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PARAMETER DEPENDENT PULL-BACK
OF CLOSED DIFFERENTIAL FORMS

AND INVARIANT INTEGRALS

Jean Mawhin

Dedicated to the memory of Olga Ladyzhenskaya

Abstract. We prove, given a closed differential k-form ω in an arbitrary
open set D ⊂ Rn, and a parameter dependent smooth map F ( · , λ) from

an arbitrary open set G ⊂ Rm into D, that the derivative with respect to
λ of the pull-back F ( · , λ)∗ω is exact in G. We give applications to various

theorems in topology, dynamics and hydrodynamics.

1. Introduction

It is well known that a closed differential form (cocycle) on a set D ⊂ Rn

needs not be exact (coboundary) on D [8], [15]. The converse of Poincaré’s
lemma implies that it is the case if D is simply connected. In recent papers
[9], [10], it has been shown that given a differential n-form ω on D ⊂ Rn, which
necessarily is a cocycle, the derivative with respect to λ of its pull-back F ( · , λ)∗ω
by a C2 parameter dependent mapping F ( · , λ):G ⊂ Rn → D ⊂ Rn is always a
coboundary. This result allows a simple and complete proof of a lemma on the
invariance of an integral stated and proved in a special case by Tartar [16] and
reproduced in [2]. This lemma was used in [9] to obtain the homotopy invariance
of Brouwer degree, and in [10] to give elementary proofs of various existence and
fixed point theorems.
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In this paper, we want to show that the above mentioned property holds
indeed for any k-cocycle on D ⊂ Rn and any C2 parameter dependent mapping
F ( · , λ):G ⊂ Rm → D ⊂ Rn (Theorem 61). The given proof is a lengthy and
tedious computation, which is substantially shorter only for k = 1 and for k = n.
For the readers uniquely interested in those situations, we have explicited the
proof for k = 1 (Theorem 4.1) and reproduced, for the sake of completeness, the
proof for k = n given in [10] (Theorem 5.1).

For k = 1, we give as direct applications simple proofs of the n-dimensional
generalization of a theorem on the invariance of the circulation of a perfect
fluid due to Lord Kelvin [17] (see also [6]), and of Cauchy integral theorem
for holomorphic functions. For k = n − 1, Theorem 61 generalizes a result of
Hatziafratis and Tsarpalias [3] obtained for the (n−1) solid angle form occuring
in the definition of Kronecker’s index. For k = n, we complete the applications
given in [10] by an elementary proof of a Poincaré–Krasnosel’skĭı bifurcation
theorem in finite dimension.

In some physical situations, the family of pull-back transformations is pa-
rametrized by time and is given by the flow associated to an evolution equa-
tion. We show in two classical examples, Liouville’s theorem in dynamics [7]
and Helmholtz theorem in hydrodynamics [4] (see also [14]), how those clas-
sical results follow from the same type of reasonings (Theorems 7.1 and 8.2).
Those results belong of course to Poincaré’s theory of integral invariants (see
[12] and [13]), which also can be related to the considerations developed here.

2. Parameter dependent differential forms

We first recall a few elementary facts and results on differential forms [8], [15].
If D ⊂ Rn is open and 0 ≤ k ≤ n is an integer, we consider the differential

k-form of class Cl in D (l ≥ 0)

ω =
∑

1≤i1<...<ik≤n

wi1...ik
dxi1 ∧ . . . ∧ dxik

,

where the real functions wi1...ik
are of class Cl on D. If G ⊂ Rm is open and

T :G→ D is of class C1, the pull-back T ∗ω is the differential k-form in G defined
by

T ∗ω =
∑

1≤i1<...<ik≤n

(wi1...ik
◦ T ) dTi1 ∧ . . . ∧ dTik

,

where dTi is the differential 1-form on G defined by dTi =
∑m

j=1 ∂jTi dyj . If ω is
of class C1, the exterior differential dω of ω is the differential (k+ 1)-form in D
defined by

dω =
∑

1≤i1<...<ik≤n

dwi1...ik
∧ dxi1 ∧ . . . ∧ dxik

,
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where dwi1...ik
=

∑n
j=1 ∂jwi1...ik

dxj . Explicitely, with

1 ≤ i1, . . . , ik, j1, . . . , jk+1, j ≤ n,

we have

dω =
∑

j1<...<jk+1

[ k+1∑
l=1

(−1)l−1∂jl
wj1...bjl...jk+1

]
dxj1 ∧ . . . ∧ dxjk+1 ,

where the symbol ̂ means that the corresponding term is missing. When ω is
of class C1, ω is closed or is a k-cocycle if dω = 0, which, by the computation
above, is equivalent to the set of conditions

(2.1)
k+1∑
l=1

(−1)l−1∂jl
wj1...bjl...jk+1

= 0 (1 ≤ j1 < j2 < . . . < jk+1 ≤ n).

Consider now a parameter dependent differential k-form in D ⊂ Rn

µ(λ) =
∑

1≤i1<...<ik≤n

mi1...ik
( · , λ) dxi1 ∧ . . . ∧ dxik

whose coefficients

mi1...ik
:D × [a, b] → R, (x, λ) 7→ mi1...ik

(x, λ)

are of class C1 on D × [a, b].

Definition 2.1. The partial derivative ∂λµ of µ(λ) with respect to λ is the
differential k-form in D

∂λµ(λ) :=
∑

1≤i1<...<ik≤n

∂λmi1...ik
( · , λ) dxi1 ∧ . . . ∧ dxik

.

It follows easily from this definition that if f :D × [a, b] → R and

ν(λ) =
∑

1≤j1<...<jl≤n

nj1...jl
( · , λ) dxj1 ∧ . . . ∧ dxjl

,

are of class C1 on D × [a, b], then

∂λ[f( · , λ)µ(λ)] = ∂λf( · , λ)µ(λ) + f( · , λ)∂λµ(λ),(2.2)

∂λ[µ(λ) ∧ ν(λ)] = ∂λµ(λ) ∧ ν(λ) + µ(λ) ∧ ∂λν(λ),(2.3)

and if µ(λ) is of class C2, then

(2.4) ∂λ[dµ(λ)] = d[∂λµ(λ)].
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3. Parameter dependent pullback of a differential form

If D ⊂ Rn is open and 0 ≤ k ≤ n is an integer, let us consider the differential
k-form in D

ω =
∑

1≤i1<...<ik≤n

wi1...ik
dxi1 ∧ . . . ∧ dxik

.

If G ⊂ Rm is open and if F :G × [a, b] 7→ D is of class C2, we consider for each
λ ∈ [a, b] the pull-back F ( · , λ)∗ω of ω by F ( · , λ)

(3.1) F ( · , λ)∗ω :=
∑

1≤i1<...<ik≤n

(wi1...ik
◦ F )( · , λ) dFi1 ∧ . . . ∧ dFik

,

where we write

dFi = dFi( · , λ) =
m∑

l=1

∂lFi( · , λ) dyl.

Notice that, by formula (2.4), we have

(3.2) ∂λ(dFi) = d(∂λFi).

Lemma 3.1. If the differential k-form ω is of class C1 on D, and F :G ×
[a, b] → D is of class C2, then, with 1 ≤ i1, . . . , ik ≤ n,

(3.3) ∂λ[F ( · , λ)∗ω] =
∑

i1<...<ik

n∑
j=1

(∂jwi1...ik
◦ F )∂λFj dFi1 ∧ . . . ∧ dFik

+
∑

i1<...<ik

(wi1...ik
◦ F )

k∑
l=1

(−1)l−1d[∂λFil
dFi1 ∧ . . . ∧ d̂Fil

∧ . . . ∧ dFik
].

Proof. Using formulas (2.2) and (3.2), we get, if ω is of class C1 in D, and
1 ≤ i1, . . . , ik ≤ n, 1 ≤ j1, . . . , jk+1 ≤ n,

∂λ[F ( · , λ)∗ω] = ∂λ

[ ∑
i1<...<ik

(wi1...ik
◦ F ) dFi1 ∧ . . . ∧ dFik

]
=

∑
i1<...<ik

∂λ(wi1...ik
◦ F ) dFi1 ∧ . . . ∧ dFik

+
∑

i1<...<ik

(wi1...ik
◦ F )

k∑
l=1

dFi1 ∧ . . . ∧ d(∂λFil
) ∧ . . . ∧ dFik

=
∑

i1<...<ik

n∑
j=1

(∂jwi1...ik
◦ F )∂λFj dFi1 ∧ . . . ∧ dFik

+
∑

i1<...<ik

(wi1...ik
◦ F )

k∑
l=1

(−1)l−1d[∂λFil
dFi1 ∧ . . . ∧ d̂Fil

∧ . . . ∧ dFik
]. �



Parameter Dependent Differential Forms 21

4. The case of 1-cocycle

Let the differential 1-form

(4.1) ω =
n∑

j=1

wj dxj

be of class C1 on D. By formula (2.1), ω is a 1-cocycle if and only if

(4.2) ∂iwj = ∂jwi (1 ≤ i < j ≤ n).

Let G ⊂ Rm be open and F :G× [a, b] → D, (y, λ) 7→ F (y, λ) be of class C2.

Theorem 4.1. If ω is a 1-cocycle of class C1 on D, then

∂λ[F ( · , λ)∗ω] := ∂λ

[ n∑
j=1

(wj ◦ F ) dFj

]
= d

[ n∑
j=1

(wj ◦ F )∂λFj

]
.

Proof. We have, using formulas (3.3) and (4.2),

∂λ[F ( · , λ)∗ω] =
n∑

j=1

n∑
k=1

(∂kwj ◦ F )∂λFk dFj +
n∑

j=1

(wj ◦ F ) d(∂λFj)

=
n∑

j=1

n∑
k=1

(∂jwk ◦ F ) ∂λFk dFj +
n∑

k=1

(wk ◦ F ) d(∂λFk)

=
n∑

k=1

d(wk ◦ F )∂λFk +
n∑

k=1

(wk ◦ F ) d(∂λFk)

= d

[ n∑
j=1

(wj ◦ F )∂λFj

]
. �

We now show how Theorem 4.1 imply some classical conservation theorems.
The first result for n = 3 is due to Lord Kelvin [17], in the context of

hydrodynamics of perfect fluids. Recall that the circulation of the differential
1-form ω along the 1-simplex ϕ: [0, T ] → D of class C1 is defined by the integral

(4.4)
∫

ϕ

ω =
∫ T

0

ϕ∗ω =
∫ T

0

[ n∑
j=1

uj(ϕ(s))ϕ′j(s) ds
]
.

ϕ is called a 1-cycle if ϕ(0) = ϕ(T ).

Corollary 4.2. If ω =
∑n

j=1 wj dxj is a 1-cocycle of class C1 on D, and
for each λ ∈ [a, b], F ( · , λ): [0, T ] → D is a 1-cycle of class C2 in D, then the
circulation of ω along F ( · , λ)

(4.5)
∫

F ( · ,λ)

ω =
∫ T

0

n∑
j=1

(wj ◦ F )(y, λ) ∂yFj(y, λ) dy
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is independent of λ on [a, b].

Proof. Using Leibniz’ rule and Theorem 4.1, we obtain

∂λ

[ ∫
F ( · ,λ)

ω

]
=

∫ T

0

∂λ[F ( · , λ)∗ω] =
∫ T

0

d

[ n∑
j=1

(wj ◦ F ) ∂λFj

]
= 0,

as F ( · , λ) is a 1-cycle. �

Remark 4.3. If n = 3 and if (w1, w2, w3) denotes the field of velocities of
the irrotational motion of a perfect fluid, if λ denotes the time and if F ([a, b], λ)
denotes the time evolution of a closed curve under the motion of the fluid, Corol-
lary 4.2 expresses the constancy of the circulation of the velocity around the
closed curve.

A second consequence of Theorem 4.1 is a version of Cauchy’s theorem in
complex functions theory [8]. Let D ⊂ C be open, f :D → C holomorphic and
let

Γj : [0, T ]× [a, b] → D, (y, λ) 7→ Γj(y, λ), (1 ≤ j ≤ m)

be of class C2 and such that

Γj(T, λ) = Γj+1(0, λ), (j = 1, . . . ,m− 1), Γm(T, λ) = Γ1(0, λ), λ ∈ [a, b].

So, when λ varies, the family of the Γj( · , λ) represents a continuous deformation
of a piecewise-C2 1-cycle in D.

Corollary 4.4. The expression

m∑
j=1

∫
Γj( · ,λ)

f(z) dz

is independent of λ on [a, b].

Proof. We have, using Leibniz rule and Theorem 4.1,

∂λ

( m∑
j=1

∫
Γj( · ,λ)

f(z) dz
)

=
m∑

j=1

∫ T

0

∂λ[Γ∗j ( · , λ)(f(z) dz)]

=
m∑

j=1

∫ T

0

d[(f ◦ Γj)( · , λ) ∂λΓj ]

=
m∑

j=1

[(f ◦ Γj)(T, λ) ∂λΓj(T, λ)− (f ◦ Γj)(0, λ) ∂λΓj(0, λ)]

= (f ◦ Γm)(T, λ)∂λΓm(T, λ)− (f ◦ Γ1)(0, λ)∂λΓ1(0, λ) = 0. �
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5. The case of a differential n-form

Let the differential n-form

ω = w dx1 ∧ . . . ∧ dxn,

be of class C1 inD. Notice that ω is always a n-cocycle inD, as dω is a differential
(n+1)-form in Rn. Let G ⊂ Rm be open and F :G× [a, b] → D, (y, λ) 7→ G(y, λ)
be of class C2.

Theorem 5.1. If ω is a differential n-form of class C1 in D, then

(5.1) ∂λ[F ∗( · , λ)ω] := ∂λ[(w ◦ F ) dF1 ∧ . . . ∧ dFn]

= d

[
(w ◦ F )

( n∑
j=1

(−1)j−1∂λFj dF1 ∧ . . . ∧ d̂Fj ∧ . . . ∧ dFn

)]
.

Proof. We have, using formula (3.3)

∂λ[F ( · , λ)∗ω] =
[ n∑

j=1

(∂jw ◦ F ) ∂λFj

]
dF1 ∧ . . . ∧ dFn

+ (w ◦ F )
[ n∑

j=1

(−1)j−1d(∂λFj dF1 ∧ . . . ∧ d̂Fj ∧ . . . ∧ dFn)
]

=
n∑

j=1

(−1)j−1(∂jw ◦ F ) dFj ∧ ∂λFj dF1 ∧ . . . ∧ d̂Fj ∧ . . . ∧ dFn

+ (w ◦ F )
[ n∑

j=1

(−1)j−1d(∂λFj dF1 ∧ . . . ∧ d̂Fj ∧ . . . ∧ dFn)
]

=
n∑

j=1

(−1)j−1

[ n∑
k=1

(∂kw ◦ F ) dFk

]
∧ ∂λFj dF1 ∧ . . . ∧ d̂Fj ∧ . . . ∧ dFn

+ (w ◦ F )
[ n∑

j=1

(−1)j−1d(∂λFj dF1 ∧ . . . ∧ d̂Fj ∧ . . . ∧ dFn)
]

= d(w ◦ F ) ∧
( n∑

j=1

(−1)j−1∂λFj dF1 ∧ . . . ∧ d̂Fj ∧ . . . ∧ dFn

)

+ (w ◦ F ) d
( n∑

j=1

(−1)j−1∂λFj dF1 ∧ . . . ∧ d̂Fj ∧ . . . ∧ dFn

)

= d

[
(w ◦ F )

( n∑
j=1

(−1)j−1∂λFj dF1 ∧ . . . ∧ d̂Fj ∧ . . . ∧ dFn

)]
. �

Like in the previous section, one deduces from Theorem 5.1 the following
invariance result.



24 J. Mawhin

Corollary 5.2. Let ω = w dx1∧ . . .∧dxn be a differential n-form of class
C1 in the open set D ⊂ Rn, G ⊂ Rn be open and bounded and F :G× [a, b] → D

be of class C2. If, for each λ ∈ [a, b], one has

(5.2) suppω ∩ F ( · , λ)(∂G) = ∅,

then the integral

(5.3)
∫

G

F ( · , λ)∗ω =
∫

G

[w ◦ F (y, λ)] JacF (y, λ) dy

is independent of λ on [a, b].

As an application of Corollary 5.2, let us give an elementary proof of a funda-
mental bifurcation result which can be traced to Poincaré [11] and Krasnosel’skĭı
[5]. Let f : Rn×R → Rn be continuous and such that f(0, λ) = 0 for each λ ∈ R,
and consider the family of equations

(5.4) f(x, λ) = 0.

Definition 5.3. (0, λ0) is a bifurcation point for (5.4) if

(5.5) (∀ r > 0)(∃(x, λ) ∈ (B[0, r] \ {0})× [λ0 − r, λ0 + r]) : f(x, λ) = 0.

Theorem 5.4. Let A: R → L(Rn,Rn) be continuous and R: Rn × R → R
be continuous and such that

(5.6) lim
x→0

R(x, λ)
‖x‖

= 0,

uniformly on compact intervals of R. Assume that there exists a < b such that

(5.7) detA(a) detA(b) < 0.

Then (5.4) with
f(x, λ) := A(λ)x+R(x, λ)

has a bifurcation point in {0} × [a, b].

Proof. Notice first that if (0, λ0) is not a bifurcation point for (5.4), then
there exists r = r(λ0) > 0 such that f(x, λ) 6= 0 for all x ∈ B[0, r] \ {0} and all
λ ∈ [λ0 − r, λ0 + r]. Hence, an easy compactness argument implies that if (5.4)
has no bifurcation point in {0} × [a, b], then

(5.8) (∃ r > 0)(∀ x ∈ B[0; r] \ {0})(∀ λ ∈ [a, b]) : f(x, λ) 6= 0.

Now, by assumptions, there exists α > 0 such that, for all x ∈ Rn,

‖A(a)x‖ ≥ α‖x‖, ‖A(b)x‖ ≥ α‖x‖,
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and there exists r1 ∈ ]0, r] such that, for all x ∈ B[0, r1] and all λ ∈ [a, b], one
has

‖R(x, λ)‖ ≤ α

2
‖x‖.

Consequently, for all x ∈ ∂B(0, r1), and all µ ∈ [0, 1], one has

(5.9) ‖gc(x, µ)‖ := ‖A(c)x+ µR(x, c)‖ ≥ α

2
r1 := α1, c = a, b.

Now, it follows from relation (5.8) that there exists α2 > 0 such that, for all
x ∈ ∂B(0, r1) and all λ ∈ [a, b], one has

‖f(x, λ)‖ ≥ α1.

Let α3 := min{α1, α2} and w ∈ C1(Rn,R+) be such that suppw ⊂ B(0, α3)
and

(5.11)
∫

Rn

w(x) dx = 1.

A first application of Corollary 5.2 to the family of pull-backs f( · , λ), λ ∈ [a, b]
implies that

(5.12)
∫

B(0,r)

(w ◦ f)(y, a)Jac f(y, a) dy =
∫

B(0,r)

(w ◦ f)(y, b) Jac f(y, b) dy.

A second application of Corollary 5.2 to the families of pull-backs ga( · , µ),
gb( · , µ), µ ∈ [0, 1] implies that

(5.13)
∫

B(0,r)

(w ◦ f)(y, a) Jac f(y, a) dy

=
∫

B(0,r)

(w ◦ ga)(y, 1) Jac ga( · , 1) dy

=
∫

B(0,r)

(w ◦ ga)(y, 0) Jac ga( · , 0) dy

=
∫

B(0,r)

(w ◦A(a))(y) detA(a) dy = sign detA(a),

(5.14)
∫

B(0,r)

(w ◦ f)(y, b) Jac f(y, b) dy

=
∫

B(0,r)

(w ◦ gb)(y, 1) Jac gb( · , 1) dy

=
∫

B(0,r)

(w ◦ gb)(y, 0) Jac gb( · , 0) dy

=
∫

B(0,r)

(w ◦A(b))(y) det A(b) dy = sign detA(b).

where we have used the change of variables rule in a multiple integral and condi-
tion (5.11). The contradiction follows from relations (5.12)–(5.14) and assump-
tion (5.7). �
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6. The case of a k-cocycle

Let the differential k-form

ω =
∑

1≤i1<...<ik≤n

wi1...ik
dxi1 ∧ . . . ∧ dxik

be of class C1 in an open set D ⊂ Rn. Recall that ω is a k-cocycle if and only if
relations (2.1) hold. Let G ⊂ Rm be open and let F :G× [a, b], (y, λ) 7→ F (y, λ)
be of class C2.

Theorem 6.1. If ω is a k-cocycle in D, then, with 1 ≤ i1, . . . , ik ≤ n,

(6.1) ∂λ[F ( · , λ)∗ω] := ∂λ

[ ∑
i1<...<ik

(wi1...ik
◦ F ) dFi1 ∧ . . . ∧ dFik

]

= d

[ ∑
i1<...<ik

(wi1...ik
◦ F )

k∑
j=1

(−1)j−1∂λFij dFi1 ∧ . . . ∧ d̂Fij ∧ . . . ∧ dFik

]
.

Proof. To simplify some heavy notations in this proof, we write∑
I

for
∑

1≤i1<...<ik≤n

,
∑

J

for
∑

1≤j1<...<jk+1≤n

and, for 1 ≤ i1, . . . , il, . . . , ik ≤ n and 1 ≤ j1, . . . , jl, . . . , jk+1 ≤ n, we set

[d̂Fil
] = dFi1 ∧ . . . ∧ d̂Fil

∧ . . . ∧ dFik
, [d̂Fjl

] = dFj1 ∧ . . . ∧ d̂Fjl
∧ . . . ∧ dFjk+1 .

We have, using formula (3.1),

(6.2) ∂λ[F ( · , λ)∗ω] = d

[∑
I

(wi1...ik
◦ F )

k∑
l=1

(−1)l−1∂λFil
[d̂Fil

]
]

+
∑

I

n∑
j=1

(∂jwi1...ik
◦ F )∂λFj dFi1 ∧ . . . ∧ dFik

−
∑

I

d(wi1...ik
◦ F ) ∧

[ k∑
l=1

(−1)l−1∂λFil
[d̂Fil

]
]
.

Now ∑
I

n∑
j=1

(∂jwi1...ik
◦ F )∂λFj dFi1 ∧ . . . ∧ dFik

=
∑

I

∑
j<i1

(∂jwi1...ik
◦ F )∂λFj dFi1 ∧ . . . ∧ dFik

+
∑

I

(∂i1wi1...ik
◦ F )∂λFi1 dFi1 ∧ . . . ∧ dFik

+
∑

I

∑
i1<j<i2

(∂jwi1...ik
◦ F )∂λFj dFi1 ∧ . . . ∧ dFik
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+
∑

I

(∂i2wi1...ik
◦ F )∂λFi2 dFi1 ∧ . . . ∧ dFik

+ . . .

+
∑

I

∑
ik−1<j<ik

(∂jwi1...ik
◦ F )∂λFj dFi1 ∧ . . . ∧ dFik

+
∑

I

(∂ik
wi1...ik

◦ F )∂λFik
dFi1 ∧ . . . ∧ dFik

+
∑

I

∑
ik<j

(∂jwi1...ik
◦ F )∂λFj dFi1 ∧ . . . ∧ dFik

.

Grouping the terms of similar nature and renaming the multi-indices, we obtain∑
I

n∑
j=1

(∂jwi1...ik
◦ F )∂λFjdFi1 ∧ . . . ∧ dFik

(6.3)

=
∑

J

k+1∑
l=1

(∂jl
wj1...bjl...jk+1

◦ F )∂λFjl
[d̂Fjl

]

+
∑

I

k∑
l=1

(∂il
wi1...ik

◦ F )∂λFil
dFi1 ∧ . . . ∧ dFik

.

On the other hand, we have

∑
I

d(wi1...ik
◦ F ) ∧

[ k∑
l=1

(−1)l−1∂λFil
[d̂Fil

]
]

=
∑

I

∑
j

(∂jwi1...ik
◦ F ) dFj ∧

[ k∑
l=1

(−1)l−1∂λFil
[d̂Fil

]
]

=
∑

I

k∑
l=1

(−1)l−1

( ∑
j<i1

+
∑

i1<j<i2

+ . . .+
∑

il−1<j<il

)
(∂jwi1...ik

◦ F )∂λFil
[d̂Fil

]

+
∑

I

k∑
l=1

(−1)l−1(∂il
wi1...ik

◦ F )∂λFil
[d̂Fil

]

+
∑

I

k∑
l=1

(−1)l−1

( ∑
il<j<il+1

+ . . .+
∑
ik<j

)
(∂jwi1...ik

◦ F )∂λFil
[d̂Fil

].

Renaming the indices, we obtain

∑
I

d(wi1...ik
◦ F ) ∧

[ k∑
l=1

(−1)l−1∂λFil
[d̂Fil

]
]

=
∑

j2<...<jk+1

k∑
l=1

(−1)l−1
∑

j1<j2

(∂j1wbj1j2...jk+1
◦ F ) ∂λFjl+1 [d̂Fjl+1 ]

+
∑

j1<j3<...<jk+1

k∑
l=1

(−1)l−1
∑

j1<j2<j3

(∂j2wj1 bj2j3...jk+1
◦ F )
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· ∂λFjl+1 (−1) [d̂Fjl+1 ] + . . .

+
∑

j1<...<bjl<...<jk+1

k∑
l=1

(−1)l−1
∑

jl−1<jl<jl+1

(∂jl
wj1...bjl...jk+1

◦ F )

· ∂λFjl+1(−1)l−1 [d̂Fjl+1 ]

+
∑

I

k∑
l=1

(∂il
wi1...ik

◦ F )∂λFil
dFi1 ∧ . . . ∧ dFik

+
∑

j1<...<djl+1<...jk+1

k∑
l=1

(−1)l−1
∑

jl<jl+1<jl+2

(∂jl+1wj1...djl+1...<jk+1
◦ F )·

· ∂λFjl+1(−1)l−1 [d̂Fjl+1 ] + . . .

+
∑

j1<...<jk

k∑
l=1

(−1)l−1
∑

jk<jk+1

(∂jl+1wj1...jk
◦ F )∂λFjl+1(−1)k−1 [d̂Fjl+1 ]

=
k∑

l=1

(−1)l−1
∑

J

l∑
s=1

(−1)s−1(∂jswj1...bjs...jk+1
◦ F )∂λFjl+1 [d̂Fjl+1 ]

+
∑

I

k∑
l=1

(∂il
wi1...ik

◦ F )∂λFil
dFi1 ∧ . . . ∧ dFik

+
k∑

l=1

(−1)l−1
∑

J

k+1∑
s=l+2

(−1)s−1(∂js
wj1...bjs...jk+1

◦ F )∂λFjl+1 [d̂Fjl+1 ]

= (−1)k−1
∑

J

k∑
s=1

(−1)s−1(∂js
wj1...bjs...jk+1

◦ F )∂λFjk+1 [d̂Fjk+1 ]

+
∑

I

k∑
l=1

(∂il
wi1...ik

◦ F )∂λFil
dFi1 ∧ . . . ∧ dFik

+
∑

J

k+1∑
s=2

(−1)s−2(∂js
wj1...bjs...jk+1

◦ F )∂λFj1 [d̂Fj1 ]

+
k∑

l=1

(−1)l−1
∑

J

k+1∑
s=1

(∂js
wj1...bjs...jk+1

◦ F )∂λFjl+1 [d̂Fjl+1 ]

−
k−1∑
l=1

∑
J

(−1)2l+1(∂jl+1wj1...djl+1...jk+1
◦ F )∂λFjl+1 [d̂Fjl+1 ].

Using relations (2.1), this implies that∑
I

d(wi1...ik
◦ F ) ∧

[ k∑
l=1

(−1)l−1∂λFil
[d̂Fil

]
]

=(−1)k−1
∑

J

(−1)k+1(∂jk+1wj1...jk
◦ F )∂λFjk+1 [d̂Fjk+1 ]
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+
∑

I

k∑
l=1

(∂il
wi1...ik

◦ F )∂λFil
dFi1 ∧ . . . ∧ dFik

+
∑

J

(∂j1wj2...jk+1 ◦ F )∂λFj1 [d̂Fj1 ]

+
k−1∑
l=1

∑
J

(∂jl+1wj1...djl+1◦F )...jk+1
∂λFjl+1 [d̂Fjl+1 ].

Regrouping the terms, we find

(6.4)
∑

I

d(wi1...ik
◦ F ) ∧

[ k∑
l=1

(−1)l−1∂λFil
[d̂Fil

]
]

=
∑

J

k+1∑
l=1

(∂jl
wj1...bjl...jk+1

◦ F )∂λFjl
[d̂Fjl

]

+
∑

I

k∑
l=1

(∂il
wi1...ik

◦ F )∂λFil
dFi1 ∧ . . . ∧ dFik

.

Comparing formulas (6.3) and (6.4) finishes the proof. �

An interesting consequence of Theorem 6.1 is the following result on the
invariance of an integral. For the differential k-form

ω =
∑

1≤i1<...<ik≤n

wi1...ik
dxi1 ∧ . . . ∧ dxik

,

define the support of ω by

suppω =
⋃

1≤i1<...<ik≤n

suppwi1...ik
.

Corollary 6.2. Let ω be a differential k-cocycle of class C1 in the open
set D ⊂ Rn, G ⊂ Rk be open and bounded and F :G× [a, b] → D be of class C2.
If, for each λ ∈ [a, b], one has

(6.5) suppω ∩ F ( · , λ)(∂G) = ∅,

then the integral

(6.6)
∫

G

F ( · , λ)∗ω

is independent of λ on [a, b].
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Proof. Using Leibniz rule, Theorem 6.1 and Stokes theorem, we get, with

α =
∑

i1<...<ik

(wi1...ik
◦ F )

k∑
j=1

(−1)j−1∂λFij
dFi1 ∧ . . . ∧ d̂Fij

∧ . . . ∧ dFik
,

∂λ

[ ∫
G

F ( · , λ)∗ω
]

=
∫

G

∂λ[F ( · , λ)∗ω] =
∫

G

dα =
∫

∂G

α = 0. �

7. Liouville theorem

Let v: Rn → Rn be of class C1 and, for each y ∈ Rn, let x: [0, T ]×Rn → Rn,
(t, y) 7→ x(t, y) be the unique solution of the Cauchy problem

(7.1)
dx

dt
= v(t, x), x(0) = y,

so that, for each (t, y) ∈ [0, T ]× Rn, we have

(7.2) ∂tx(t, y) = v[t, x(t, y)].

If ω = dy1 ∧ . . . ∧ dyn is the volume n-form, then, for each t ∈ [0, T ],

(7.3) [x(t, · )]∗ω = dx1(t, · ) ∧ . . . ∧ dxn(t, · ) = Jacx(t, · )(y) dy1 ∧ . . . ∧ dyn,

where, for each fixed t ∈ [0, T ], Jacx(t, · ) is the Jacobian of x(t, · ). For each
fixed t, div v(t, · ) =

∑n
j=1 ∂jvj(t, x). The following result can be traced to

Liouville [7] (see also [1]).

Theorem 7.1. For each t ∈ [0, T ], we have

(7.4) ∂t{[x(t, · )]∗ω} = [x(t, · )]∗[div v(t, · ) dy1 ∧ . . . ∧ dyn]

or equivalently

(7.5) ∂t[dx1(t, · ) ∧ . . . ∧ dxn(t, · )] = div v[t, x(t, · )] dx1(t, · ) ∧ . . . ∧ dxn(t, · ),

or equivalently

(7.6) ∂t Jacx(t, y) = div v[t, x(t, y)] Jacx(t, y).
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Proof. Using formulas (3.2) and (7.2), we get

∂t{[x(t, · )]∗ω} = ∂t[dx1(t, · ) ∧ . . . ∧ dxn(t, · )]

=
n∑

j=1

dx1(t, · ) ∧ . . . ∧ d[∂txj(t, · )] ∧ . . . ∧ dxn(t, · )

=
n∑

j=1

dx1(t, · ) ∧ . . . ∧ dvj [t, xj(t, · )] ∧ . . . ∧ dxn(t, · )

=
n∑

j=1

dx1(t, · ) ∧ . . . ∧
[ n∑

k=1

∂kvj [t, xj(t, · )] dxk(t, · )
]
∧ . . . ∧ dxn(t, · )

=
[ n∑

j=1

∂jvj [t, xj(t, · )]
]
dx1(t, · ) ∧ . . . ∧ dxn(t, · )

= [x(t, · )]∗[div v(t, · ) dy1 ∧ . . . ∧ dyn]

= div v[t, x(t, · )] dx1(t, · ) ∧ . . . ∧ dxn(t, · )
=div v[t, x(t, · )] Jacx(t, · ) dy1 ∧ . . . ∧ dyn.

and the three formulas easily follow. �

8. Helmholtz theorem

We present here a n-dimensional version of Helmholtz theorem in hydrody-
namics [4], [6], [11]. Let

(8.1) x: [0, T ]× Rn → Rn, (t, y) 7→ x(t, y)

be of class C2. For n = 3, in the hydrodynamics setting, it represents the position
at time t of a particule located at y for t = 0 (Lagrange’s notations). Let

(8.2) u: [0, T ]× Rn → Rn, (t, x) 7→ u(t, x)

be of class C1. For n = 3, in the hydrodynamics setting, it represents the velocity
of a point of the fluid located in x at time t (Euler’s notations). Consequently,
we have, for all (t, y) ∈ [0, T ]× Rn,

(8.3) u[t, x(t, y)] = ∂tx(t, y),

Assume that there exists a function ψ: [0, T ]×Rn → R of class C1 such that, for
all (t, y) ∈ [0, T ]× Rn, one has

(8.4)
d

dt
{u[t, x(t, y)]} = ∇xψ[t, x(t, y)].

For n = 3, in the hydrodynamics setting, those are the equations of motion of
the fluid, under the assumption that the external forces depend upon a potential
and that the density depends only of the pressure.
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Lemma 8.1. For each t ∈ [0, T ], one has

(8.5) ∂t

{
[x(t, · )]∗

[ n∑
j=1

uj(t, · ) dyj

]}
= ∂t

[ n∑
j=1

uj [t, x(t, · )] dxj(t, · )
]

= d

[
ψ(t, · ) +

1
2

n∑
j=1

u2
j [t, x(t, · )]

]
.

Proof. Using formulations (3.2), (8.3) and (8.4), we get

∂t

[ n∑
j=1

uj [t, x(t, · )] dxj(t, · )
]

=
n∑

j=1

[
d

dt
{uj [t, x(t, · )]} dxj(t, · ) + uj [t, x(t, · )] ∂t[dxj(t, · )]

]

=
n∑

j=1

[∂jψ[t, x(t, · )] dxj(t, · ) + uj [t, x(t, · )] d{∂txj(t, · )}]

= dψ(t, · ) +
n∑

j=1

uj(t, x(t, · ) duj [t, x(t, · )]

= d

[
ψ(t, · ) +

1
2

n∑
j=1

u2
j [t, x(t, · )]

]
. �

Let γ: [a, b] → Rn be a 1-cycle of class C2 (i.e. γ(0) = γ(1)), so that, for each
fixed t ∈ [0, T ], x(t, γ( · )) is the 1-cycle of class C2 which is the image of γ([a, b])
at time t under the motion of the fluid. Let us consider now the circulation of
the velocity field along x(t, γ( · )),

(8.6) C(t) :=
∫

x(t,γ( · ))

n∑
j=1

uj dyj .

Theorem 8.2. The integral (8.6) is constant on [0, T ].

Proof. We have, from Leibniz’ rule and formula (8.5),

C ′(t) =
∫ T

0

∂t

[ n∑
j=1

uj [t, x(t, γ(s))] dxj [t, γ(s)]
]

=
∫ T

0

d

[
ψ[t, γ(s)] +

n∑
j=1

u2
j [t, x(t, γ(s))]

2

]
= 0. �
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