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MULTIPLICITY OF POSITIVE SOLUTIONS
FOR SEMILNEAR ELLIPTIC PROBLEMS

WITH ANTIPODAL SYMMETRY

Norimichi Hirano

Abstract. In this paper, we show the multiple existence of positive solu-

tions of semilinear elliptic problems of the form

−∆u = |u|2
∗−2u + f, u ∈ H1

0 (Ω),

where Ω ⊂ RN is a bounded domain, 2∗ is the Sobolev critical exponent

and f ∈ L2(Ω).

1. Introduction

Let N ≥ 3, 2∗ = 2N/(N − 2), Ω ⊂ RN be a bounded domain with a smooth
boundary ∂Ω, and f ∈ L2(Ω) with f ≥ 0. The existence and multiplicity of
solutions of problem

(Pf )


−∆u = |u|2∗−2u+ f on Ω,

u > 0 on Ω,

u = 0 on ∂Ω,

has been studied by many authors. It is known that problem (P0) has no nontriv-
ial solution when domain Ω is star-shaped (cf. [7]). In [6], Kazdon and Warner
proved the existence of a nontrivial solution of (P0) in the case that Ω is annulus.
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In [1], Bahri and Coron established the existence of a nontrivial solution of (P0)
when Ω has nontrivial topology. On the other hand, for the nonhomogeneous
problem f 6= 0, Tarantello [10] proved the existence of two solutions of (Pf )
when ‖f‖L2(Ω) is small. In the case that Ω has non trivial topology, Rey [8]
proved that problem (Pf ) has cat(Ω) + 1 solutions when f is sufficiently small.

Our purpose in this paper is to consider the multiple existence of solutions
of problem (Pf ) for domain Ω ⊂ RN and f ∈ L2(Ω) having antipodal symmetry.

To state our main results, we need some notations. Throughout this paper,
Ω is a bounded domain with a smooth boundary ∂Ω. We denote by Br(0) ⊂ RN

the open ball centered at 0 with radius r. We put

ρ(Ω) = sup{r > 0 : Br(x) ⊂ Ω for some x ∈ Ω},

θ(Ω) = sup
{
r > 0 : there exists A ⊂ RN \ Ω such that RN \ Ω =

⋃
x∈A

Br(x)
}

and

k(Ω) =
ρ(Ω)
θ(Ω)

.

We impose the following condition on Ω:

(Ω) Ω = −Ω and there exists r0 > 0 such that Br0(0) ∩ Ω = φ.

For two topological spaces X, Y , we write X ∼= Y when X and Y are of
the same homotopy type. For each topological space X, H∗(X) stands for the
singular homology groups with coefficients Z2 (cf. [3], [9]). We denote by Ω̂ the
set Ω identified the antipodal points, and denote by pΩ: Ω → Ω̂ the covering
projection defined by pΩ(x) = (−x, x) for x ∈ Ω. For each p ≥ 1, we denote by
| · |p the norm of Lp(Ω). We put

L = {v ∈ L2(Ω) : v(x) = v(−x) for x ∈ Ω}

and H = H1
0 (Ω) ∩ L. We can now state our main results.

Theorem 1.1. There exists k0 > 0 and δ0 > 0 such that if k(Ω) < k0, then
for each f ∈ L with f ≥ 0 and 0 < |f |2 < δ0, problem (Pf ) possesses at least
two solutions in H.

Theorem 1.2. There exists k1 > 0, δ1 > 0 such that if k(Ω) < k1, then
there exists a residual subset D of {f ∈ L : f ≥ 0 and |f |2 < δ1} satisfying
that for each f ∈ D, problem (Pf ) possesses at least

∑∞
p=0 rankHp(Ω̂) solutions

in H.

Corollary 1.3. Suppose that Ω ∼= SN−1. Then there exists k > 0, δ >
0 such that if k(Ω) < k, then there exists a residual subset D of {f ∈ L :
f ≥ 0, |f |2 < δ} satisfying that for each f ∈ D, problem (Pf ) possesses at least
N solutions in H.
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Remark 1.4. The solutions obtained in [10] as well as in [8] are solutions
with critical levels smaller than the critical level c of the grand state solution of
problem (P0) with Ω = RN . On the other hand, the solutions obtained in our
results have critical levels close to 2c. Then for instance under the assumption
of Theorem 1.1, we have at least four solutions of problem (Pf ) in H1

0 (Ω) by the
result in [10] and Theorem 1.1.

2. Preliminaries

For given R > 0, we denote by ΛR the set of bounded domains Ω with
smooth boundary ∂Ω such that diam(Ω) < R. For each measurable set A ⊂ RN ,
we denote by |A| the measure of A. For u, v ∈ H1

0 (Ω), we put 〈u, v〉 =
∫
Ω
uv dx.

The norm ‖ · ‖ of H1
0 (Ω) is defined by ‖v‖ = |∇v|2 for v ∈ H1

0 (Ω). For each
d ∈ R, Ωd denotes the set defined by

Ωd =

{
{x ∈ RN : d(x,Ω) < d} if d > 0,

{x ∈ Ω : d(x, ∂Ω) > −d} if d ≤ 0.

For each a ∈ R, and a functional F :H1
0 (Ω) → R, we denote by F a the level set

F a = {v ∈ H1
0 (Ω) : F (v) ≤ a}.

For f ∈ L2(Ω), we define a functional If on H1
0 (Ω) by

If (u) =
∫

Ω

(
1
2
|∇u|2 − 1

2∗
|u+|2

∗
− fu

)
dx for u ∈ H1

0 (Ω).

Here u+(x) = max{u(x), 0} for x ∈ Ω. Then the solutions of (Pf ) correspond to
critical points of functional If . Let

D1(RN ) = {v ∈ L2∗(RN ) : |∇v|2 ∈ L2∗(RN )}.

For each (z, ε) ∈ RN×(0,∞), we put

u(z,ε)(x) = m

[
ε1/2

ε+ (x− z)2

](N−2)/2

, x ∈ RN

where m = (N(N − 2))(N−2)/4. It is known that each u(z,ε) is a critical point of
I0 with the domain H1

0 (Ω) replaced by D1(RN ). By the invariance of the norm
of D1(RN ) under translation and scaling

(2.1) u→ uR(x) = R−N/2∗u(x/R), R > 0,

we have that each u(z,ε) have the same critical value of I0. We put c = I0(u(z,ε))
for (z, ε) ∈ RN × (0,∞), and c0 = 2 · 2∗c/(2∗ − 2). We also set

Sf (Ω) = {v ∈ H1
0 (Ω) : ‖v‖2 = |v+|2

∗

2∗ + 〈f, v〉, I(v) = sup
t∈R+

I(tv)},
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for f ∈ L. It is easy to see that there exists ε > 0 such that if f ≥ 0, |f |2 < ε and
v ∈ H \ {0} with v+ 6≡ 0, there exists a unique positive number tf,v such that
tf,vv ∈ Sf (Ω) (cf. [5], [10]). Throughout the rest of this paper, we assume that
f ≥ 0 and |f |2 < ε. For each v ∈ H \ {0} with v+ 6≡ 0, we define Nfv ∈ Sf (Ω)
by Nfv = tf,vv. We have from the definition of Sf (Ω) that

(2.2) 〈∇If (v), v〉 = 0 for all v ∈ Sf (Ω).

We will seek for solutions of If in Sf ∩ H. For simplicity of notation, we put
Ĩd
f = Id

f ∩ Sf (Ω) ∩ H for each d > 0. Let ϕ: RN → [0, 1] be a smooth function
such that ϕ(x) = 1 for x ∈ B1/2(0) and ϕ(x) = 0 on RN \B1(0). We put

v(r,z,ε)(x) = ϕ((x− z)/r)u(z,ε)(x) for (r, z, ε) ∈ R+ × RN × R+ and x ∈ RN .

We also fix a mapping η ∈ C∞([0,∞); [0, 1]) such that η(t) = 0 for t ∈ [0, 1/2]
and η(t) = 1 for t ≥ 1. For each x ∈ RN \ {0}, we define a mapping τx: RN →
[0, 1] by

τx(z) = η(d(z, {x}⊥)) for z ∈ RN .

To prove theorems, it is sufficient to prove the assertions for each R > 0 and
each Ω ∈ ΛR. Then, in the rest of this paper, we fix R > 0 and assume that
Ω ∈ ΛR.

The following lemma is a simple consequence from the definition of τx.

Lemma 2.1. Let {Ω(n)}, {xn} ⊂ RN \ {0} and {un} be sequences such that
Ω(n) ∈ ΛR, ρ(Ω(n)) = 1 for each n ≥ 1, un ∈ H1

0 (Ω(n)) for n ≥ 1, and

lim
n→∞

∫
F (xn)

|∇un|2 = lim
n→∞

∫
F (xn)

|un|2
∗

= 0,

where F (xn) = {z ∈ RN : d(z, {xn}⊥) ≤ 1}. Then

lim
n→∞

∫
F (xn)

|∇(τxnun)|2 = lim
n→∞

∫
F (xn)

|τxnun|2
∗

= 0.

Proof. Let {Ω(n)}, {xn} and {un} satisfy the assumption. From the def-
inition of τx, we have that there exists, C > 0 such that |∇τx|∞ ≤ C for all
x ∈ RN . On the other hand, since Ω(n) ∈ ΛR for n ≥ 1, we have that∫

F (xn)

|un|2 ≤ |F (xn) ∩ Ω(n)|(2
∗−2)/2∗

( ∫
F (xn)

|un|2
∗
)2/2∗

≤ R2

( ∫
F (xn)

|un|2
∗
)2/2∗
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for each n ≥ 1. Then from the assumption, we have

lim
n→∞

∫
F (xn)

|∇(τxn
un)|2 = lim

n→∞

∫
F (xn)

|τxn
∇un +∇τxn

un|2

≤ 2 lim
n→∞

( ∫
F (xn)

|∇un|2 + C2

∫
F (xn)

|un|2
)

= 0.

It is also easy to see that limn→∞
∫

F (xn)
|τxnun|2

∗
= 0 holds. �

Lemma 2.2. There exist positive numbers δ and k0 such that if k(Ω) ≤ k0,
then there exists r > 0 satisfying that the following conditions:

(a) Ω ∼= Ω3r,
(b) for each u ∈ Ĩ2c+δ

0 ∩S0(Ω), there is x ∈ Ωr such that B4r(x)∩B4r(−x) =
φ and ∫

Br(x)∪Br(−x)

|u|2
∗
dx ≥ 4

3
c0.

Proof. We first note that if {un} ⊂ S0(RN ) satisfies limn→∞ I0(un) = c,
then there exists a sequence {(zn, εn)} ⊂ RN × R+ such that limn→∞ ‖un −
u(zn,εn)‖ = 0 and limn→∞ |un − u(zn,εn)|2∗ = 0 (cf. [1], [10]).

Now suppose contrary that there exists a sequence {Ω(n)} ⊂ RN and {un} ⊂
H1

0 (Ω) such that Ω(n) ∈ ΛR for each n ≥ 1, limn→∞ k(Ω(n)) = 0, un ∈ S0(Ω(n))∩
H with limn→∞ I0(un) = 2c and∫

Br(x)∪Br(x)

|un|2
∗
dx <

4
3
c0

for any (r, x) ∈ R+ ×Ωr with B4r(x) ∩B4r(−x) = φ and Ω(n) ∼= (Ω(n))3r for all
n ≥ 1. By the invariance of the norms ‖ · ‖ and | · |2∗ under the scaling (2.1), we
may assume that ρ(Ω(n)) = 1 for all n ≥ 1. Since limn→∞ k(Ω(n)) = 0, we find
that

(2.3) rn = sup{r > 0 : Br(0) ⊂ RN \ Ω(n)} → ∞, as n→∞.

Then it is easy to see that there exists a sequence {xn} ⊂ RN \ {0} such that

lim
n→∞

∫
F (xn)

|∇un|2 = lim
n→∞

∫
F (xn)

|un|2
∗

= 0,

Put u′n = τxn
un for n ≥ 1. Then we have by Lemma 2.1 that

(2.4) lim
n→∞

∫
F (xn)

|∇u′n|2 = lim
n→∞

∫
F (xn)

|u′n|2
∗

= 0,

holds. Therefore we have that

(2.5) lim
n→∞

|∇u′n|22 = lim
n→∞

( ∫
Ω(n)\F (xn)

|∇un|2+
∫

F (xn)

|∇u′n|2
)

= lim
n→∞

|∇un|22.
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Similarly, we have

(2.6) lim
n→∞

|u′n|2
∗

2∗ = lim
n→∞

|un|2
∗

2∗ .

From the definition of u′n, we have that

u′n = v1
n + v2

n, where v1
n, v

2
n ∈ H1

0 (Ω(n)),

supp v1
n ∩ supp v2

n = φ,

v1
n(x) = v2

n(−x)

for each n ≥ 1. It then follows from (2.5) and (2.6) that

(2.7) lim
n→∞

‖un − (v1
n + v2

n)‖ = lim
n→∞

|un − (v1
n + v2

n)|2∗ = 0.

It then follows that there exists {(zn, εn)} ⊂ RN × R+ such that

(2.8) lim
n→∞

‖v1
n − u(zn,εn)‖ = lim

n→∞
|v1

n − u(zn,εn)|2∗ = 0.

One can see that supn εn < ∞. In fact, noting that limn→∞ θ(Ωn) = ∞, we
have

(2.9) lim
n→∞

|Ω(n)|/|Brn
(zn)| = 0,

where rn = inf{r > 0 : Ωn ⊂ Br(zn)} for each n ≥ 1. Then if supn εn = ∞, we
have from (2.9) that

c0 = lim
n→∞

|v1
n|2

∗

2∗ = lim
n→∞

∫
Ω(n)

|v1
n|2

∗
= lim

n→∞
inf

∫
Ω(n)

|u(zn,εn)|2
∗

= 0.

This is a contradiction. Thus we have ε = supn εn <∞. Now we fix r1 > 0 such
that

(3.10)
∫

Br1 (0)

|u(0,ε)|2
∗

=
3
4
c0.

Since limn→∞ θ(Ω(n)) = ∞, we have that there exists n0 ≥ 1 such that Ω(n) ∼=
(Ω(n))3r1 . We can choose n1 ≥ n0 such that rn ≥ 5r1 for all n ≥ n1. Now
suppose that lim infn→∞ |zn| ≤ 4r1. Then noting that Br1(zn) ⊂ RN \ Ω(n) in
case that |zn| ≤ 4r1, we have

0 = lim inf
n→∞

∫
Br1 (zn)

|v1
n|2

∗
= lim inf

n→∞
|u(zn,εn)|2

∗
≥ 3

4
c0.

This is a contradiction. Thus we find that lim infn→∞ |zn| > 4r1. This implies
that B4r1(zn) ∩ B4r1(−zn) = φ. We also have that zn ∈ Ω(n)

r1 for n ≥ 1. In fact
if zn /∈ Ω(n)

r1 , then
∫

Br1 (zn)
|v1

n|2
∗

= 0. Then again we reaches to a contradiction.
Now we have by (2.7), (2.8) and (2.10) that∫

Br1 (zn)∪Br1 (−zn)

|un|2
∗
dx ≥ 4

3
c0
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for n sufficiently large. This contradicts to the assumption. Then the assertion
follows. �

Lemma 2.3. Let f ∈ L such that f ≥ 0 and 0 < |f |2 < ε. Let r′ > 0 such
that Ω−r′

∼= Ω and ∫
Ω−r′

|f |2 dx > |f |22/2.

Then there exists ε0 > 0 and a positive function w(z,ε) ∈ H for each (z, ε) ∈
Ω−r′ × (0, ε0) such that

(2.11) sup{If (Nf (v(r′,z,ε)+v(r′,−z,ε)+w(z,ε)) : z ∈ Ω−r′} < 2c for ε ∈ (0, ε0).

Proof. The argument is standard. For completeness, we give a proof. Let
f ∈ L and r′ > 0 satisfy the assumption. We choose d0 > 0 so small that

(2.12)
∫

Ω−r′\(Bd0 (z)∪Bd0 (−z))

|f |2 dx > |f |22/3 for all z ∈ Ω.

Let ψ: Ω → [0, 1] be a mapping such that ψ ∈ C2(Ω), ψ(x) = ψ(−x) on Ω,
ψ(x) = 1 on Ω−r′ and ψ(x) = 0 on ∂Ω. We fix d ∈ (0,min{d0/2, r′}) and put

w(z,ε)(x) = ε1/4[ψ(x)− ϕ((x− z)/2d)− ϕ((x+ z)/2d)] for x, z ∈ Ω and ε > 0.

By (Ω), we have that |x| ≥ r′ for each x ∈ Ω−r′ . That is Br′(x) ∩Br′(−x) = φ.
Fix z ∈ Ω. Then, for ε > 0 sufficiently small, we have

|∇v(d,z,ε)|22 = c0 +O(ε(N−2)/2),(2.13)

|v(d,z,ε)|2
∗

2∗ = c0 +O(εN/2),(2.14)

(cf. [2]). On the other hand, we have by the definition of w(z,ε) and (2.12) that

(2.15) |∇w(z,ε)|22 = O(ε1/2), |w(z,ε)|2
∗

2∗ = O(εN/2(N−2)), 〈f, w(z,ε)〉 = O(ε1/4)

for ε sufficiently small. We put y(z,ε)(x) = v(d,z,ε) + v(d,−z,ε) + w(z,ε). Let
t = tf,y(z,ε) . Then t satisfies

t2|∇y(z,ε)|22 = t2
∗
|y(z,ε)|2

∗

2∗ + t〈f, y(z,ε)〉.

Then noting that

|∇y(z,ε)|22 = |∇v(r′,z,ε)|22 + |∇v(r′,−z,ε)|22 + |∇w(z,ε)|22

and
|y(z,ε)|2

∗

2∗ = |v(r′,z,ε)|2
∗

2∗ + |v(r′,−z,ε)|2
∗

2∗ + |w(z,ε)|2
∗

2∗ ,

we find from (2.13)–(2.15) that t = 1−O(ε1/4). Then we have

I(Nfy(z,ε)) =
(2∗ − 2)t2

∗

2 · 2∗
|y(z,ε)|2

∗

2∗ −
t

2
〈f, y(z,ε)〉 ≤ 2(1−O(ε1/4))c.

Thus we find that the assertion holds by taking ε0 sufficiently small. �
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Throughout the rest of this paper, we assume that k(Ω) ≤ k0 holds. We
fix r > 0 and δ > 0 satisfying the assertion of Lemma 2.2. From the definition
of Sf (Ω), we have that Nf (u) → N0(u) and If (Nfu) → I0(N0u), as f → 0,
uniformly on Id

f ∩ Sf (Ω) for each d > 0. That is we have

Lemma 2.4. Let d > 0 and δ > 0. Then there exists ε ∈ (0, ε) such that for
each f ∈ H with |f |2 < ε,

I0(N0u) ≤ If (u) + δ for all u ∈ Id
f ∩ Sf (Ω).

The assertion of Lemma 2.4 is a direct consequence of the definition of Nf .
Then we omit the proof. We now put δ = δ and d = c in Lemma 2.4. Then by
Lemma 2.4, we can choose ε̃ ∈ (0, ε) such that for f ∈ H with |f |2 < ε̃

(2.17) I0(N0u) ≤ 2c+ δ for u ∈ Ĩ2c
f .

We may assume that δ < c/4. Then again by Lemma 2.4 and Lemma 2.2 that

(2.17) If (u) ≥ 13
12
c for all u ∈ Sf (Ω) ∩H.

Here we note that Palais–Smale (PS) condition holds in the interval (c, 2c) for
If (cf. [10], [5]). That is if {un} ⊂ H1

0 (Ω) with limn→∞ If (un) = d ∈ (c, 2c)
and limn→∞∇If (un) = 0, then there exists a convergent sequence {uni

} ⊂ {un}
with uni → u, If (u) = d and ∇If (u) = 0. Therefore from (2.17), we find that
(PS) condition holds on Ĩ2c−σ

f . In the following, we assume that f ∈ H satisfies
|f |2 < ε̃. Then there exists r > 0 satisfying the assertion of Lemma 2.2. Here
we fix a continuous function ξ: [0,∞) → [0, 1] such that ξ(t) = 1 for t ≥ 2/3 and
ξ(t) = 0 for t ≤ 1/2. For each u ∈ H1

0 (Ω) \ {0}, we define a continuous function
β: RN → [0, 1] by

βu(x) = ξ

(∫
Br(x)

|u|2∗ dx
|u|2∗2∗

)
for x ∈ RN .

In the following we assume that f ∈ L with |f |2 < ε̃. Then we have

Lemma 2.5. Let u ∈ Ĩ2c
f ∩ Sf (Ω). Then there exists z ∈ RN such that

|z| > 4r, Ω′ = {x ∈ Ω : βu(x) > 0} ⊂ B2r(z) ∪B2r(−z), and

(2.18)

∫
Br(z)∩Ω′ βu(x)x∫

Br(z)∩Ω′βu(x)
∈ Ω3r,

Proof. Let u ∈ Ĩ2c
f . Then by Lemma 2.2, there exists z ∈ Ωr such that∫

Br(z)∪Br(−z)

|N0u|2
∗
dx ≥ 4

3
c0.

From the inequality above, it is obvious that

βu(x) = βN0u(x) = 0 for x ∈ RN \ (B2r(z) ∪B2r(−z)).
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Then
Ω′ = {x ∈ Ω : βu(x) > 0} ⊂ B2r(z) ∪B2r(−z).

Since z ∈ Ωr, we have that Ω′ ⊂ Ω3r. Then (2.18) holds. �

From lemma above, we can define a mapping γ̃: Ĩ2c
f → Ω̂3r by

γ̃(u) =
{∫

Br(z)∩Ω′ βu(x)x∫
Br(z)∩Ω′βu(x)

,

∫
Br(−z)∩Ω′ βu(x)x∫

Br(−z)∩Ω′βu(x)

}
,

where z ∈ RN is the point obtained in Lemma 2.5. One can see, from the
fact Ω′ ⊂ B2r(z) ∪ B2r(−z), that γ̃(u) does not depend on the choice of z, and
γ̃: Ĩ2c

f → Ω̂3r is continuous. Then we have

Lemma 2.6. For each p ≥ 1, rankHp(Ĩ2c−σ
f ) ≥ rankHp(Ω̂) for σ > 0 suffi-

ciently small.

Proof. By Lemma 2.3, there exists positive numbers r1, ε0, such that Ω ∼=
Ω−r1 and that for each (z, ε) ∈ Ω−r1 × (0, ε0),

(2.19) sup{If (Nf (v(r1,z,ε) + v(r1,−z,ε) + w(z,ε)) : z ∈ Ω−r1} < 2c,

where w(z,ε) ∈ H the function defined in the proof of Lemma 2.3. Then we have
that Ω̂3r

∼= Ω̂ ∼= Ω̂−r1 , and Hp(Ω̂3r) ∼= Hp(Ω̂) ∼= Hp(Ω̂−r1) for each p ≥ 0. We
denote by θ the retraction from Ω3r to Ω−r1 . We put

W1 = {Nf (v(r1,z,ε) + v(r1,−z,ε) + w(z,ε)) : z ∈ Ω−r1}.

Let j: Ω̂−δ1 →W1 be the mapping defined by

j[(z,−z)] = Nf (v(r1,z,ε) + v(r1,−z,ε) + w(z,ε)) for each x ∈ Ω−r1 .

From the definition of w(z,ε), we have that w(z,ε) → 0 as ε→ 0. Then

γ(Nf (v(r1,z,ε) + v(r1,−z,ε) + w(z,ε))) → γ(Nf (v(r1,z,ε) + v(r1,−z,ε)) = (z,−z),

as ε → 0. That is θ ◦ γ ◦ j → i, as ε → 0, where i: Ω−r1 → Ω−r1 is the identity
mapping. Therefore we have by choosing ε1 ∈ (0, ε0) sufficiently small that
θ ◦ γ ◦ j(Ω−r1) ∼= Ω−r1 . By Lemma 2.3, we have that there exists σ > 0 such
that

(2.20) sup{If (Nf (v(r1,z,ε1) + v(r1,−z,ε1) + w(z,ε1)) : z ∈ Ω−r1} < 2c− σ.

We now consider the following sequence:

Ω̂−r1

j−→ Ĩ2c−σ
f

γ−→ Ω̂3r
θ−→ Ω̂−r1 .

Then noting that θ∗ ◦ γ∗ ◦ j∗ is the identity mapping on Hp(Ω̂−r1), we have from
the sequence

Hp(Ω̂−r1)
j∗−→ Hp(Ĩ2c−σ

f )
eγ∗−→ Hp(Ω̂3r)

θ∗−→ Hp(Ω̂−r1),
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that

rankHp(Ĩ2c−σ
f ) ≥ rankHp(Ω̂−r1) = rankHp(Ω̂) for each p ≥ 1. �

Proof of Theorem 1.1. From the assumption (Ω), we have that H0(Ω) 6=
{0} and Hp(Ω) 6= {0} for some p ≥ 1. By the Thom–Gysin exact sequence

· · · → Hp(Ω)
p∗−→ Hp(Ω̂)

ξ∩−→ Hp−1(Ω̂) −→ Hq−1(Ω) → · · ·

where ξ ∈ H1(Ω̂) (cf. [9, Chapter 5.3, Theorem 11], we find that
∑∞

p=0Hp(Ω̂) ≥ 2
holds. We choose σ > 0 sufficiently small that the assertion of Lemma 2.6 holds.
We may assume that 2c−σ is a regular value of If . Since (PS) condition holds on
the interval [13c/12, 2c−σ] for If on H, we have that m = inf{If (v) : v ∈ Ĩ2c−σ

f }
is attained by an element in Sf (Ω). That is there exists a subsetK ⊂ H of critical
points of If such that

If (u) = min{If (v) : v ∈ Ĩ2c−σ
f } for each u ∈ K.

If K contains more than two points, the assertion holds. Then we assume that
K consists of single point u1. Then we have that there exists δ > 0 such that
m + δ < 2c − σ, H0(Im+δ

f ) = Z2 and Hp(Im+δ
f ) = {0} for p ≥ 1. Then since∑∞

p=0Hp(I2c−σ
f ) ≥ 2, we find that there exists a critical point u2 ∈ Sf (Ω) with

u1 6= u2. �

Proof of Theorem 1.2. As in the proof of Theorem 1.1, we choose σ > 0
so small that the assertion of Lemma 2.6. Since {g ∈ C∞(Ω) : g > 0 on Ω} is
dense {g ∈ L2(Ω) : g ≥ 0}, we may assume that f ∈ C∞(Ω) and f > 0 on Ω. We
suppose that n ≥ 0 and there exist critical points u1, . . . , un ∈ H of If such that
each of them is nondegenerate. If

∑
p≥0 rankHp(Ω̂) ≤ n, the assertion holds.

Suppose that
∑

p≥0 rankHp(Ω̂) > n. Then since
∑

p≥0 rankHp(Ĩ2c−σ
f ) > n, we

have by the Morse inequality that there exists a critical point un+1 ∈ Ĩ2c−σ
f of If

such that un+1 6= ui for 1 ≤ i ≤ n. We define a mapping F :H2(Ω) ∩H1
0 (Ω) →

L2(Ω) by

F(u) = −(∆u+ |u|2
∗−2u) for u ∈ H2(Ω) ∩H1

0 (Ω).

We denote by B(2)
r , B(h)

r and B(∞)
r the balls centered at 0 with radius r in

L2(Ω), H1
0 (Ω) ∩H2(Ω) and C∞0 (Ω), respectively. Since each critical point ui is

nondegenerate for 1 ≤ i ≤ n, we can choose ri > 0 such Ker I ′′f (u) = {0} for each

u ∈ ui + B(h)
ri and the mapping F :ui + B(h)

ri → F(ui + B(h)
ri ) is an isomorphism,

for each 1 ≤ i ≤ n, where I ′′f denotes the Hessian of If . Recall that v ∈Ker
I ′′(un+1) if and only if

−∆v − (2∗ − 1)|un+1|2
∗−2v = 0
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and that there exists m > 0 such that for each

|〈−∆v − (2∗ − 1)|un+1|2
∗−2v, v〉| ≥ m|v|2, for v ∈ (Ker I ′′f (un+1))⊥.

Then we can choose r′ ∈ (0, r) such that

F(un+1 + B(h)
r′ ) ⊂

n⋂
i=1

F(ui + B(h)
ri

),

and that for each u ∈ un+1 + B(h)
r′ ,

(2.21) |〈−∆v − (2∗ − 1)|u|2
∗−2v, v〉| ≥ (m/2)|v|2 for v ∈ (Ker I ′′(un+1))⊥.

We can also choose r̂ > 0 such that B(∞)
br ⊂ B(h)

r′ and for each u ∈ un+1 + B(h)
br .

F(u) = −∆u− |u|2
∗−2u > 0 on Ω.

Then since Ker I ′′(un+1) is a finite dimensional space, one can see that there
exists u′ ∈ un+1 + B(∞)

br such that

−∆v − (2∗ − 1)|u′|2
∗−2v 6= 0 for v ∈ Ker I ′′(un+1) \ {0}

and that
f ′ = −∆u′ − |u′|2

∗−2u′ > 0 on Ω.

Then u′ is nondegenerate critical point of problem (Pf ′). Since f ′ = F(u′) ∈⋂n
i=1 F(ui + B(∗)

ri ), there exist critical points u′1, . . . , u
′
n of If ′ such that u′i ∈

ui + B(h)
ri . From the definition of ri, each u′i is a nondegenerate critical point

of (Pf ′). Thus we find that problem (Pf ′) has n+1 nondegenerate critical points.
Repeating this procedure, we reaches to the conclusion. �
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Manuscript received January 30, 2004

Norimichi Hirano

Graduate School of Environment
and Information Sciences

Yokohama National University

Tokiwadai, Hodogayaku
Yokohama, JAPAN

E-mail address: hirano@mth.sci.ynu.ac.jp

TMNA : Volume 25 – 2005 – No 1


