p by 2er. Since
q = 2e · 2d−er, we can use case (a) to conclude that T admits a periodic strip C
such that C � C w.r.t. T q. This completes the proof of Theorem 5.6. �

Remark 5.7. If R is not minimal but is simply a homeomorphism of Θ, we
still have a version of Sharkovskĭı’s theorem, as follows. If T admits a p-periodic
strip, and if p > q in the Sharkovskĭı ordering, then T admits a q-periodic core
strip C such that C � C. It can no longer be stated that C has the property of
almost automorphicity. On the other hand, if R is minimal and totally minimal,
then we have shown that C does exhibit this property.
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theorem and its application to differential inclusions, Set-Valued Anal. 10 (2002), 1–14.

[2] J. Andres and K. Pastor, On a multivalued version of the Sharkovskĭı theorem and
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