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ON ORBITAL TOPOLOGICAL EQUIVALENCE
OF CUBIC ODES IN TWO-DIMENSIONAL ALGEBRAS

Zalman Balanov — Wiesław Krawcewicz — Shira Zur

Abstract. Cubic differential systems in real commutative two-dimensio-
nal algebras are classified up to orbital topological equivalence via the sol-
ubility of polynomial equations in algebras. As a by-product, existence of
bounded solutions in such systems is studied via complex structures in the
algebras. Application to the existence of periodic solutions to n-dimensional
differential systems ”cubic at infinity” is given.

1. Introduction

1.1. Subject and goal of the paper. Given a real, two-dimensional, com-
mutative, in general, non-associative algebra A = (A, ∗), where “∗” stands for
the (binary) multiplication, consider an ODE

(1.1)
dx

dt
= x(t) ∗ x(t) ∗ x(t) = x3(t) (x ∈ A, t ∈ R).

The main goal of this paper is to describe qualitative profiles of (1.1) in terms of
the solubility of several “basic” polynomial equations in A. Our interest in the
above problem is motivated by several reasons.
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(a) Classification of quadratic systems and two-dimensional algebras. A lot of
efforts has gone into classifying quadratic systems ẋ = x(t)∗x(t) = x2(t), x ∈ A,
up to several equivalences stronger than the topological one (see, for instance,
[3], [33], [21], [10], [34]). Observe that, on the one hand, the right-hand side of
(1.1) performs as an acceleration of the field x→ x2, x ∈ A. On the other hand,
for almost all x ∈ A, the multiplication table of A is completely determined by
the vectors x2, x3 and x2 ∗ x2. Therefore, the topological classification of cubic
systems in A (together with the one of systems of the form ẋ = x2(t) ∗ x2(t))
should give (i) a better understanding the hierarchy of the quadratic system
equivalences mentioned above as well as (ii) a reasonable classification of real
commutative two-dimensional algebras (cf. [31], [6]). This stream of ideas and
applications goes beyond the scope of the present paper.

(b) Bounded solutions to cubic systems in algebras. Let f = (f1, . . . , fn):
R
n → R

n be a k-homogeneous map meaning that all fi are homogeneous poly-
nomials of degree k. The corresponding differential system

(1.2) ẋ = f(x) (x ∈ R
n)

is also called k-homogeneous. The problem of the existence of bounded solutions
to (1.2) has attracted much attention for a long time (cf. [19], [27], [23], [8]).

Definition 1.1. Let x = x(t) be a non-constant solution to (1.2). We say
that x = x(t) is bounded if there exists a real α > 0 such that ‖x(t)‖ < α for all
t ∈ R.

As a consequence of the main topological classification result of this paper
(see Theorems A1–A3) we obtain

Theorem B. Let A be a real two-dimensional commutative algebra for which
x3 �≡ 0. System (1.1) has a bounded solution if and only if for some x, u, v ∈ A
at least one of the following four conditions is satisfied:

(a) x3 = −x and u2v2 = 0 (x, u2, v2 �= 0),
(b) x3 = −x and u2u2 = −u2 (x, u2 �= 0),
(c) x3 = 0 and u2u2 = −u2 (x, u2 �= 0),
(d) x3 = 0 and u2v2 = 0 (x, u2, v2 �= 0),

provided A is not isomorphic to the algebra N3 with the multiplication table:
e21 = e2, e

2
2 = e1, e1e2 = 0.

Theorem B admits an immediate extension to the so-called rank three algebras
of arbitrary dimension (i.e. the algebras for which any one-generated subalgebra
has dimension ≤ 2 (see Definition 2.8, cf. [35]). The latter result is applied to
study periodic solutions to n-dimensional systems being “cubic at infinity” (see
Theorem C, cf. [27], [19], [23], [8]).
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(c) Occurence of 3-homogeneous maps in (binary) algebras. It is easy to
see that not every planar homogeneous polynomial map of degree three may
be realized as a cubic map x → x3 in the corresponding (binary) algebra. As
a by-product of Theorems A1–A3, we obtain explicit topological and algebraic
obstructions for such a realization. For instance, if origin is isolated for the
cubic map in a (binary) algebra A, then the topological index ind(0, x3) cannot
be equal to −3.
Observe, finally, that the present paper adjoins [6] (where important topolog-

ical and algebraic equivalences on the set of real two-dimensional commutative
algebras are considered) and [7] (where quadratic systems in non-associative al-
gebras are studied). We also give complete proofs of several results from [6]
which have been announced there without proofs.

Throughout the rest of this paper AlgC(Rn) stands for the set of all real
n-dimensional (binary) commutative algebras.

1.2. Historical remarks. The problem of studying topological profiles of
homogeneous systems was attacked using different techniques:

(a) direct analytical methods (see [13], [12], [33], [21], [28]),
(b) topological index methods (see [14], [32], [4], [19], [23]),
(c) Lyapunov-type function approach (see [19], [27], [23]),
(d) singularity theory methods (see [5]),
(e) invariant theory methods (see [10], [34], [9],
(f) algebraic approach (see [22], [17], [35], [36], [24]–[26], [29], [30]),

to mention a few. In particular, the authors of [4], [9], [29], [30] suggested
effective methods to study topological profiles of (1.1). However, the importance
of our approach rests on the following three observations:

(i) the techniques developed in [4], [9], [10], [34] are rather two-dimensional
in nature with no meaning to be extended to higher dimensions,

(ii) the aprroaches used in (a)–(d) are not semi-algebraic in nature,
(iii) although the methods developed in (f) are algebraic, they, nevertheless,
ignore the “complex structures” in algebras which, as we believe, are
behind any semi-algebraic results on the existence of bounded solutions
to polynomial systems (see Subsection 2.1 and [6], [7], [20]).

1.3. Overview. After the Introduction the paper is organized as follows.
The first section contains algebraic preliminaries: complex structures (as well
as their degenerate versions) are defined, some important properties of the fun-
damental forms associated to planar homogeneous maps are discussed and the
notations frequently used throughout the paper are introduced. Section 3 is of
a topological flavor: we discuss possible values of the Poincaré index of quadratic
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and cubic maps in connection with complex structures; in particular, we com-
plete the proofs of several results annonced in [6] without proofs. In Section 4
we discuss some notions and facts related to the orbital topological equivalence
(in short, OTE) of planar maps. Our main results are stated and proved in
Sections 5–7: combining the methods and ideas described in Sections 2–4 with
the results from [4], [9], we classify (up to OTE) phase portraits of system (1.1)
occuring in a real (binary) two-dimensional algebra. The last Section contains
applications to the existence of bounded solutions to cubic systems occuring in a
rank three algebra (see Theorem B′). Observe that any 3-homogeneous map in
Rn with isolated origin has topological index different from zero. Therefore, The-
orem B′ has an immediate application to studying periodic solutions of systems
being “cubic at infinity” (see Theorem C, cf. [19], [27], [23]).

2. Algebraic preliminaries

2.1. Idempotents, nilpotents, zero divisors and complex structures.
For the non-associative algebras background we refer to [37].
Throughout this section a ∈ A ∈ AlgC(Rn) stands for a non-zero element.

As usual, a is called an idempotent (resp. 2-nilpotent) if a2 = a (resp. a2 = 0).

Proposition 2.1 (see [16]). Let A ∈ AlgC(Rn) be an algebra without 2-
nilpotents. Then A contains an idempotent.

Obviously, if a ∈ A is an idempotent (resp. 2-nilpotent), then a3 = a (resp.
a3 = 0). This gives rise to the following notions: a is called a positive 3-
idempotent (resp. 3-nilpotent) if a3 = a and a2 �= a (resp. a3 = 0 and a2 �= 0).
Finally, a is called a zero divisor (resp. square zero divisor, square nilpotent)

if there exists a non-zero b ∈ A such that ab = 0 (resp. a2b2 = 0 (a2 �= 0, b2 �= 0),
a2a2 = 0 (a2 �= 0)).
The following notions generalizing complex unit in C were introduced in [6].

Definition 2.2. We say that x ∈ A ∈ AlgC(Rn) is a negative square idem-
potent if

(2.1) x2x2 = −x2 (x2 �= 0);
y is a negative 3-idempotent if

(2.2) y3 = −y,
z is a negative square nilpotent if

(2.3) z2n = −n for n2 = 0, n �= 0.

As we will see later on, the algebraic notions introduced above completely
determine the OTE classification of phase portraits of cubic systems occuring in
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algebras from AlgC(R2). Therefore, the corresponding algebraic equations are
sometimes refered to as the basic ones. Given an algebra A ∈ AlgC(R2), the
symbols e(A) (resp. n(A), n3(A)) stand for the number of idempotents (resp.
2-nilpotents, 3-nilpotents (conted up to a non-zero scalar)). Also, we will denote
by e+3 (A) (resp. e

−
3 (A), e

−
2,2(A), z(A), z2,2(A), n2,2(A)) the set of positive 3-

idempotents (resp. negative 3-idempotents, negative square idempotents, zero
divisors, square zero divisors, square nilpotents); we will use “+” (resp. ∞) to
indicate that the corresponding set is non-empty and finite (resp. infinite), and
“−”, otherwise.
2.2. Regular and singular algebras. Recall the following

Definition 2.3 (cf. [1], [31]). An algebra A ∈ AlgC(R2) is called regular
if there exists u ∈ A such that the linear operator Lu : R2 → R2 defined by
x → ux belongs to GL(2,R) (by the same token, A2 ⊇ A). Otherwise, A is
called singular.

Examples 2.4. All singular two-dimensional algebras (including the non-
commutative ones over an arbitrary field) have been described in [31]. In par-
ticular, any element in such an algebra is a zero divisor. For completeness we
present below the corresponding results for the real commutative case.
Take in R

2 a basis (e1, e2) and set e1e2 = 0. Put e21 = e1 and define three
algebras N0 (resp. N1 and N2) by setting e22 = e1 (resp. e

2
2 = 0 and e

2
2 = −e1).

Let N∞ ∈ AlgC(R2) be the algebra with trivial multiplication. It is easy to
see that n(Ni) = i (i = 0, 1, 2,∞). Further, using the above zero divisor basis
(e1, e2) define two additional algebras N

0
1 (resp. N

0
2) by setting e

2
1 = e2, e

2
2 = 0

(resp. e21 = e1 + e2, e
2
2 = −e1 − e2). In turn, e(N01) = e(N02) = 0 and e(N0) =

e(N1) = e(N2) = 1.
Up to isomorphism the above six algebras exhaust singular algebras. Observe

that none of them contains a negative 3-idempotent and only N01,N0 and N2

contain 3-nilpotents. Finally, x3 ≡ 0 for any x ∈ N01; also, N2 is the only algebra
containing a negative square idempotent.

2.3. Fundamental forms of homogeneous maps and trace vector. Let
g = (g1, g2):R2 → R2 be a k-homogeneous map meaning that its coordinate func-
tions gi are homogeneous forms of degree k = 2, 3. Define a fundamental (k+1)-
form Fk+1 associated to g according to the formula:

Fk+1(x1, x2) = x1g2(x1, x2)− x2g1(x1, x2) for (x1, x2) ∈ R
2.

The importance of Fk+1 rests on the following obvious observation: if x ∈ R2

satisfies the equation g(x) = λx for some λ ∈ R, then Fk+1(x) = 0.
Take A ∈ AlgC(R2) and denote by FA3 (resp. FA4 ) the fundamental 3-form

(resp. 4-form) associated to the map x→ x2 (resp. x→ x3), x ∈ A. It turns out
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that there is an intimate connection between FA3 and F
A
4 related to the solubility

properties of the equation

(2.4) x3 = λx (x ∈ A, λ = −1, 0, 1).
To see this we need the following

Definition 2.5 (cf. [10], [6]). Let A ∈ AlgC(R2) be an algebra with the
multiplication table: e21 = a1e1 + b1e2, e1e2 = a2e2 + b2e2, e

2
2 = a3e1 + b3e2.

Set p1 = a1 + b2, p2 = a2 + b3. The vector p = (p1, p2) is called a trace vector
associated to A. Set tr⊥(A) = (−p2, p1).

Lemma 2.6. Let A ∈ AlgC(R2) and let FA3 (resp. FA4 ) be a fundamental
3-form (resp. 4-form) associated to the map x → x2 (resp. x → x3), x ∈ A.
Then

(2.5) FA4 (x1, x2) = (p1x1 + p2x2)F
A
3 (x1, x2).

Proof. By direct computation,

(2.6) F3(x1, x2) = b1x31 + (2b2 − a1)x21x2 + (b3 − 2a2)x1x22 − a3x32,
F4(x1, x2) = (a1b1 + b1b2)x41 + (a2b1 − a21 + 2b22 + a1b2 + b1b3)x31x2

+ (3b2b3 − 3a1a2)x21x22
+ (b23 − a3b2 − a3a1 − b3a2 − 2a22)x1x32
+ (−a3a2 − b3a3)x42,

and the result follows. �
Remark 2.7. Some comments related to formula (2.5) are in order:

(a) FA3 divides F
A
4 since x

2 = x (resp. x2 = 0) implies x3 = x (resp. x3 = 0),
(b) if x is not a solution to

(2.7) x2 = µx (x ∈ A, µ = 0, 1)
and satisfies (2.4), then x is orthogonal to the trace vector, i.e. 3-nilpo-
tents, positive and negative 3-idempotents are proportional to tr⊥(A),

(c) if (2.4) admits infinitely many solutions, then FA4 ≡ 0.

2.4. Rank of algebra. Pseudo-composition algebras. Lemma 2.6 to-
gether with Remark 2.7 give rise to the following two questions:

(1) Which algebras from AlgC(R2) do admit infinitely many solutions to
equation (2.4)?

(2) Which algebras from AlgC(R2) are 3-nilpotent, negative 3-idempotent
and positive 3-idempotent free?

To answer the first question we need
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Definition 2.8 (cf. [35], [6]). Let A ∈ AlgC(Rn).
(a) A is called a rank three algebra if there are a linear form γ1 and a qua-
dratic form γ2 on A such that the identity

(2.8) x3 = γ1(x)x2 − γ2(x)x
holds for all x ∈ A.

(b) The forms γ1 and γ2 are called trace and norm, respectively. To indicate
a connection with the underlying algebra A we will sometimes write γA2
(resp. γA1 ) instead γ2 (resp. γ1).

(c) If γ1 ≡ 0, then A is called a pseudo-composition algebra.
(d) A is called a rank two algebra if there exists a linear form γ1 on A such
that x2 = γ1(x)x for all x ∈ A.

Examples 2.9. (a) It is easy to see that any A ∈ AlgC(R2) is of rank
three. Moreover, A ∈ AlgC(Rn) is of rank three if and only if any one-generated
subalgebra of A is of dimension ≤ 2.
(b) Obviously, the algebra N∞ (see Examples 2.4) is of rank two. Also, the

algebra N1/2 ∈ AlgC(R2) with the multiplication table e21 = e1, e1e2 = e2/2,
e22 = 0 is of rank two. Obviously, n(N1/2) = 1 and e(N1/2) =∞.
(c) Clearly, the algebras N∞, N01 (see Examples 2.4) and N3 (see Theorem

B) are pseudo-composition. Define two new algebras C and N with the multipli-
cation tables e21 = e1, e1e2 = −e2, e22 = −e1 and e21 = e1, e1e2 = −e2, e22 = 0,
respectively. By direct computation, C and N are pseudo-composition as well.
Also, e+3 (C) = ∞, e−3 (C) = −, n(C) = n3(C) = 0, e−3 (N) = −, e+3 (N) = ∞,
n3(N) = 0, n2(N) = 1, e+3 (N3) = e

−
3 (N3) =∞, n(N3) = 0, n3(N3) = 2.

The statement following below answers question (1).

Proposition 2.10 (cf. [6]). Take A ∈ AlgC(R2).
(a) The following statements are equivalent:
(a1) FA3 ≡ 0.
(a2) Equation (2.7) admits infinitely many solutions.
(a3) A is of rank two (in this case A is isomorphic to either N∞ or

N1/2).
(b) The following statements are equivalent:
(b1) FA4 ≡ 0.
(b2) Equation (2.4) admits infinitely many solutions.
(b3) A is either of rank two or non-trivial pseudo-composition (in the
latter case A is isomorphic to one of the four non-trivial algebras
listed in Examples 2.9(c)).

The following statement answers question (2).
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Proposition 2.11. Take A ∈ AlgC(R2) and assume A is 3-nilpotent, posi-
tive and negative 3-idempotent free.

(a) If A is a division algebra, then A admits the multiplication table e21 = e2,
e1e2 = αe1 + βe2, e22 = −e2 with either α = 1 and β ∈ R or α > 1/4
and β = ±(1− α)(4α− 1)−1/2.

(b) Assume A is a regular algebra with n(A) = 0 and let A admit a zero
divisor basis (e1, e2). Then A admits a multiplication table

(2.9) e21 = e1 + βe2, e
2
2 = αe1 + e2 (α + β = −2)

or the multiplication table

(2.10) e21 = γe1 + e2, e
2
2 = e1 + δe2 (γ

3 + 2γ2δ2 + δ3 = 0).

(c) Let A be a regular algebra with a 2-nilpotent e2. Assume A is neither
pseudo-composition nor of rank two. Then either A is free from square
nilpotents or A admits a multiplication table

(2.11) e21 = e2, e1e2 = e1 ±
1
2
e2.

(d) Assume A is singular. Then A is isomorphic to either N1 or N02 (cf.
Examples 2.4).

Proof. “Canonical forms” of the multiplication tables appropriate for each
of the cases (a)–(d) can be found in [6]. Take the vector tr⊥(A) in each case and
substitute into (2.6). �

3. Poincaré index and complex structures

3.1. Poincaré index. Given a smooth map f :R2 → R2, assign to f its
Poincaré index ind(0, f) according to the formula (cf. [18]):

(3.1) ind(0, f) :=
1
2π

∫
Γ

dt

‖f‖2
(
f1
df2
dt
− f2 df1

dt

)

(here Γ stands for the unit circle and the integral is understood in the sense of
Lebesgue; we assume the integral in (3.1) to exist and to be finite).
Observe that the standard construction of the topological index of a sin-

gular point of a planar vector field requires the point to be isolated (see, for
instance, [18]). In such a case the topological index coincides with the Poincaré
index. However, the algebraic maps we are dealing with may have non-isolated
origin. Nevertheless, the right-hand side of (3.1) is correctly defined even in this
case (i.e. the integrand has a removable singularity). The following statement is
a direct consequence of formula (3.1).
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Proposition 3.1. Let f = (f1, f2):R2 → R2 be a polynomial k-homogene-
ous map, f1 = gh1, f2 = gh2 (k = 2, 3), where g, h1 and h2 are (homogeneous)
polynomials. Let h = (h1, h2). Then

ind(0, f) = ind(0, h).

3.2. Poincaré index of quadratic maps and complex structures. Take
an algebra A ∈ AlgC(R2) with non-trivial multiplication and consider the qua-
dratic map f :A→ A defined by f(x) := x2.

Definition 3.2. We say that A ∈ AlgC(R2) is an algebra of index n if
ind(0, f) = n. We will also use the symbol ind(A) for the index of A.

It was established in [6] that ind(A) coincides with the signature of γ2, where
γ2 is the norm in A (see Definition 2.8(b)). In particular, (i) for (regular) algebras
without 2-nilpotents ind(A) = 2, 0,−2; (ii) for regular algebras with 2-nilpotents
ind(A) = ±1; (iii) for singular algebras ind(A) = 0. More precisely,

Proposition 3.3 (cf. [6]). Let A ∈ AlgC(R2) be a regular algebra.
(a) ind(A) = 2 if and only if A contains a negative square idempotent to-
gether with a negative 3-idempotent.

(b) ind(A) = −2 if and only if A contains a negative square idempotent and
does not contain a negative 3-idempotent.

(d) ind(A) = 0 if and only if A does not contain a negative square idempo-
tent and does not contain 2-nilpotents.

(d) If A contains a square nilpotent, then ind(A) = 1 if and only if A
contains a negative 3-idempotent.

(e) If A contains a 2-nilpotent and does not contain a square nilpotent, then
ind(A) = −1 if and only if A contains a negative square nilpotent.

3.3. Poincaré index of cubic maps and complex structures. Some of
the results considered in this subsection were presented in [6] without complete
proofs or contained a mistake.
Take an algebra A ∈ AlgC(R2) with x3 �≡ 0 and denote by ind(0, x3) the

Poincaré index of the cubic map x → x3. Obviously, ind(0, x3) = 0 for A
being singular. Also, if A contains neither 2-nilpotents, nor 3-nilpotents and
nor negative 3-idempotents, then, by the standard Bole–Brouwer Theorem (see,
for instance, [18, Theorems 4.1 and 4.3]), ind(0, x3) = ind(0, id) = 1, where id
stands for the identity map (cf. [6]). Next we consider several cases.

Case 1. Algebras without both 2- and 3-nilpotents. Consider the algebras
admitting a negative 3-idempotent (for the sake of convenience, including those
with 2- or 3-nilpotents). Bearing in mind that the Poincaré index takes the
same values for isomorphic algebras from AlgC(R2), we choose for A ∈ AlgC(R2)
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a basis in which the multiplication table takes the simplest form, namely: (e1, e21)
with e31 = −e1 and e21e21 = 2αe1 + βe21 for some reals α ≥ 0 and β. Denote by
Aα,β the corresponding algebra and let A be the union of all Aα,β .

Lemma 3.4 (“apriori estimate”). Take Aα,β ∈ A. Then:

(a) n(Aα,β) �= 0 if and only if α2 + β = 0,
(b) ind(0, Aα,β) = 2 if and only if α2 + β < 0,
(c) ind(0, Aα,β) = 0 if and only if α2 + β > 0,
(d) n3(Aα,β) �= 0 if and only if β = 1.

Proof. Statements (a)–(c) were proved in [6].

(d) Take x = (x1, x2) ∈ Aα,β . Then

(3.2) x3 = (−x31 + 2αx21x2 + (2− β)x1x22 + 2α(β − 1)x32,
(−2 + β)x21x2 + 2αx1x22 + β2x32).

Combining the resultant of the first and second components from (3.2) with
statement (a) yields the result. �

Remark 3.5. It is easy to see that all algebras from A with β = 1 are
isomorphic to N3.

Lemma 3.4 suggests a partition of the half-plane (α ≥ 0, β) onto three mu-
tually disjoint open blocks:

(∗) α2 + β < 0,
(∗∗) −α2 < β < 1,
(∗∗∗) β > 1,
(see Figure 3.1). The following statement was announced without a complete
proof in [6].

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

CCC 0

ind (0, x  )=2

Index  1

Index  2

 β + α   = 0 2

3 α

C
1/2

3

β

N 3

Index  0

33

0N

Complete complex structure Square zero divisors Zero divisors

ind (0, x  )=1

ind (0, x  )=-1ind (0, x  )=3

β = 1

8

2-nilpotents, 3-nilpotents,
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Lemma 3.6. Take Aα,β ∈ A. Then ind(0, x3) = 3 in the cases (∗) and (∗∗);
ind(0, x3) = −1 in the case (∗∗∗).

Proof. By construction, for any algebra A belonging to some block, origin
is an isolated singular point of the cubic map in A.
(a) Take an arbitrary algebra Aα0,β0 satisfying (∗) and show that ind(0, x3)

= 3 for this algebra.
To this end observe, first, that for the algebra A0,−1 one has 02 − 1 < 0.

Also, it is easy to see that A0,−1 is isomorphic to C – the algebra of complex
numbers. Therefore, ind(0, x3) = 3 for A−1,0. Put

(3.3) α = (1− t)α0, β = (1 − t)β0 − t,
where t ∈ [0, 1]. According to (∗), formulae (3.3) determine a family of algebras
Aα(t),β(t) satisfying

(3.4) α2(t) + β(t) < 0

for all t ∈ [0, 1]. Substitution of (3.4) into formula (3.2) determines the vector
function F : [0, 1] × R2 → R2 continuos in both variables and such that F (0, · )
(resp. F (1, · )) coincides with the cubic map in Aα0,β0 (resp. in A0,−1). Moreover,
bearing in mind (3.4) and Lemma 3.4, one obtains F (t, x) �= 0 for all t ∈ [0, 1]
and x ∈ R2 \ {0}. Therefore, by the homotopy invariance of the index (cf. [18,
Theorem 4.1]), ind(0, x3) = 3 for Aα0,β0 .
(b) Take an arbitrary algebra Aα0,β0 satisfying (∗∗). Consider the algebra

A0,1/2 and show that ind(0, x3) = 3 for it. Indeed, by direct computation utilizing
(3.2), one obtains

x3 =
(
− x31 +

3
2
x1x
2
2,−
3
2
x21x2 +

1
4
x32

)
,

which is immediately homotopic to

(3.5)
(
− x31 +

3
2
x1x

2
2,−3x21x2 +

1
2
x32

)
.

By means of the formula(
− x31 +

3
2
(t+ 1)x1x22,−3x21x2 +

1
2
(t+ 1)x32

)
(t ∈ [0, 1]),

one deforms (3.5) into the cubic map in the algebra C of index 3.
Next, we can deform the multiplication table for Aα0,β0 into the one for

A0,1/2 by means of the formulae:

α = α0, β = (1 − 2t)β0 + t (t ∈ [0, 1/2]),(3.6)

α = (2− 2t)α0, β = 1/2, (t ∈ [1/2, 1]).(3.7)
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Bearing in mind (∗∗), (3.6), (3.7), (3.2), and using the same argument as in (a),
one can prove that the cubic maps in Aα0,β0 and A0,1/2 are homotopic.
(c) Take an arbitrary algebra Aα0,β0 satisfying (∗∗∗). Consider the algebra

A0,2 and show that ind(0, x3) = −1 for it. Indeed, by direct computation utilizing
(3.2), x3 = (−x31, 4x32), i.e. x3 = diag{−1, 1} · (x31, 4x32)t from which it follows
that ind(0, x3) = −1 · 1 = −1 for A0,2. Put
(3.8) α = (1− t)α0, (1− t)β0 + 2t,
where t ∈ [0, 1]. Combining (∗∗∗), (3.8) with the same argument as in (a), one
can easily prove that the cubic maps in Aα0,β0 and A0,2 are homotopic.
Lemma 3.6 is completely proved. �

It remains to recognize algebraically the above subsets (∗)–(∗∗∗).
Proposition 3.7 (see [6]). Take Aα,β ∈ A.

(a) Aα,β is regular.
(b) Aα,β satisfies (∗) if and only if Aα,β contains a negative square idem-
potent.

(c) Aα,β satisfies (∗∗) or (∗∗∗) if and only if Aα,β is free from both 2- and
3-nilpotents and admits a zero divisor basis.

(d) Aα,β satisfies (∗∗) if and only if Aα,β is free from both 2- and 3-nilpotents
and contains square zero divisors.

Case 2. Regular algebras with 2-nilpotents. As was proved in [6], any (regu-
lar) algebraA ∈ AlgC(R2) with a 2-nilpotent admits either (i) a square nilpotent,
or (ii) a (unique) nilpotent ideal. In the case (i) A is isomorphic to an algebra
with the multiplication table

(3.9)± e21 = ±e2, e1e2 = e1 + µe2, e22 = 0
with µ ∈ R. In the case (ii) A admits the multiplication table of the form either

(3.10) e21 = e1, e1e2 = λe2, e
2
2 = 0

with λ ∈ R \ {0} (if λ = 0, then A is singular), or

(3.11) e21 = e1 + e2, e1e2 =
1
2
e2, e

2
2 = 0.

We have

Proposition 3.8 (see [6]). Let A ∈ AlgC(R2) be a regular algebra with
2-nilpotents.

(a) If A admits a square nilpotent, then ind(0, x3) = 1 + ind(A); equiva-
lently (cf. Proposition 3.3(d)), ind(0, x3) = 2 if A contains a negative
3-idempotent, and ind(0, x3) = 0, otherwise.
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(b) If A does not admit a square nilpotent, then ind(0, x3) = 1 in the case
(3.11) and ind(0, x3) = sign(λ(1 + 2λ)) in the case (3.10). In particular
(cf. Proposition 3.3(e)), if A does not admit a negative square nilpotent,
then ind(0, x3) = 1.

Case 3. Algebras with 3-nilpotents. Given an algebra A ∈ AlgC(R2) with a
3-nilpotent e1, choose in A the basis (e1, e21). Then the multiplication table for
A takes the form:

(3.12) e21 = e2, e1e2 = 0, e
2
2 = αe1 + βe2.

The following result presented in [6] with a minor mistake, describes possible
values of ind(0, x3) in algebras with 3-nilpotents.

Proposition 3.9 (cf. [6]). Let A ∈ AlgC(R2) be an algebra containing 3-
nilpotents. Then ind(A) = 0 and one of the following holds:

(a) ind(0, x3) is not defined for A ∼= N01,
(b) ind(0, x3) = 2 if and only if A contains square zero divisors,
(c) ind(0, x3) = 1 if and only if A contains a negative 3-idempotent (A ∼=

N3),
(d) ind(0, x3) = 0 otherwise.

Proof. Statements (c), (d) and observation (a) were established in [6]. To
show (d) (see [6]), one can assume that both γA1 (x) and γ

A
2 (x) are not equal to

zero identically (cf. Definition 2.8(b)).
In fact, the existence of a 3-nilpotent is equivalent to the existence of a linear

form λ(x) such that

(3.13) γA2 (x) = −2λ(x)γ1(x).
Bearing in mind (3.12), one easily obtains γA2 (x) = −αx1x2 and γA1 (x) = βx2
from which it follows (see 3.13) that

(3.14) λ(x) =
α

2β
x1.

Define a new algebra B = (R2, ◦) by
(3.15) x ◦ y = x ∗ y + λ(x)y + λ(y)x.
We have the following general statement due to S. Walcher (see [35]).

Lemma 3.10. Let A = (Rn, ∗) be a rank three algebra, λ a linear form on Rn

and let B = (Rn, ◦) be the algebra with the multiplication defined by (3.15). Then
B is a rank three algebra with the norm γB2 defined by

(3.16) γB2 (x) = γ
A
2 (x) − λ(x2) + 2λ(x)2 + 2λ(x)γA1 (x ∈ R

n).
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Continuation of the Proof of Proposition 3.9. Obviously,

(3.17) ind(0, x3) = ind(0, x2 + 2λ(x)x) = ind(B)

(here, of course, ind(0, x3) stands for the index of the cubic map in A). Accord-
ing to (3.17), to complete the computation of ind(0, x3), one should verify the
signature of γB2 (cf. [6]). Due to (3.13) and (3.16) one has:

(3.18) γB2 (x) = 2λ(x)
2 − λ(x2).

Combining (3.18) with (3.14) yields:

γB2 (x) =
α2

2β2
(x21 − βx22),

meaning that ind(B) = 1 − sign(β). If β > 0, there are no square zero divisors
in A; also, if β < 0, then b =

√−βe1 + e2 is a square zero divisor, e21b2 = 0.
The proof of Proposition 3.9 is complete. �

4. Orbital topological equivalence
of k-homogeneous ODEs: background

4.1. Basic definition. All the differential systems we are dealing with in
this section are supposed to be planar and k-homogeneous with 1 ≤ k ≤ 3. Any
such a system induces in a canonical way a system on the Poincaré 2-disc (see
[15], [9], [34] for details).

Definition 4.1 (cf. [15], [9], [34], [5], [3]). Let (A) and (B) be two planar
k-homogeneous systems of the form (1.2) with 1 ≤ k ≤ 3 and let (A′) and
(B′) be the corresponding projections on the Poincaré discs. (A) and (B) are
called orbitally topologically equivalent (in short, OTE-equivalent) if there exists
a homeomorphism of the Poincaré discs which carries singular points of (A′) into
singular points of (B′) and which maps the phase curves of (A′) into the phase
curves of (B′), preserving the direction of the motion.

Consider a planar system of the form (1.2). Let x0 ∈ R2 be a vector sat-
isfying f(x0) = λx0, λ ∈ R. Following [10], we will call a straight line passing
through origin and x0 a fixed direction. Obviously, fixed directions are invari-
ant with respect to the flow of (1.2). More specifically, if λ �= 0 (resp. λ = 0),
the fixed direction is called an invariant line (resp. equilibrium line) for (1.2).
It follows immediately from Definition 4.1 that the homeomorphism realizing
an orbital topological equivalence takes invariant lines (resp. equilibrium lines)
onto the invariant lines (resp. equlibrium lines). Essentially, the orbital topolog-
ical equivalence depends on the character of the sectors bounded by subsequent
invariant lines and location of equilibrium lines (cf. [4], [10], [34], [9]).
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4.2. Systems with isolated origin. We refer to [5], [3] for the defini-
tion of elliptic, hyperbolic and parabolic sectors for a planar dynamical system.
The following result (which is well-known as the Bendixon Theorem (see, for
instance, [3])) links the quantity and quality of the sectors with the Poincaré
index.

Proposition 4.2. Assume system (1.2) is planar, has isolated origin and
admits finitely many invariant lines. Then

ind(0, f) = 1 +
e− h
2
,

where e (resp. h) stands for the number of elliptic (resp. hyperbolic) sectors for
the system.

In what follows we will essentially use the following

Proposition 4.3 (cf. [4], [5], [10], [34], [9]). Let (A) and (B) be two planar
systems of the form (1.2) having isolated origin.

(a) Assume (A) and (B) do not contain invariant lines. Then (A) and (B)
are orbitally topologically equivalent if and onlu if origin is either a focus
or center for (A) and (B) simultaneously.

(b) Assume (A) and (B) do contain (finitely many) invariant lines. Then
(A) and (B) are orbitally topologically equivalent if and only if they have
the same number of elliptic, hyperbolic and parabolic sectors.

4.3. Systems with non-isolated origin: secant and tangent equlib-
rium lines. Assume now that origin is not an isolated singular point for a
planar system (A) of the form (1.2). Then the components of f = (f1, f2) have
a common (homogeneous) factor: f1 = µf1, f2 = µf2. Changing time ds = µdt
yields the system

(4.1)

{
ẋ1 = f1(x1, x2),

ẋ2 = f2(x1, x2),

for which f1 and f2 do not have comon factor (cf. [10], [34], [9]). Also, the zeros
of µ coincide with equlibrium lines of (A). In addition, the orbits of (4.1) are
the same as the orbits of (1.2) in the region µ > 0 while in the region µ < 0 the
orientation is reversed. Therefore, to obtain the orbital topological classification
of the (cubic) systems with non-isolated origin, one should consider quadratic
and linear systems (see [10], [34], [7]) with (homogeneous) zeros of µ “laid over”
(cf. [9]). As it is important to know the location of zeros of µ, we arrive at the
following
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Definition 4.4. Given a planar system (1.2) with µ( · ) being a common
factor of f1 and f2, denote by l a straight line on which µ( · ) vanishes. Take the
system (4.1).

(a) l is called e-secant (resp. h-secant, p-secant) for system (1.2) if there
exists an elliptic (resp. hyperbolic, parabolic) sector s for (4.1) such
that l intersects the interior of s.

(b) l is called tangent if it covers some invariant ray for (4.1).

5. Orbital topological equivalence of cubic systems
in algebras without both 2- and 3-nilpotents

5.1. Poincaré index, invariant lines and multiple roots of FA4 . Clearly,
invariant lines for system (1.1) can be generated by idempotents, positive 3-
idempotents, or negative 3-idempotents. We have

Proposition 5.1. Take A ∈ AlgC(R2).
(a) Assume A is free from 2-nilpotents. Then system (1.1) admits at least
one invariant line.

(b) Assume A is free from both 2- and 3-nilpotents. Then system (1.1)
admits infinitely many line solutions if and only if A is isomorphic
to a pseudo-composition algebra C (see Definition 2.8(c) and Exam-
ples 2.9(c)).

Proof. Statement (a) is a direct consequence of Proposition 2.1. State-
ment (b) follows from Proposition 2.10 and the fact that C is the only pseudo-
composition algebra without both 2- and 3-nilpotents. �

Proposition 5.2 (cf. [6, Proposition 6.1]). Let A ∈ AlgC(R2) be free from
both 2- and 3-nilpotents. Assume also that A contains a negative 3-idempotent.

(a) A may contain one, two or three idempotents provided A admits ei-
ther a negative square idempotent or square zero divisor (in both cases
ind(0, x3) = 3).

(b) If A admits a zero divisor basis and does not admit square zero divisors
(i.e. ind(0, x3) = −1), then A has precisely one idempotent.

(c) FA4 admits a (homogeneous) root of multiplicity three if and only if A
is isomorphic to the algebra C1/2 with the multiplication table e21 = e2,
e1e2 = −e1/2, e22 = −e2.

Proof. Since A contains a negative 3-idempotent, it admits the multi-
plication table e21 = e2, e1e2 = −e1, e22 = 2αe1 + βe2 (see Subsection 3.3).
Hence (see (2.6)), FA3 (x1, x2) = x

3
1 + (β + 2)x1x

2
2 − 2αx32 with the discriminant

D = −4((β + 2)3 + 27α2). Combining this with Lemma 3.6 yields statements
(a) and (b). Statement (c) was established in [11]. �
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Proposition 5.3. Let A ∈ AlgC(R2) be free from both 2- and 3-nilpotents.
Assume also A contains a positive 3-idempotent (in particular, ind(0, x3) = 1).
Assume, in addition, A is not isomorphic to C.

(a) If A admits a negative square idempotent then A, contains precisely
three idempotents.

(b) If A does not admit a negative square idempotent, then A may contain
one, two or three idempotents.

(c) FA4 admits a (homogeneous) root of multiplicity three if and only if A
is isomorphic to the algebra D1/2 with the multiplication table e21 = e2,
e1e2 = e1/2, e22 = e2.

Proof. By assumption, A admits the multiplication table e21 = e2, e1e2 =
e1, e22 = 2αe1+ βe2. By direct computation, A contains 2-nilpotents if and only
if α2 + β = 0. Moreover, A admits a negative square idempotent if and only if
α2 + β < 0. To complete the proof of statements (a) and (b) one can use the
same argument as in the proof of Proposition 5.2. For the proof of statement (c)
we refer to [11]. �

Proposition 5.4. Let A ∈ AlgC(R2) be free from both 2- and 3-nilpotents.
Assume also that A is free from both negative and positive 3-idempotents. Then:

(a) FA4 always contains a (homogeneous) root of multiplicity two.
(b) A may contain one, two or three idempotents.

Proof. (a) By assumption, FA4 should contain a (homogeneous) root of
multiplicity ≥ 2. Therefore, we have to show that the multiplicity of the root
cannot be greater than two. Indeed, if A contains a negative square idempotent
(i.e. (see Proposition 3.3) ind(A) = −2), then A contains three idempotents (see
Proposition 5.3) and the result follows. So that assume A contains a zero divisor
basis and we must consider two cases (cf. Proposition 2.11(b)).
Assume A satisfies (2.9). By direct computation, FA3 = −(2+α)x31+x1x22−

x21x2 − αx32 and, since the trace vector associated to A has the form (1, 1), we
obtain

(5.1) FA3 = (x1 + x2)(−(2 + α)x21 + (1 + α)x1x2 − αx32).
Assume

(5.2) FA3 = (x1 + x2)
2(tx1 + qx2) (t, q ∈ R).

Combining (5.1) and (5.2) yields −2 − α = t, 1 + α = t + q, −α = q that is
impossible.
Suppose A satisfies (2.10). Since γ = 0 yields δ = 0 and vice versa, we can

assume that γ and δ are different from zero (recall, A is free from 3-nilpotents).
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By direct computation, FA3 = x
3
1 + δx1x

2
2 − γx21x2 − x22. Since the trace vector

associated to A has the form (γ, δ), we obtain

(5.3) FA3 = (γx1 + δx2)
(
1
γ
x21 +
(
1 +
γ

δ2

)
x1x2 − 1

δ
x22

)
.

Assume

(5.4) FA3 = (γx1 + δx2)
2(tx1 + qx2).

Combining (5.3), (5.4), (2.10) and γ2 + δ2 �= 0 yields γ = δ = −1 that is
impossible, since, by assumption, A is regular. Statement (a) is proved.
(b) To show statement (b), take the second factor in the right-hand side of

(5.1) and observe that its discriminant may be positive, negative or equal to
zero. �

5.2. Classification. Our study of orbitally topologically equivalent classes
is essentially based on the following simple observation.

Lemma 5.5. Let A ∈ AlgC(R2) be free from both 2- and 3-nilpotents. As-
sume also A does not have a negative 3-idempotent. Assume, finally, A is not
isomorphic to C. Then the phase portrait to (1.1) has finitely many sectors and
each of them is parabolic.

Proof. By Proposition 5.1(b), system (1.1) admits finitely many sectors.
By assumption, all the invariant lines pass through either idempotents or positive
3-idempotents. Let x0 be either an idempotent or positive 3-idempotent, and let
s(t, x0) (resp. s(t,−x0)) be a phase curve passsing through x0 (resp. −x0).
By definition of direction on a phase curve (see [3, p. 13]), the direction

on a s(t, x0) (resp. s(t,−x0)) coincides with the direction of x0 (resp. −x0). In
particular, any two phase rays determining a sector for (1.1) are directed from
origin to infinity, i.e. the sector is parabolic. �

Combining Lemma 5.5 with Lemma 3.6, Proposition 3.7 and Bole–Brouwer
Theorem (see [18], Theorems 4.1 and 4.3) yields

Corollary 5.6. Assume A ∈ AlgC(R2) is free from both 2- and 3-nilpo-
tents. Assume A is not isomorphic to C. Then ind(0, x3) = 1 if and only if the
phase portrait to (1.1) admits only parabolic sectors.

We are now in a position to formulate the main result of this section.

Theorem A1. Let A ∈ AlgC(R2) be an algebra free from both 2- and 3-
nilpotents. Up to orbital topological equivalence, there exist precisely ten different
phase portraits for system (1.1) listed in the first colomn of Table 5.1 (the corre-
sponding numbers coincide with the ones presented in [9, pp. 444–445], where the
geometric types are drawn as well). Every orbital topological equivalence class
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is completely characterized by algebraic conditions given in Table 5.1 (for the
notations used in Table 5.1 we refer to Subsection 2.1).

Type e(A) e+3 (A) e
−
3 (A) e−2,2(A) z2,2(A)

(4) 3 + − + or − −
(5) 3 − + + (−) − (+)
(8) 2 (3) + (−) − − (+ or −) −
(9) 2 − + + (−) − (+)
(10) 1 − + − −
(11) 1 + − − −
(12) 1 − + + (−) − (+)
(13) 2 − − − −
(15) 1 − − − −
(64) 3 ∞ − + −

Table 5.1. Cubic systems with isolated origin

Proof. As it follows from [4] and [9] (cf. [29], [30]), a planar 3-homogeneous
system (1.2) having isolated origin, admits eighteen orbitally topologically non-
equivalent phase portraits (see [9, pp. 444–445, Figures (1)–(17) and (64)]). Be-
low we (i) clarify which of them can be realized for system (1.1) and (ii) classify
them in purely algebraic terms.
By Proposition 5.1(a), system (1.1) has at least one invariant line, hence

origin cannot be a center or focus, therefore, Figure (16) and (17) cannot appear
for system (1.1). Further, by Lemma 3.6 and Bole–Brouwer Theorem, ind(0, x3)
may take three values: −1, 1 and 3. Consider Figure (1) from [9]. Obviously (cf.
Proposition 4.2), ind(0, f) = −3, hence Figure (1) cannont appear for system
(1.1). Next, combining Corollary 5.6 with Proposition 4.2 shows that Figures
(3), (7) and (14) also cannot appear for system (1.1). Finally, combining Propo-
sitions 3.6, 3.7, 5.2(b) and 4.2 yields that Figures (2) and (6) also cannot appear
for system (1.1).
It follows immediately from Proposition 5.1(b) and [9] that system (1.1)

admits the phase portrait of type (64) if and only if A is isomorphic to C. Also
(see [4], [9]), if ind(0, x3) �= 1, then the value of the index together with the
number of invariant lines completely determine the phase portrait (up to OTE).
Combining this observation with Propositions 5.2(a) and (b), 3.6 and 3.7 yields
the algebraic characterization of phase portraits of types (5), (9), (12) and (10)
given in Table 5.1.
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It remains to consider algebras with ind(0, x3) = 1. It follows from [4], [9]
that for any i = 1, 2, 3, 4 there exists a planar 3-homogeneous system (1.2) with
ind(0, f) = 1 and precisely i invariant lines. Moreover, a phase portrait to (1.2)
is unique (up to OTE) in the case i = 1, 3, 4. This observation together with
Propositions 5.3 and 5.4 justify the algebraic characterization of Figures (4), (8)
and (15) in Table 5.1 (as well as the fact that Figures (11) and (13) can be
realized for system (1.1)). To differ algebraically Figure (11) from Figure (13)
observe, first, that according to [4], [9], FA4 has two (homogeneous) roots both of
multiplicity two only in the case of Figure (13). This situation can be realized if
and only if A contains precisely two idempotents and does not contain a positive
3-idempotent (cf. Proposition 5.4(a), (b)). Theorem A1 is completely proved.�

As an immediate consequence we have

Corollary 5.7. Assume A ∈ AlgC(R2) satisfies conditions of Theorem A1.
Then system (1.1) admits a bounded solution if and only if A contains a negative
3-idempotent together with either a negative square idempotent or square zero
divisor.

6. Orbital topological equivalence of qubic systems
in algebras with 3-nilpotents

6.1. Fundamental forms and location of 3-nilpotents. Throughout
this section A ∈ AlgC(R2) stands for an algebra with a 3-nilpotent e1. Then in
the basis (e1, e21) the multiplication table for A takes the form (3.12). Obviously,
A is singular if and only if α = 0; in this case A is isomorphic to one of the
following three algebras (cf. Examples 2.4): N0 (for β = 1), N01 (for β = 0) and
N2 (for β = −1). If A is regular, then without loss of generality one can assume
that α = 1. Then (cf. Proposition 3.9 and [6]), ind(0, x3) = 0 (resp. 2) if and
only if β > 0 (resp. β < 0); also ind(0, x3) = 1 for β = 0 (in this case A = N3

(cf. Theorem B)).

To recognize possible phase portraits for (1.1) in A = (R2, ∗), assign to A
an algebra B = (R2, ◦) according to formulae (3.14) and (3.15). Then (see
(3.17)) ind(0, x3) in A coincides with ind(B). Moreover, x ∗ x ∗ x = l(x) · x ◦ x,
where l( · ) is a linear form vanishing on the 3-nilpotent e1. Therefore, the OTE
classification of systems (1.1) in algebras with 3-nilpotents is essentially based
on the two statements following below.

Proposition 6.1. Let A = (R2, ∗) ∈ AlgC(R2) be a regular algebra con-
taining a 3-nilpotent with the multiplication table (3.12), where α = 1, and let
B = (R2, ◦) ∈ AlgC(R2) be the algebra defined according to (3.14) and (3.15).
Then:
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(a) FB3 = β · FA3 (in particular, if β �= 0 (i.e. A is not isomorphic to N3),
then A and B have the same idempotents).

(b) If ind(A) = 0 (i.e. β > 0), then A contains precisely one idempotent.
(c) If ind(A) = 1 (i.e. β = 0), then A contains precisely one idempotent;
in this case B is of rank two and, therefore, contains infinitely many
idempotents.

(d) If ind(A) = 2 (i.e. β < 0), then A may contain one, two or three
idempotents.

Proof. (a) By direct computation, FB3 = βx
3
1 + β

2x1x
2
2 − βx32 = β · FA3 .

A careful analysis of the discriminant of FA3 yields (b)–(d). �

Proposition 6.2. Let A,B ∈ AlgC(R2) be as in Proposition 6.1 and let l
be an equilibrium line for (1.1) passing through a 3-nilpotent. Then:

(a) l is not tangent for system (1.1) in A.
(b) if ind(A) = 2 (i.e. β < 0), then l is e-secant for system (1.1) in A.

Proof. Statement (a) follows from Proposition 6.1(a) and Lemma 2.6 (see
also Remark 2.7).
To show (b) assume ind(A) = 2. If A contains precisely one idempotent,

then statement (b) follows from (a) and Proposition 6.1(a). Assume A contains
two idempotents (i.e. β = −3/22/3). In this case the partition of the phase plane
of the system

(6.1) ẋ = x ◦ x (x ∈ B)
onto sectors is determined by the straight lines x2 = 2−2/3x1 and x2 = −21/3x1.
Obviously, the vector e1 = (1, 0) which is a 3-nilpotent in A, and the vector
(1,−21/3/3) which is proportinal to a negative 3-idempotent in B, belong to the
same (elliptic) sector. It remains to consider the case when A contains three
idempotents.
We start with the particular case when β = −2. Then the partition onto

sectors of the phase plane of (6.1) is given by the straight lines x2 = −x1 and
x2 = 2x1/(1±

√
5). Straightforward computations show that in this case e1 and

the vector (1,−3/8) which is proportinal to a negative 3-idempotent in B, belong
to the same (elliptic) sector. Take now an arbitrary algebra A = Aβ containing
three idempotents (i.e. β < −3/22/3) along with the corresponding B = Bβ and
assume that e1 is p-secant. Replacing in (3.12) β with tβ−2(1− t), t ∈ [0, 1], one
deforms continuously A−2 to Aβ via the algebras containg 3-nilpotents and three
idempotents. Obviously, this deformation takes idempotents to idempotents,
therefore, the standard continuity argument implies the existence of t0 ∈ (0, 1)
such that l is tangent for system (1.1) in At0β−2(1−t0). Contradiction with state-
ment (a) completes the proof. �
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6.2. Classification. The main result of this section is

Theorem A2. Let A ∈ AlgC(R2) be an algebra containig a 3-nilpotent.
Assume x3 �≡ 0. Up to orbital topological equivalence, there exist precisely six
different phase portraits for system (1.1) listed in the first colomn of Table 6.1
(the corresponding numbers coincide with the ones presented in [9, pp. 444–445],
where the geometric types are drawn as well). Every orbital topological equiva-
lence class is completely characterized by algebraic conditions given in Table 6.1
(for the notations used in Table 6.1 we refer to Subsection 2.1).

Type e(A) n(A) n3(A) e−2,2(A) z2,2(A)

(36) 1 0 1 − −
(65) 1 2 1 + −
(62) 1 0 2 − +

(38) 1 0 1 − +

(32) 2 0 1 − +

(24) 3 0 1 − +

Table 6.1. Cubic systems in algebras with 3-nilpotents

Proof. If A is isomorphic to N01 (cf. Examples 2.4), then x
3 ≡ 0.

Further, up to isomorphism, N2 is the only non-division algebra containing a
negative square idempotent; also, N2 is free from square zero divisors, n2(N2) = 2
and e(N2) = n3(N2) = 1 (cf. Examples 2.4 and [6]). Since e1 is not colinear to
the idempotent −e2, we obtain Figure (65) from [9].
Next, if A is isomorphic to N3, then e(A) = 1, n2(A) = 0 and n3(A) = 2. Ob-

viously, e1 and e2 are square zero divisors in N3. Since A is pseudo-compoistion,
we obtain Figure (62) from [9] (cf. Remark 2.7(d) and Propositions 2.10(b)
and 6.1(c)).
Assume A = (R2, ∗) either is isomorphic to the (singular) algebra N0 or

admits a regular B = (R2, ◦) with ind(B) = 0. Then (cf. Proposition 6.1(b))
e(a) = n3(A) = 1, n(A) = 0 and A does not admit negative square idempotents
or square zero divisors. Proposition 6.2(a) provides Figure (36).
Finally, if ind(A) = 2, then possible values of e(A) in compilance with Propo-

sitions 6.1(d), 6.2(b) and 3.9 provide Figures (38), (32) and (24), respectively.�

Corollary 6.3. Assume A ∈ AlgC(R2) satisfies conditions of Theorem A2.
Assume A is not isomorphic to N3. Then system (1.1) admits a bounded solu-
tion if and only if A contains either a square zero divisor or a negative square
idempotent.
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7. Orbital topological equivalence of cubic systems
in algebras with 2-nilpotents

7.1. Fundamental forms and location of 2-nilpotents. Throughout
this section A = (R2, ∗) stands for a regular algebra with a 2-nilpotent e2.
Take a basis (e1, e2) ∈ R

2. Then (cf. [6]) x∗x∗x = x1 ·f(x), x = x1e1+x2e2,
where f :R2 → R2 is a quadratic map. Let B = (R2, ◦) ∈ AlgC(R2) be the
algebra with the multiplication defined by

(7.1) x ◦ y = 1
2
(f(x+ y)− f(x)− f(y)) (x, y ∈ R

2).

Obviously, ind(0, x3) in A coincides with ind(B), therefore, the OTE classifica-
tion of systems (1.1) in (regular) algebras with 2-nilpotents is essentially based
on the following two statements.

Proposition 7.1. Let A ∈ AlgC(R2) be an algebra containing a 2-nilpotent
e2 and let B ∈ AlgC(R2) be the algebra with the multiplication defined by (7.1).
Suppose the image of the field x → x3, x ∈ A, is two-dimensional. Then
FA4 = x1F

B
3 (in particular, any idempotent, positive 3-idempotent or negative

3-idempotent of A is an idempotent of B as well). In addition,

(a) If ind(A) = 2, then B may contain one, two or three idempotents.
(b) If ind(A) = 0, then B may contain two or three idempotents.
(c) If ind(A) = ±1 and A is neither pseudo-composition nor of rank two,
then B may contain one (cf. (3.10)) or zero (cf. (3.11)) idempotents.

Proof. (a) Assume ind(A) = 2. Then A (resp. B) admits the multiplication
table (3.9)− (resp.

(7.2) e21 = −e1 − µe2, e1e2 = µe1 + (µ2 − 1)e2, 2e1 + 2µe2).

Combining (3.9)− with (7.2) and Lemma 2.6 yields FA4 = x1F
B
3 . In particular,

the negative 3-idempotent in A is always an idempotent in B. In addition, if
µ2 > 2 (resp. µ2 = 2), then A has two (resp. one) idempotent(s) being also
idempotent(s) in B.

(b) Assume ind(A) = 0. Then A (resp. B) admits the multiplication table
(3.9)+ (resp.

(7.3) e21 = e1 + µe2, e1e2 = µe1 + (µ
2 + 1)e2, 2e1 + 2µe2).

Combining (3.9)+ with (7.3) and Lemma 2.6 yields FA4 = x1F
B
3 . In particu-

lar, A always contains two idempotents being also idempotents in B. Finally
(cf. Proposition 2.11(c)), if A contains a positive 3-idempotent, then B contains
an additional idempotent.
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(c) Assume ind(A) = ±1. If A admits the multiplication table (3.10), then
one has for B:

(7.4) e21 = 0, e1e2 =
(
λ

2
+ λ2
)
e2, e

2
2 = 0.

If A admits (3.11), then one has for B:

(7.5) e21 = e1 +
3
2
e2, e1e2 =

1
2
e2, e

2
2 = 0.

Obviously, in both cases FA4 = x1F
B
3 . In particular (see Proposition 2.11(c)),

B contains one idempotent in the case (7.4) and does not contain an idempotent
in the case (7.5). �

Proposition 7.2. Let A be as in Proposition 7.1 and let l be an equilibrium
line for (1.1) passing through a 2-nilpotent e2. Then:

(a) If ind(A) = 2 and B contains precisely one idempotent, then l is e-
secant.

(b) If ind(A) = 2 and B contains precisely two idempotents, then l is p-
secant.

(c) If ind(A) = 2 and B contains three idempotents, then l is p-secant.
(d) If ind(A) = 0, then l is h-secant.
(e) If ind(A) = ±1 and A is neither pseudo-composition nor of rank two,
then l is tangent.

Proof. If A satisfies (a), then (see (3.9)−) the only idempotent in B is pro-
portional to tr⊥(A) = (−1, µ). Since ind(B) = 2 and tr⊥(A) is not proportional
to e2, l must be e-secant.
Assume A satisfies (b). Then (see (3.9)− and Proposition 7.1) B contains an

idempotent proportional to tr⊥(A) = (−1, µ) and one more d = (1/2)(µ, 1) (here
µ = ±√2). On the other hand (see (7.1)), the vector tr⊥(B) = (−3µ, µ2 − 2)
is proportional to a negative 3-idempotent in B. By direct computation, e2 and
tr⊥(B) belong to the sectors lying on different sides of the straight line passing
through tr⊥(A), i.e. l is p-secant.
Assume A satisfies (c). Then (see (3.9)− and Proposition 7.1) B contains

an idempotent proportional to tr⊥(A) = (−1, µ) and two more: d± = (1/2)(µ±√
µ2 − 2, 1). Since none of them is proportional to e2, l is not tangent.
To show that l is p-secant, consider the mutual location of e2 and the vector

tr⊥(B) = (−3µ, µ2−2). Assume for a moment, that µ = −4 (resp. µ = 4). Then,
by direct computation, the vectors e2 and tr⊥(B) = (12, 14) (resp. (−12, 14))
belong to the sectors lying on different sides of the straight line passing through
tr⊥(A), i.e. l is p-secant. Take now an arbitary algebra A = Aµ containing three
idempotents (i.e. µ2 > 2). Then combining the same homotopy argument as in
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the proof of Proposition 6.2 with fact that l is not tangent, one can deform Aµ
with µ >

√
2 to the algebra A4 (resp. with µ < −

√
2 to the algebra A−4).

Suppose A satisfies (d). Then (see (3.9)+ and Proposition 7.1), the vec-
tors d± = (1/2)(−µ ±

√
µ2 + 2, 1) are idempotents in B. Also, if µ �= ±1/2

(cf. (2.11)), then the vector tr⊥(A) = (−1, µ) is proportional to an additional
idempotent in B. Obviously, e2 is not proportional to tr⊥(A) or d± for any µ.
Therefore l is not tangent.

Since ind(A) = 0 and (see Proposition 7.1(b)) A contains at least two idem-
potents, the phase portrait of (1.1) should contain both hyperbolic and parabolic
sectors. Assume l is p-secant. Then both rays constituting a hyperbolic sector
cannot be directed to infinity, but this contradicts the fact that A is negative
3-idempotent free. Therefore, l is h-secant.

Assume, finally, A satisfies (e). By direct computation, FA4 = (2λ
2 + λ − 1)

·x31x2 for the case (3.10) and FA4 = 3x41/2 for the case (3.11) and the result
follows. �

7.2. Classification: algebras without both nilpotent ideals and 3-
nilpotents. The main result of this Section is contained in

Theorem A3. Let A ∈ AlgC(R2) be an algebra containig a 2-nilpotent. As-
sume A is nilpotent ideal free. Assume A does not contain 3-nilpotents. Up to
orbital topological equivalence, there exist precisely six different phase portraits
for system (1.1) listed in the first colomn of Table 7.1 (the corresponding num-
bers coincide with the ones presented in [9, pp. 444–445], where the geometric
types are drawn as well). Every orbital topological equivalence class is completely
characterized by algebraic conditions given in Table 7.1 (for the notations used
in Table 7.1 we refer to Subsection 2.1).

Type e(A) n(A) n2,2(A) e+3 (A) e
−
3 (A)

(68) 0 2 − − −
(38) 0 1 + − +

(33) 1 1 + − +

(25) 2 1 + − +

(28) 2 1 + − −
(20) 2 1 + + −

Table 7.1. Cubic systems in algebras without both nilpotent ideals and
3-nilpotents
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Proof. Obviously (cf. Examples 2.4), N02 is the only singular algebra being
free from both nilpotent ideals and 3-nilpotents. By direct computation,

x3 = (x1 − x2)2(x1 + x2)(e1 + e2).
Since n(A) = 2 and e(A) = 0, one obtains Figure (68).
The OTE classification of phase portraits of system (1.1) occuring in regular

algebras containing square nilpotents can be obtained directly from Proposi-
tions 7.1(a), (b) and 7.2(a)–(d) in compliance with [9]. �

Corollary 7.3. Assume A ∈ AlgC(R2) satisfies conditions of Theorem A3.
Then system (1.1) admits a bounded solution if and only if A contains a square
nilpotent together with negative 3-idempotent.

7.3. Classification: 3-nilpotent free algebras with nilpotent ideals.
Although for the algebras containing nilpotent ideals, possible values of ind(A) =
±1 agree with negative square nilpotent dichotomy (cf. Proposition 3.3(e)),
a complete OTE classification of the quadratic systems cannot be done by means
of reasonable polynomial equations in algebras. From this point of view, pass-
ing to the cubic systems only aggravates the situation. Therefore, to obtain the
OTE classification for cubic systems, we prefer a direct analysis of spectral prop-
erties of the matrix naturally associated to the cubic map rather than looking for
sophisticated polynomial equations in algebras. Another reason justifying this
approach is the statement following below.

Proposition 7.4. Let A ∈ AlgC(R2) be a 3-nilpotent free algebra containing
a nilpotent ideal. Then:

(a) A is negative and positive 3-idempotent free.
(b) System (1.1) does not admit a bounded solution.

Proof. Set

M =
(
1 0
3/2 1

)
, and M =

(
1 0
0 2λ2 + λ

)
.

Obviously (cf. (7.4) and (7.5)), x3 = x21 ·Mx in the case (3.11) and x3 = x21 ·Mx
in the case (3.10), x = (x1, x2), from which Statement (a) follows immediately.
Take A satisfying (3.11). Since e(A) = 0 and n(A) = 1, one obtains Fig-

ure (56) from [9] for system (1.1) (“Jordan node”).
Assume A satisfies (3.10) and consider several cases. If λ = 0, then A = N1

is a singular algebra (cf. Examples 2.4). Also, if λ = −1/2, then the field x→ x3
has one-dimensional image. In both cases e(A) = n(A) = 1, the matrix M is
degenerate (ind(0, x3) = 0) and one obtains for system (1.1) Figure (36) from [9].
Suppose now the eigenvalues of M are equal, i.e. 2λ2 + λ = 1. Then A is

either of rank two (λ = 1/2) or pseudo-composition (λ = −1); cf. Examples 2.9.
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In both cases e+3 (A) = ∞ and M determines a “bicritical node”, so that one
obtains Figure (63) from [9].
The above four algebras split the family (3.10) onto five subsets. If ind(0, x3)

= −1 (i.e. −1/2 < λ < 0), then M determines a “saddle” and one obtains
Figure (45) from [9]. Further, in the remaining cases ind(0, x3) = 1 and still
e(A) = n(A) = 1, therefore M determines a “node”. If the absolute value of
the eigenvalue of M corresponding to the 2-nilpotent is less than the absolute
value of the eigenvalue corresponding to the idempotent (i.e. −1 < λ < −1/2 or
0 < λ < 1/2), then the phase curves adjoin at infinity the invariant line and one
obtains Figure (53); otherwise (i.e. λ < −1 or λ > 1/2), phase curves adjoin the
equilibrium line and one obtains Figure (52).
The proof of Proposition 7.4 is complete. �

Remarks 7.5. (a) In fact, the proof of Proposition 7.4 contains a complete
OTE classification of system (1.1) in the considered case.
(b) It should be pointed out that passing from binary algebra invariants (sol-

ubility of polynomial equations) to unary algebra invariants (spectral properties
of matrices) is not just ad hoc trick used in the proof of Proposition 7.4. First,
it resembles the following fact (cf. [2]): if GL(2,C) acts via isomorphisms on the
set of all complex two-dimensional (binary) algebras, then the orbits of algebras
containing nilpotent ideals are semi-stable, meaning that all polynomial invari-
ants vanish on these orbits; in particular, these orbits require special moduli
spaces. On the other hand, it appeals to a better understanding of a connection
between adjoining phase curves of system (1.1) and (topological) properties of
the corresponding algebras. However, both aspects go beyond the scope of our
paper.

8. Application: periodic solutions
to systems “cubic at infinity” in rank three algebras

8.1. Bounded solutions to cubic systems in rank three algebras. In
this section we apply our classification results to systems occuring in rank three
algebras (in general, of dimension n ≥ 2; cf. Definition 2.8). To this end we need

Definition 8.1. We say that an algebra A ∈ AlgC(Rn) admits a ∗-complex
structure if there exists a two-dimensional subalgebra D satisfying at least one
of the conditions (a)–(d) from Theorem B provided D is not isomorphic to N3

(see Introduction).

Combining Example 2.9(a), Corollaries 5.7, 6.3, 7.3 and Proposition 7.4(b)
with the fact that any phase curve for a cubic system occuring in a rank three
algebra is planar, one obtains
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Theorem B
′
. Let A ∈ AlgC(Rn) be a rank three algebra. Then system

(8.1) ẋ = x3 (x ∈ A)
admits a bounded solution if and only if A admits a ∗-complex structure.
It should be noticed that being of completely semi-algebrac nature, Theo-

rem B′ is in a sharp contrast to the corresponding results on bounded solutions to
homogeneous systems given in [27], [19], [23] and based on the guiding function
approach. At the same time, the problem of the existence of bounded solutions
to polynomial systems is not “semi-algebraic”, in general (see [5]), therefore one
cannot expect to obtain finitely many ”basic” algebraic equations responsible for
the existence of bounded solutions (cf. [27], [19], [23]).

8.2. Systems “cubic at infinity”. Observe that from the viewpoint of pos-
sible applications (see [27], [19], [23]), any result on the non-existence of bounded
solutions to homogeneous systems is also of great interest. As a consequence of
Theorem B′ we have

Corollary 8.2. Let A ∈ AlgC(Rn) be a rank three algebra. Assume A is
2-nilpotent, 3-nilpotent and negative 3-idempotent free. Then system (8.1) does
not admit a bounded solution.

Combining this result with the main result from [27] one obatins

Corollary 8.3. Let A ∈ AlgC(Rn) be a rank three algebra. Assume A is
2-nilpotent, 3-nilpotent and negative 3-idempotent free. Then for any continuos
map h:A× R→ A being ω-periodic in t ∈ R and small at infinity (i.e.

lim
‖x‖→∞

sup
t
‖x‖−3‖h(t, x)‖ = 0)

system
ẋ = x3 + h(x, t) (x ∈ A, t ∈ R)

admits at least one ω-periodic solution.

Example 8.4. Here we give the simplest example illustrating Corollary 8.3
(for more involved examples we refer to [35]). Take a quadratic map f :Rn → Rn

defined by

(8.2) f(x1, . . . , xn) = (x21 − x22 − x23 − . . .− x2n,−2x1x2,−2x1x3, . . . ,−2x1xn).
Using (8.2) one can equip Rn with the multiplication structure (Rn, ∗) (cf. (7.1)).
By direct computation, x ∗ x ∗ x = ‖x‖2x, from which it follows that (Rn, ∗) is
a pseudo-composition algebra (in particular, it is of rank three) being also 2-
nilpotent, 3-nilpotent and negative 3-idempotent free. Therefore, (Rn, ∗) satisfies
all the conditions of Corollary 8.3.
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