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ASYMPTOTIC BIFURCATION PROBLEMS
FOR QUASILINEAR EQUATIONS

EXISTENCE AND MULTIPLICITY RESULTS

Pavel Drábek

Abstract. In this paper we address the existence and multiplicity results
for �

−∆pu − λ|u|p−2u = h(x, u) in Ω,

u = 0 on ∂Ω,

where p > 1, ∆pu = div(|∇u|p−2∇u), h is a bounded function and the spec-
tral parameter λ stays “near” the principal eigenvalue of the p-Laplacian.

We show how the bifurcation theory combined with certain asymptotic
estimates yield desired results.

1. Introduction

This is a survey paper the results of which were presented at the conference
“Topological and Variational Methods in Nonlinear Analysis” TVMNA 2003
which was held in Będlewo, Poland in June 2003. The results presented here
concern the necessary and sufficient conditions for solvability of the quasilinear
problem

(1.1)

{ −∆pu− λ|u|p−2u = h(x, u) in Ω,
u = 0 on ∂Ω,
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where ∆pu = div(|∇u|p−2∇u) is the p-Laplacian, p > 1 is a real number, Ω is a
smooth domain in RN , N � 1, λ is a real spectral parameter and h = h(x, s) is
a bounded function the properties of which are specified later.
Let us denote by λ1 the first eigenvalue of the p-Laplacian. It is well known

that λ1 > 0 admits variational characterization

λ1 = inf
{∫
Ω
|∇u|p dx :

∫
Ω
|u|p dx = 1

}
,

it is an isolated eigenvalue of −∆p and simple in the sense that there is exactly
one pair of normalized eigenfunctions ϕ1 and −ϕ1 chosen in such a way that
ϕ1(x) > 0, x ∈ Ω and ∂ϕ1(x)/∂ν < 0, x ∈ Ω (see e.g. [1], [14], etc.).
In this paper we shall concentrate on the case when λ stays “near” λ1 and

h(x, s) is either independent of s or it is a nonlinearity of the Landesman–Lazer
type. To be more specific, we start with the following two motivations which
deal with the semilinear problem (p = 2) and special type of h.
As the first motivation we consider the following linear problem

(1.2)

{ −∆u− λ1u = f(x) in Ω,
u = 0 on ∂Ω,

where f is a given function defined on Ω. Note that h(x, s) = f(x) does not
depend on s in this case. Without specifying function spaces (this depends on
whether we deal with the weak or classical solutions to (1.2)) let us mention
necessary and sufficient condition for the solvability of (1.2) provided by the
linear Fredholm alternative. It states that (1.2) is solvable if and only if

(1.3)
∫
Ω
fϕ1 dx = 0

(see Figure 1.1).

ϕ1

f

Figure 1.1. Geometrical interpretation of the necessary and sufficient con-
dition provided by the linear Fredholm alternative.
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As the second motivation we consider semilinear Landesman–Lazer type
problem

(1.4)

{ −∆u− λ1u+ arctanu = f(x) in Ω,
u = 0 on ∂Ω.

Note that the function h = h(x, s) is again of a special form h(x, s) = f(x) −
arctan s in this case. This is a prototype of problems studied extensively in the
last three decades of the 20th century (following the pioneering work of Landes-
man and Lazer [13]). Also in this case there is necessary and sufficient condition
(the so-called Landesman–Lazer-type condition) for the solvability of (1.4) which
generalizes condition (1.3) in a natural way. It states that (1.4) is solvable if and
only if

(1.5) −π
2
<

∫
Ω
fϕ1 dx <

π

2

(we assume that ϕ1 is normalized here by
∫
Ω ϕ1 dx = 1) and it has also an

instructive geometrical interpretation (see Figure 1.2).

ϕ1

f

Figure 1.2. Geometrical interpretation of the necessary and sufficient con-
dition provided by the Landesman–Lazer-type condition.

In this paper we discuss how previous classical results for semilinear (linear)
problem extend to the general quasilinear case (p �= 2). In fact, we can give
necessary and sufficient condition for solvability of

(1.6)

{ −∆pu− λ|u|p−2u = f(x) in Ω,
u = 0 on ∂Ω,

if λ = λ1 and p �= 2. Moreover, we present some multiplicity results for (1.6)
when λ stays “near” λ1 (including the case λ = λ1). On the other hand, results
for the Landesman–Lazer-type problem extend to the quasilinear case as well but
the Landesman–Lazer-type condition (1.5) is only sufficient in general.



186 P. Drábek

Let us point out that the investigation of

(1.7)

{ −∆pu− λ|u|p−2u = f(x) in Ω,
u = 0 on ∂Ω,

is much more difficult than the study of

(1.8)

{ −∆pu− λ1|u|p−2u+ g(u) = f(x) in Ω,
u = 0 on ∂Ω,

if p �= 2 (the situation is opposite if p = 2!). The reason consists in the fact
that the special type of nonlinearity g in (1.8) helps to prove that the problem
has “the right” structure. For instance, looking at (1.7) and (1.8) from the
variational point of view then the nonlinearity of the Landesman–Lazer-type
guarantees that the energy functional associated with (1.8) has either geometry
of a global minimum or geometry of a saddle point and, moreover, it satisfies
the Palais–Smale condition (see e.g. [2]–[4] and [12]). None of these properties
are available for (1.7) and so “non standard” approaches must be looked for (see
e.g. [6]–[11], [15]–[17]).
The results addressed in the following sections were obtained in papers

Drábek, Girg, Takáč and Ulm [9] and Drábek, Girg and Takáč [8], and they
rely on the bifurcation theory. In combination with the method of lower and
upper solutions they lead to the following main results.

2. Main results

Note that by a solution we always mean a weak solution which is defined in
a usual way.

Theorem 2.1 (see [9]). Let f ∈ L∞(Ω) split as

f = fT + aϕ1,
∫
Ω
fTϕ1 dx = 0, a ∈ R.

Then for given fT �= 0 there exist a1(fT ) < 0 < a2(fT ) such that

(2.1)

{ −∆pu− λ1|u|p−2u = fT + aϕ1 in Ω,
u = 0 on ∂Ω,

has at least

(a) one solution provided a ∈ [a1, a2],
(b) two distinct solutions provided a ∈ (a1, 0) ∪ (0, a2),
(c) no solution provided a /∈ [a1, a2].

Remark 2.2. The set of all f for which (2.1) has a solution forms a cone
depicted in Figure 2.1. It can be actually proved that this cone has a nonempty
interior with respect to the topology induced by L∞ norm (see [7]). Let us also
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note that the weak solution belongs to C1,α(Ω) with some α ∈ (0, 1) provided
∂Ω is smooth enough ([8], [9]).

Remark 2.3. Theorem 2.1 actually states that (1.3) is sufficient for solv-
ability of (1.7) for arbitrary p > 1 but it is not necessary if p �= 2.

ϕ1
a1 a2

fT

f

Figure 2.1. The set of all f for which (2.1) has at least one (two) solu-
tion(s).

Theorem 2.4 (see [9]). Let us consider

(2.2)

{ −∆pu− λ|u|p−2u = fT + aϕ1 in Ω,
u = 0 on ∂Ω,

where fT and a are as above. Then there exists ε > 0 such that

(a) for every ε′ ∈ (0, ε) there is η = η(fT , ε, ε′) > 0 such that ε′ < |a| < ε
and λ ∈ (λ1 − η, λ1) ∪ (λ1, λ1 + η) imply that (2.2) has at least three
distinct solutions, of which at least one is positive and at least one is
negative,

(b) λ = λ1 and 0 < |a| < ε imply that problem (2.2) has at least two
solutions, of which at least one is negative if (p− 2)a < 0, and at least
one is positive if (p− 2)a > 0.

Moreover, there exists η̂ = η̂(fT ) > 0 such that for a = 0 problem (2.2) has at
least three distinct solutions (among them at least one positive and one negative)
provided either 1 < p < 2 and λ ∈ (λ1 − η̂, λ1), or p > 2 and λ ∈ (λ1, λ1 + η̂).

Theorem 2.5 (see [9]). There exist a0 = a0(fT ) > 0 and δ = δ(fT ) > 0
such that

(a) if either λ ∈ (λ1 − δ, λ1) and a � a0, or else λ ∈ (λ1, λ1 + δ) and
a ≤ −a0, then (2.2) can have only positive solutions,

(b) if either λ ∈ (λ1 − δ, λ1) and a ≤ −a0, or else λ ∈ (λ1, λ1 + δ) and
a ≥ a0, then (2.2) can have only negative solutions.
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Concerning the perturbed problem

(2.3)

{ −∆pu− λ|u|p−2u+ g(u) = f in Ω,
u = 0 on ∂Ω,

we only state two results for special choice of g which illustrate the striking
difference between the semilinear (p = 2) and quasilinear (p �= 2) case.

Theorem 2.6 (see [8]). Let f ∈ L∞(Ω) and g(s) = e−s2 , s ∈ R. Then

(a) for p = 2, condition
∫
Ω fϕ1dx > 0 is necessary for solvability of (2.3),

(b) for 1 < p < 2, 2 < p < 3, condition
∫
Ω fϕ1dx = 0 is sufficient for

solvability of (2.3).

Theorem 2.7 (see [8]. Let f ∈ L∞(Ω) and g(s) = arccotan|s|q−1s, s ∈ R.
Then

(a) for p = 2, q > 0, condition

0 <
∫
Ω
fϕ1 dx < π

is necessary and sufficient for solvability of (2.3),
(b) for 1 < p < 2, q > p− 1, condition

0 �
∫
Ω
fϕ1 dx < π

is sufficient for solvability of (2.3).

3. Bifurcation approach

Set

(J(u), w) =
∫
Ω
|∇u|p−2〈∇u,∇w〉 dx,

(S(u), w) =
∫
Ω
|u|p−2uw dx,

(H(u), w) =
∫
Ω
h( · , u)w dx,

u, w ∈ W 1,p0 (Ω). Here ( · , · ) is the duality between W 1,p0 (Ω) and its dual space,
〈 · , · 〉 is the scalar product in RN and ‖ · ‖ will further denote the norm on
W 1,p0 (Ω):

‖u‖ =
(∫
Ω
|∇u|p dx

)1/p
.

Then operator equation

(3.1) J(u)− λS(u) = H(u)
is a weak formulation of (1.1).
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For u �= 0 let w := u/‖u‖2 and

G(v) :=

{ ‖v‖2(p−1)H(v‖v‖−2) for v �= 0,
0 for v = 0.

Then (3.1) is equivalent to

(3.2) J(v)− λS(v) = G(v).
Since

lim
‖v‖→0

G(v)
‖v‖p−1 = 0,

the global bifurcation result can be applied to (3.2) (see [6]). It is proved in [6]
that (λ1, 0) is a global bifurcation point for (3.2). Going back to the original
equation (3.1) we obtain that (λ1,∞) is an asymptotic bifurcation point for (3.1)
(i.e. there exists a sequence {(λn, un)}∞n=1 ⊂ R×W 1,p0 (Ω) such that (3.1) holds
with λ = λn, u = un and (λn, ‖un‖)→ (λ1,∞)) and, moreover, there are max-
imal closed sets C+, C− ⊂ R × W 1,p0 (Ω) of solutions of (3.1) such that there
exist sequences of pairs (µn, un) ∈ C+ and (µ̂n, ûn) ∈ C− such that µn → λ1,
µ̂n → λ1, ‖un‖ → ∞ and ‖ûn‖ → ∞, together with un/‖un‖ → ϕ1/‖ϕ1‖ and
ûn/‖ûn‖ → −ϕ1/‖ϕ1‖. This is very useful information, however, this informa-
tion alone does not tell us anything about the solvability of (3.1) for λ = λ1!
On the other hand, if we knew that e.g. (µ, u) ∈ C±, ‖u‖ “large”, imply

that µ < λ1 then we immediately get a solution of (3.1) for λ = λ1. Indeed,
the isolatedness of λ1, together with this property would imply the existence
of (λn, un) ∈ R × W 1,p0 (Ω) which solve (3.1) and λn → λ1+, ‖un‖ ≤ const.
The existence of a solution to (3.1) for λ = λ1 now follows from the standard
compactness argument and passage to the limit for n → ∞. So, we need an
asymptotic estimate for solutions (λ, u) of (3.1), where λ is “close” to λ1 and
‖u‖ is “large”.

4. Asymptotic estimate

In order to formulate an asymptotic estimate we need the linearization of
(3.1) around the first eigenfunction ϕ1. Namely, we define the matrix

A = |∇ϕ1|p−2
(

I+ (p− 2)∇ϕ1 ⊗∇ϕ1|∇ϕ1|2
)

(here I is the identity matrix N ×N), the quadratic form

Q(v, v) =
1
2

∫
Ω
〈A∇v,∇v〉 dx − λ1

2
(p− 1)

∫
Ω
ϕp−21 v

2 dx

and the weighted space Dϕ1 endowed with the norm

‖v‖Dϕ1 =
(∫
Ω
|∇ϕ1|p−2|∇v|2 dx

)1/2
.
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Without discussing the technical details we shall present the key asymptotic
estimate due to which the bifurcation diagrams can be made more precise.

Theorem 4.1 (see [8], [9]). Let {µn}∞n=1 ⊂ R and {un}∞n=1 ⊂ W 1,p0 (Ω) be
sequences, and let δ > 0 be such that

(a) λ1 + µn < λ2 − δ for all n ∈ N (λ2 is the second eigenvalue of −∆p),
(b) h( · , un( · ))⇀∗ h̃( · ) weakly-star in L∞(Ω),
(c) ‖un‖ → ∞ as n→∞,
(d) in addition assume that for all n ∈ N and v ∈ W 1,p0 (Ω),

(4.1)
∫
Ω
|∇un|p−2〈∇un,∇v〉 dx = (λ1+µn)

∫
Ω
|un|p−2unv dx+

∫
Ω
h(x, un)v dx.

Then µn → 0 and, writing un = t−1n (ϕ1 + vTn ) with tn ∈ R, tn �= 0, and vTn ∈
{w ∈ W 1,p0 (Ω) :

∫
Ωwϕ1 dx = 0}, we have tn → 0, |tn|−ptnvTn → V T in Dϕ1 , if

p > 2 and in W 1,20 (Ω) if 1 < p < 2, and

(4.2) µn = − |tn|p−2tn
∫
Ω
h( · , un)ϕ1 dx+ (p− 2)|tn|2(p−1)Q(V T , V T )+

+ (p− 1)|tn|2(p−1)
(∫
Ω
h̃ϕ1 dx

)(∫
Ω
ϕp−11 V

T dx

)
+ o(|tn|2(p−1)).

Moreover, V T ∈ {u ∈ Dϕ1 :
∫
Ω uϕ1 dx = 0} is the unique solution to

2Q(V T ,Φ) =
∫
Ω
h∗Φ dx for all Φ ∈ Dϕ1 ,

where we have denoted

h∗ = h̃−
(∫
Ω
h̃ϕ1 dx

)
ϕp−11 .

Remark 4.2. In particular, V T �= 0 (and hence Q(V T , V T ) > 0) if and only
if h̃ is not a real multiple of ϕp−11 . This is the case if e.g.

∫
Ω h̃ϕ1dx = 0 and

h̃ �= 0.
Now, we shall investigate some special choices of h = h(x, s) and show how

the asymptotics above applies to get a priori estimates. Let us start with the
case h(x, s) = f(x), i.e. we shall deal with the problem

(4.3)

{ −∆pu− λ|u|p−2u = f(x) in Ω,
u = 0 on ∂Ω.

Assume that
∫
Ω fϕ1 dx = 0 and f �= 0. Then (4.2) is of the form

(4.4) µn = (p− 2)|tn|2(p−1)Q(V T , V T ) + o(|tn|2(p−1)).
Since Q(V T , V T ) > 0 (cf. Remark 4.1), we have that µn < 0 for 1 < p < 2
and µn > 0 for p > 2, respectively. This means that every solution (λ, u) ∈
R ×W 1,p0 (Ω) of (4.3) with “large” norm ‖u‖ must satisfy λ < λ1 if 1 < p < 2
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and λ > λ1 for p > 2, respectively (see Figure 5.1). In particular, we get at least
one solution of (4.3) with λ = λ1 (cf. the end of Section 3) and, moreover, the
fact that all such solutions are a priori bounded for p �= 2. The last statement is
very different from one which holds in the linear case p = 2. The reader should
also notice that there is no information provided by asymptotics (4.4) if p = 2.
Assume that f = fT + aϕ1,

∫
Ω f
Tϕ1 dx = 0, a ∈ R, a �= 0. Then (4.2)

reduces to

µn = −|tn|p−2tna
∫
Ω
ϕ21 dx+ o(|tn|p−1).

This means that every solution (λ, u) ∈ R×W 1,p0 (Ω) of (4.3) with “large” norm
‖u‖ satisfies: (λ, u) ∈ C+ implies λ < λ1 for a > 0 and λ > λ1 for a < 0, and
(λ, u) ∈ C− implies λ > λ1 for a > 0 and λ < λ1 for a < 0. These facts are
true for all p > 1. More carefull analysis which takes into account also terms of
order |tn|2(p−1) yields to the situations depicted in Figures 5.2–5.4. These results
combined with the method of lower and upper solutions lead to the statements
of Theorems 2.1, 2.4 and 2.5 (see [9] for details).
Now, let h be of a special form h(x, s) = f(x)−g(s), where lims→±∞ g(s) = 0.

This corresponds to the problem

(4.5)

{ −∆pu− λ|u|p−2u+ g(u) = f(x) in Ω,
u = 0 on ∂Ω,

and (4.2) is of the form

(4.6) µn = − |tn|p−2tn
∫
Ω
[f − g(un)]ϕ1dx+ (p− 2)|tn|2(p−1)Q(V T , V T )

+ (p− 1)|tn|2(p−1)
(∫
Ω
fϕ1 dx

)(∫
Ω
ϕp−11 V

T dx

)
+ o(|tn|2(p−1)).

This asymptotics for µn and tn offers variety of possibilities depending on the
asymptotic behaviour of g. In particular, if g(s) = e−s

2
and
∫
Ω fϕ1 dx = 0 then

(4.6) reduces to

µn = |tn|p−2tn
∫
Ω
eunϕ1 dx(4.7)

+ (p− 2)|tn|2(p−1)Q(V T , V T ) + o(|tn|2(p−1)).
It can be proved (see [8]) that µn < 0 for n large if 1 < p < 2, and µn > 0 for n
large if 2 < p < 3. Hence the bifurcation diagram for (4.5) with g(s) = e−s

2
and∫

Ω fϕ1 dx = 0 behaves like in Figure 5.1 and the assertion of Theorem 2.6(b)
follows. The assertion of Theorem 2.6(a) follows easily multiplying (2.3) (with
g(s) = e−s

2
) by ϕ1 and integrating by parts. Similarly, (4.6) is used to prove

Theorem 2.7(b) if g(s) = arccotan|s|q−1s, 1 < p < 2, q > p − 1. On the other
hand the assertion of Theorem 2.7(a) is the classical result of Landesman and
Lazer [13].
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5. Bifurcation diagrams

In this section we present some bifurcation diagrams which correspond to
various situations considered in Section 4.
The reader should have in mind that these pictures have to be viewed “asymp-

totically” where (λ, u) ∈ C± always means that ‖u‖ is “large”.
The reader is invited to make the following three experiments:

(a) Take a = 0 and let p vary from 1 to ∞. Observe how the left part of
Figure 5.1 is deformed into its right part assuming the “linear” shape
for p = 2.

λ1 λ λ1 λ

C+ C+

C− C−

1 < p < 2, a = 0 p > 2, a = 0

Figure 5.1

(b) Take 1 < p < 2 and let a vary from −∞ to ∞. Observe how the right
part of Figure 5.2 is deformed into its left part assuming intermediate
shapes depicted in the left parts of Figures 5.4, 5.1 and 5.3.

λ1 λ λ1 λ

C+ C+

C− C−

p > 1, a� 1 p > 1, a� −1
Figure 5.2

(c) Take p > 2 and let a vary from −∞ to ∞. Observe again how the right
part of Figure 5.2 is deformed into its left part assuming intermediate
shapes depicted in the right parts of Figures 5.4, 5.1 and 5.3.
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λ1 λ1 λ

λ

C+ C+

C− C−

a > 0, |a| � 1 a > 0, |a| � 1
1 < p < 2 p > 2

Figure 5.3

λ1 λ λ1 λ

C+ C+

C− C−

a < 0, |a| � 1 a < 0, |a| � 1
1 < p < 2 p > 2

Figure 5.4
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