MULTIPLICITY OF POSITIVE SOLUTIONS FOR SEMILNEAR ELLIPTIC PROBLEMS WITH ANTIPODAL SYMMETRY

Norimichi Hirano

AbStract. In this paper, we show the multiple existence of positive solutions of semilinear elliptic problems of the form

$$
-\Delta u=|u|^{2^{*}-2} u+f, \quad u \in H_{0}^{1}(\Omega)
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain, 2^{*} is the Sobolev critical exponent and $f \in L^{2}(\Omega)$.

1. Introduction

Let $N \geq 3,2^{*}=2 N /(N-2), \Omega \subset \mathbb{R}^{N}$ be a bounded domain with a smooth boundary $\partial \Omega$, and $f \in L^{2}(\Omega)$ with $f \geq 0$. The existence and multiplicity of solutions of problem
$\left(\mathrm{P}_{f}\right) \quad \begin{cases}-\Delta u=|u|^{2^{*}-2} u+f & \text { on } \Omega, \\ u>0 & \text { on } \Omega, \\ u=0 & \text { on } \partial \Omega,\end{cases}$
has been studied by many authors. It is known that problem $\left(\mathrm{P}_{0}\right)$ has no nontrivial solution when domain Ω is star-shaped (cf. [7]). In [6], Kazdon and Warner proved the existence of a nontrivial solution of $\left(\mathrm{P}_{0}\right)$ in the case that Ω is annulus.

2000 Mathematics Subject Classification. 35J60.
Key words and phrases. Critical exponent, multiple existence, semilinear elliptic problem.

In [1], Bahri and Coron established the existence of a nontrivial solution of $\left(\mathrm{P}_{0}\right)$ when Ω has nontrivial topology. On the other hand, for the nonhomogeneous problem $f \neq 0$, Tarantello [10] proved the existence of two solutions of $\left(\mathrm{P}_{f}\right)$ when $\|f\|_{L^{2}(\Omega)}$ is small. In the case that Ω has non trivial topology, Rey [8] proved that problem $\left(\mathrm{P}_{f}\right)$ has cat $(\Omega)+1$ solutions when f is sufficiently small.

Our purpose in this paper is to consider the multiple existence of solutions of problem $\left(\mathrm{P}_{f}\right)$ for domain $\Omega \subset \mathbb{R}^{N}$ and $f \in L^{2}(\Omega)$ having antipodal symmetry.

To state our main results, we need some notations. Throughout this paper, Ω is a bounded domain with a smooth boundary $\partial \Omega$. We denote by $B_{r}(0) \subset \mathbb{R}^{N}$ the open ball centered at 0 with radius r. We put

$$
\begin{aligned}
& \rho(\Omega)=\sup \left\{r>0: B_{r}(x) \subset \Omega \text { for some } x \in \Omega\right\} \\
& \theta(\Omega)=\sup \left\{r>0: \text { there exists } A \subset \mathbb{R}^{N} \backslash \Omega \text { such that } \mathbb{R}^{N} \backslash \Omega=\bigcup_{x \in A} B_{r}(x)\right\}
\end{aligned}
$$

and

$$
k(\Omega)=\frac{\rho(\Omega)}{\theta(\Omega)}
$$

We impose the following condition on Ω :
$(\Omega) \Omega=-\Omega$ and there exists $r_{0}>0$ such that $B_{r_{0}}(0) \cap \Omega=\phi$.
For two topological spaces X, Y, we write $X \cong Y$ when X and Y are of the same homotopy type. For each topological space $X, H_{*}(X)$ stands for the singular homology groups with coefficients \mathbb{Z}_{2} (cf. [3], [9]). We denote by $\widehat{\Omega}$ the set Ω identified the antipodal points, and denote by $p_{\Omega}: \Omega \rightarrow \widehat{\Omega}$ the covering projection defined by $p_{\Omega}(x)=(-x, x)$ for $x \in \Omega$. For each $p \geq 1$, we denote by $|\cdot|_{p}$ the norm of $L^{p}(\Omega)$. We put

$$
L=\left\{v \in L^{2}(\Omega): v(x)=v(-x) \text { for } x \in \Omega\right\}
$$

and $H=H_{0}^{1}(\Omega) \cap L$. We can now state our main results.
Theorem 1.1. There exists $k_{0}>0$ and $\delta_{0}>0$ such that if $k(\Omega)<k_{0}$, then for each $f \in L$ with $f \geq 0$ and $0<|f|_{2}<\delta_{0}$, problem $\left(\mathrm{P}_{f}\right)$ possesses at least two solutions in H.

Theorem 1.2. There exists $k_{1}>0, \delta_{1}>0$ such that if $k(\Omega)<k_{1}$, then there exists a residual subset D of $\left\{f \in L: f \geq 0\right.$ and $\left.|f|_{2}<\delta_{1}\right\}$ satisfying that for each $f \in D$, problem $\left(\mathrm{P}_{f}\right)$ possesses at least $\sum_{p=0}^{\infty} \operatorname{rank} H_{p}(\widehat{\Omega})$ solutions in H.

Corollary 1.3. Suppose that $\Omega \cong S^{N-1}$. Then there exists $k>0, \delta>$ 0 such that if $k(\Omega)<k$, then there exists a residual subset D of $\{f \in L$: $\left.f \geq 0,|f|_{2}<\delta\right\}$ satisfying that for each $f \in D$, problem $\left(\mathrm{P}_{f}\right)$ possesses at least N solutions in H.

Remark 1.4. The solutions obtained in [10] as well as in [8] are solutions with critical levels smaller than the critical level c of the grand state solution of problem (P_{0}) with $\Omega=\mathbb{R}^{N}$. On the other hand, the solutions obtained in our results have critical levels close to $2 c$. Then for instance under the assumption of Theorem 1.1, we have at least four solutions of problem $\left(\mathrm{P}_{f}\right)$ in $H_{0}^{1}(\Omega)$ by the result in [10] and Theorem 1.1.

2. Preliminaries

For given $R>0$, we denote by Λ_{R} the set of bounded domains Ω with smooth boundary $\partial \Omega$ such that $\operatorname{diam}(\Omega)<R$. For each measurable set $A \subset \mathbb{R}^{N}$, we denote by $|A|$ the measure of A. For $u, v \in H_{0}^{1}(\Omega)$, we put $\langle u, v\rangle=\int_{\Omega} u v d x$. The norm $\|\cdot\|$ of $H_{0}^{1}(\Omega)$ is defined by $\|v\|=|\nabla v|_{2}$ for $v \in H_{0}^{1}(\Omega)$. For each $d \in \mathbb{R}, \Omega_{d}$ denotes the set defined by

$$
\Omega_{d}= \begin{cases}\left\{x \in \mathbb{R}^{N}: d(x, \Omega)<d\right\} & \text { if } d>0 \\ \{x \in \Omega: d(x, \partial \Omega)>-d\} & \text { if } d \leq 0\end{cases}
$$

For each $a \in \mathbb{R}$, and a functional $F: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$, we denote by F^{a} the level set

$$
F^{a}=\left\{v \in H_{0}^{1}(\Omega): F(v) \leq a\right\} .
$$

For $f \in L^{2}(\Omega)$, we define a functional I_{f} on $H_{0}^{1}(\Omega)$ by

$$
I_{f}(u)=\int_{\Omega}\left(\frac{1}{2}|\nabla u|^{2}-\frac{1}{2^{*}}\left|u^{+}\right|^{2^{*}}-f u\right) d x \quad \text { for } u \in H_{0}^{1}(\Omega) .
$$

Here $u^{+}(x)=\max \{u(x), 0\}$ for $x \in \Omega$. Then the solutions of $\left(\mathrm{P}_{f}\right)$ correspond to critical points of functional I_{f}. Let

$$
D^{1}\left(\mathbb{R}^{N}\right)=\left\{v \in L^{2^{*}}\left(\mathbb{R}^{N}\right):|\nabla v|_{2} \in L^{2^{*}}\left(\mathbb{R}^{N}\right)\right\} .
$$

For each $(z, \varepsilon) \in \mathbb{R}^{N} \times(0, \infty)$, we put

$$
u_{(z, \varepsilon)}(x)=m\left[\frac{\varepsilon^{1 / 2}}{\varepsilon+(x-z)^{2}}\right]^{(N-2) / 2}, \quad x \in \mathbb{R}^{N}
$$

where $m=(N(N-2))^{(N-2) / 4}$. It is known that each $u_{(z, \varepsilon)}$ is a critical point of I_{0} with the domain $H_{0}^{1}(\Omega)$ replaced by $D^{1}\left(\mathbb{R}^{N}\right)$. By the invariance of the norm of $D^{1}\left(\mathbb{R}^{N}\right)$ under translation and scaling

$$
\begin{equation*}
u \rightarrow u_{R}(x)=R^{-N / 2^{*}} u(x / R), \quad R>0 \tag{2.1}
\end{equation*}
$$

we have that each $u_{(z, \varepsilon)}$ have the same critical value of I_{0}. We put $c=I_{0}\left(u_{(z, \varepsilon)}\right)$ for $(z, \varepsilon) \in \mathbb{R}^{N} \times(0, \infty)$, and $c_{0}=2 \cdot 2^{*} c /\left(2^{*}-2\right)$. We also set

$$
\mathcal{S}_{f}(\Omega)=\left\{v \in H_{0}^{1}(\Omega):\|v\|^{2}=\left|v^{+}\right|_{2^{*}}^{2^{*}}+\langle f, v\rangle, I(v)=\sup _{t \in \mathbb{R}^{+}} I(t v)\right\}
$$

for $f \in L$. It is easy to see that there exists $\bar{\varepsilon}>0$ such that if $f \geq 0,|f|_{2}<\bar{\varepsilon}$ and $v \in H \backslash\{0\}$ with $v^{+} \not \equiv 0$, there exists a unique positive number $t_{f, v}$ such that $t_{f, v} v \in S_{f}(\Omega)$ (cf. [5], [10]). Throughout the rest of this paper, we assume that $f \geq 0$ and $|f|_{2}<\bar{\varepsilon}$. For each $v \in H \backslash\{0\}$ with $v^{+} \not \equiv 0$, we define $\mathcal{N}_{f} v \in S_{f}(\Omega)$ by $\mathcal{N}_{f} v=t_{f, v} v$. We have from the definition of $\mathcal{S}_{f}(\Omega)$ that

$$
\begin{equation*}
\left\langle\nabla I_{f}(v), v\right\rangle=0 \quad \text { for all } v \in \mathcal{S}_{f}(\Omega) \tag{2.2}
\end{equation*}
$$

We will seek for solutions of I_{f} in $\mathcal{S}_{f} \cap H$. For simplicity of notation, we put $\widetilde{I}_{f}^{d}=I_{f}^{d} \cap \mathcal{S}_{f}(\Omega) \cap H$ for each $d>0$. Let $\varphi: \mathbb{R}^{N} \rightarrow[0,1]$ be a smooth function such that $\varphi(x)=1$ for $x \in B_{1 / 2}(0)$ and $\varphi(x)=0$ on $\mathbb{R}^{N} \backslash B_{1}(0)$. We put

$$
v_{(r, z, \varepsilon)}(x)=\varphi((x-z) / r) u_{(z, \varepsilon)}(x) \quad \text { for }(r, z, \varepsilon) \in \mathbb{R}^{+} \times \mathbb{R}^{N} \times \mathbb{R}^{+} \text {and } x \in \mathbb{R}^{N}
$$

We also fix a mapping $\eta \in C^{\infty}([0, \infty) ;[0,1])$ such that $\eta(t)=0$ for $t \in[0,1 / 2]$ and $\eta(t)=1$ for $t \geq 1$. For each $x \in \mathbb{R}^{N} \backslash\{0\}$, we define a mapping $\tau_{x}: \mathbb{R}^{N} \rightarrow$ $[0,1]$ by

$$
\tau_{x}(z)=\eta\left(d\left(z,\{x\}^{\perp}\right)\right) \quad \text { for } z \in \mathbb{R}^{N} .
$$

To prove theorems, it is sufficient to prove the assertions for each $R>0$ and each $\Omega \in \Lambda_{R}$. Then, in the rest of this paper, we fix $R>0$ and assume that $\Omega \in \Lambda_{R}$.

The following lemma is a simple consequence from the definition of τ_{x}.
Lemma 2.1. Let $\left\{\Omega^{(n)}\right\},\left\{x_{n}\right\} \subset \mathbb{R}^{N} \backslash\{0\}$ and $\left\{u_{n}\right\}$ be sequences such that $\Omega^{(n)} \in \Lambda_{R}, \rho\left(\Omega^{(n)}\right)=1$ for each $n \geq 1, u_{n} \in H_{0}^{1}\left(\Omega^{(n)}\right)$ for $n \geq 1$, and

$$
\lim _{n \rightarrow \infty} \int_{F\left(x_{n}\right)}\left|\nabla u_{n}\right|^{2}=\lim _{n \rightarrow \infty} \int_{F\left(x_{n}\right)}\left|u_{n}\right|^{2^{*}}=0
$$

where $F\left(x_{n}\right)=\left\{z \in \mathbb{R}^{N}: d\left(z,\left\{x_{n}\right\}^{\perp}\right) \leq 1\right\}$. Then

$$
\lim _{n \rightarrow \infty} \int_{F\left(x_{n}\right)}\left|\nabla\left(\tau_{x_{n}} u_{n}\right)\right|^{2}=\lim _{n \rightarrow \infty} \int_{F\left(x_{n}\right)}\left|\tau_{x_{n}} u_{n}\right|^{2^{*}}=0
$$

Proof. Let $\left\{\Omega^{(n)}\right\},\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ satisfy the assumption. From the definition of τ_{x}, we have that there exists, $C>0$ such that $\left|\nabla \tau_{x}\right|_{\infty} \leq C$ for all $x \in \mathbb{R}^{N}$. On the other hand, since $\Omega^{(n)} \in \Lambda_{R}$ for $n \geq 1$, we have that

$$
\begin{aligned}
& \int_{F\left(x_{n}\right)}\left|u_{n}\right|^{2} \leq\left.\left|F\left(x_{n}\right) \cap \Omega^{(n)}\right|\right|^{\left(2^{*}-2\right) / 2^{*}}\left(\left.\int_{F\left(x_{n}\right)}\left|u_{n}\right|\right|^{2^{*}}\right)^{2 / 2^{*}} \\
& \leq R^{2}\left(\int_{F\left(x_{n}\right)}\left|u_{n}\right|^{2^{*}}\right)^{2 / 2^{*}}
\end{aligned}
$$

for each $n \geq 1$. Then from the assumption, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{F\left(x_{n}\right)}\left|\nabla\left(\tau_{x_{n}} u_{n}\right)\right|^{2} & =\lim _{n \rightarrow \infty} \int_{F\left(x_{n}\right)}\left|\tau_{x_{n}} \nabla u_{n}+\nabla \tau_{x_{n}} u_{n}\right|^{2} \\
& \leq 2 \lim _{n \rightarrow \infty}\left(\int_{F\left(x_{n}\right)}\left|\nabla u_{n}\right|^{2}+C^{2} \int_{F\left(x_{n}\right)}\left|u_{n}\right|^{2}\right)=0
\end{aligned}
$$

It is also easy to see that $\lim _{n \rightarrow \infty} \int_{F\left(x_{n}\right)}\left|\tau_{x_{n}} u_{n}\right|^{2^{*}}=0$ holds.
Lemma 2.2. There exist positive numbers $\bar{\delta}$ and k_{0} such that if $k(\Omega) \leq k_{0}$, then there exists $r>0$ satisfying that the following conditions:
(a) $\Omega \cong \Omega_{3 r}$,
(b) for each $u \in \widetilde{I}_{0}^{2 c+\bar{\delta}} \cap S_{0}(\Omega)$, there is $x \in \Omega_{r}$ such that $B_{4 r}(x) \cap B_{4 r}(-x)=$ ϕ and

$$
\int_{B_{r}(x) \cup B_{r}(-x)}|u|^{2^{*}} d x \geq \frac{4}{3} c_{0} .
$$

Proof. We first note that if $\left\{u_{n}\right\} \subset \mathcal{S}_{0}\left(\mathbb{R}^{N}\right)$ satisfies $\lim _{n \rightarrow \infty} I_{0}\left(u_{n}\right)=c$, then there exists a sequence $\left\{\left(z_{n}, \varepsilon_{n}\right)\right\} \subset \mathbb{R}^{N} \times \mathbb{R}^{+}$such that $\lim _{n \rightarrow \infty} \| u_{n}-$ $u_{\left(z_{n}, \varepsilon_{n}\right)}| |=0$ and $\lim _{n \rightarrow \infty}\left|u_{n}-u_{\left(z_{n}, \varepsilon_{n}\right)}\right|_{2^{*}}=0$ (cf. [1], [10]).

Now suppose contrary that there exists a sequence $\left\{\Omega^{(n)}\right\} \subset \mathbb{R}^{N}$ and $\left\{u_{n}\right\} \subset$ $H_{0}^{1}(\Omega)$ such that $\Omega^{(n)} \in \Lambda_{R}$ for each $n \geq 1, \lim _{n \rightarrow \infty} k\left(\Omega^{(n)}\right)=0, u_{n} \in \mathcal{S}_{0}\left(\Omega^{(n)}\right) \cap$ H with $\lim _{n \rightarrow \infty} I_{0}\left(u_{n}\right)=2 c$ and

$$
\int_{B_{r}(x) \cup B_{r}(x)}\left|u_{n}\right|^{2^{*}} d x<\frac{4}{3} c_{0}
$$

for any $(r, x) \in \mathbb{R}^{+} \times \Omega_{r}$ with $B_{4 r}(x) \cap B_{4 r}(-x)=\phi$ and $\Omega^{(n)} \cong\left(\Omega^{(n)}\right)_{3 r}$ for all $n \geq 1$. By the invariance of the norms $\|\cdot\|$ and $|\cdot|_{2^{*}}$ under the scaling (2.1), we may assume that $\rho\left(\Omega^{(n)}\right)=1$ for all $n \geq 1$. Since $\lim _{n \rightarrow \infty} k\left(\Omega^{(n)}\right)=0$, we find that

$$
\begin{equation*}
\bar{r}_{n}=\sup \left\{r>0: B_{r}(0) \subset \mathbb{R}^{N} \backslash \Omega^{(n)}\right\} \rightarrow \infty, \quad \text { as } n \rightarrow \infty \tag{2.3}
\end{equation*}
$$

Then it is easy to see that there exists a sequence $\left\{x_{n}\right\} \subset \mathbb{R}^{N} \backslash\{0\}$ such that

$$
\lim _{n \rightarrow \infty} \int_{F\left(x_{n}\right)}\left|\nabla u_{n}\right|^{2}=\lim _{n \rightarrow \infty} \int_{F\left(x_{n}\right)}\left|u_{n}\right|^{2^{*}}=0
$$

Put $u_{n}^{\prime}=\tau_{x_{n}} u_{n}$ for $n \geq 1$. Then we have by Lemma 2.1 that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{F\left(x_{n}\right)}\left|\nabla u_{n}^{\prime}\right|^{2}=\lim _{n \rightarrow \infty} \int_{F\left(x_{n}\right)}\left|u_{n}^{\prime}\right|^{2^{*}}=0 \tag{2.4}
\end{equation*}
$$

holds. Therefore we have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\nabla u_{n}^{\prime}\right|_{2}^{2}=\lim _{n \rightarrow \infty}\left(\int_{\Omega^{(n)} \backslash F\left(x_{n}\right)}\left|\nabla u_{n}\right|^{2}+\int_{F\left(x_{n}\right)}\left|\nabla u_{n}^{\prime}\right|^{2}\right)=\lim _{n \rightarrow \infty}\left|\nabla u_{n}\right|_{2}^{2} . \tag{2.5}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|u_{n}^{\prime}\right|_{2_{*}}^{2^{*}}=\lim _{n \rightarrow \infty}\left|u_{n}\right|_{2_{*}}^{2^{*}} . \tag{2.6}
\end{equation*}
$$

From the definition of u_{n}^{\prime}, we have that

$$
\begin{gathered}
u_{n}^{\prime}=v_{n}^{1}+v_{n}^{2}, \quad \text { where } v_{n}^{1}, v_{n}^{2} \in H_{0}^{1}\left(\Omega^{(n)}\right), \\
\operatorname{supp} v_{n}^{1} \cap \operatorname{supp} v_{n}^{2}=\phi, \\
v_{n}^{1}(x)=v_{n}^{2}(-x)
\end{gathered}
$$

for each $n \geq 1$. It then follows from (2.5) and (2.6) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}-\left(v_{n}^{1}+v_{n}^{2}\right)\right\|=\lim _{n \rightarrow \infty}\left|u_{n}-\left(v_{n}^{1}+v_{n}^{2}\right)\right|_{2^{*}}=0 \tag{2.7}
\end{equation*}
$$

It then follows that there exists $\left\{\left(z_{n}, \varepsilon_{n}\right)\right\} \subset \mathbb{R}^{N} \times \mathbb{R}^{+}$such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|v_{n}^{1}-u_{\left(z_{n}, \varepsilon_{n}\right)}\right\|=\lim _{n \rightarrow \infty}\left|v_{n}^{1}-u_{\left(z_{n}, \varepsilon_{n}\right)}\right|_{2^{*}}=0 \tag{2.8}
\end{equation*}
$$

One can see that $\sup _{n} \varepsilon_{n}<\infty$. In fact, noting that $\lim _{n \rightarrow \infty} \theta\left(\Omega_{n}\right)=\infty$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\Omega^{(n)}\right| /\left|B_{r_{n}}\left(z_{n}\right)\right|=0 \tag{2.9}
\end{equation*}
$$

where $r_{n}=\inf \left\{r>0: \Omega_{n} \subset B_{r}\left(z_{n}\right)\right\}$ for each $n \geq 1$. Then if $\sup _{n} \varepsilon_{n}=\infty$, we have from (2.9) that

$$
c_{0}=\lim _{n \rightarrow \infty}\left|v_{n}^{1}\right| 2^{2^{*}}=\lim _{n \rightarrow \infty} \int_{\Omega^{(n)}}\left|v_{n}^{1}\right|^{2^{*}}=\lim _{n \rightarrow \infty} \inf \int_{\Omega^{(n)}}\left|u_{\left(z_{n}, \varepsilon_{n}\right)}\right|^{2^{*}}=0
$$

This is a contradiction. Thus we have $\varepsilon=\sup _{n} \varepsilon_{n}<\infty$. Now we fix $r_{1}>0$ such that

$$
\begin{equation*}
\int_{B_{r_{1}}(0)}\left|u_{(0, \varepsilon)}\right|^{2^{*}}=\frac{3}{4} c_{0} . \tag{3.10}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty} \theta\left(\Omega^{(n)}\right)=\infty$, we have that there exists $n_{0} \geq 1$ such that $\Omega^{(n)} \cong$ $\left(\Omega^{(n)}\right)_{3 r_{1}}$. We can choose $n_{1} \geq n_{0}$ such that $\bar{r}_{n} \geq 5 r_{1}$ for all $n \geq n_{1}$. Now suppose that $\lim \inf _{n \rightarrow \infty}\left|z_{n}\right| \leq 4 r_{1}$. Then noting that $B_{r_{1}}\left(z_{n}\right) \subset \mathbb{R}^{N} \backslash \Omega^{(n)}$ in case that $\left|z_{n}\right| \leq 4 r_{1}$, we have

$$
0=\lim \inf _{n \rightarrow \infty} \int_{B_{r_{1}\left(z_{n}\right)}}\left|v_{n}^{1}\right|^{2^{*}}=\lim \inf _{n \rightarrow \infty}\left|u_{\left(z_{n}, \varepsilon_{n}\right)}\right|^{2^{*}} \geq \frac{3}{4} c_{0}
$$

This is a contradiction. Thus we find that $\liminf _{n \rightarrow \infty}\left|z_{n}\right|>4 r_{1}$. This implies that $B_{4 r_{1}}\left(z_{n}\right) \cap B_{4 r_{1}}\left(-z_{n}\right)=\phi$. We also have that $z_{n} \in \Omega_{r_{1}}^{(n)}$ for $n \geq 1$. In fact if $z_{n} \notin \Omega_{r_{1}}^{(n)}$, then $\int_{B_{r_{1}}\left(z_{n}\right)}\left|v_{n}^{1}\right|^{2^{*}}=0$. Then again we reaches to a contradiction. Now we have by (2.7), (2.8) and (2.10) that

$$
\int_{B_{r_{1}}\left(z_{n}\right) \cup B_{r_{1}}\left(-z_{n}\right)}\left|u_{n}\right|^{2^{*}} d x \geq \frac{4}{3} c_{0}
$$

for n sufficiently large. This contradicts to the assumption. Then the assertion follows.

Lemma 2.3. Let $f \in L$ such that $f \geq 0$ and $0<|f|_{2}<\bar{\varepsilon}$. Let $r^{\prime}>0$ such that $\Omega_{-r^{\prime}} \cong \Omega$ and

$$
\int_{\Omega_{-r^{\prime}}}|f|^{2} d x>|f|_{2}^{2} / 2
$$

Then there exists $\varepsilon_{0}>0$ and a positive function $w_{(z, \varepsilon)} \in H$ for each $(z, \varepsilon) \in$ $\Omega_{-r^{\prime}} \times\left(0, \varepsilon_{0}\right)$ such that
(2.11) $\sup \left\{I_{f}\left(\mathcal{N}_{f}\left(v_{\left(r^{\prime}, z, \varepsilon\right)}+v_{\left(r^{\prime},-z, \varepsilon\right)}+w_{(z, \varepsilon)}\right): z \in \Omega_{-r^{\prime}}\right\}<2 c \quad\right.$ for $\varepsilon \in\left(0, \varepsilon_{0}\right)$.

Proof. The argument is standard. For completeness, we give a proof. Let $f \in L$ and $r^{\prime}>0$ satisfy the assumption. We choose $d_{0}>0$ so small that

$$
\begin{equation*}
\int_{\Omega_{-r^{\prime}} \backslash\left(B_{d_{0}}(z) \cup B_{d_{0}}(-z)\right)}|f|^{2} d x>|f|_{2}^{2} / 3 \quad \text { for all } z \in \Omega \tag{2.12}
\end{equation*}
$$

Let $\psi: \bar{\Omega} \rightarrow[0,1]$ be a mapping such that $\psi \in C^{2}(\bar{\Omega}), \psi(x)=\psi(-x)$ on Ω, $\psi(x)=1$ on $\Omega_{-r^{\prime}}$ and $\psi(x)=0$ on $\partial \Omega$. We fix $d \in\left(0, \min \left\{d_{0} / 2, r^{\prime}\right\}\right)$ and put $w_{(z, \varepsilon)}(x)=\varepsilon^{1 / 4}[\psi(x)-\varphi((x-z) / 2 d)-\varphi((x+z) / 2 d)] \quad$ for $x, z \in \Omega$ and $\varepsilon>0$.
By (Ω), we have that $|x| \geq r^{\prime}$ for each $x \in \Omega_{-r^{\prime}}$. That is $B_{r^{\prime}}(x) \cap B_{r^{\prime}}(-x)=\phi$. Fix $z \in \Omega$. Then, for $\varepsilon>0$ sufficiently small, we have

$$
\begin{align*}
\left|\nabla v_{(d, z, \varepsilon)}\right|_{2}^{2} & =c_{0}+O\left(\varepsilon^{(N-2) / 2}\right) \tag{2.13}\\
\left|v_{(d, z, \varepsilon)}\right|_{2^{*}}{ }^{*} & =c_{0}+O\left(\varepsilon^{N / 2}\right) \tag{2.14}
\end{align*}
$$

(cf. [2]). On the other hand, we have by the definition of $w_{(z, \varepsilon)}$ and (2.12) that
$(2.15)\left|\nabla w_{(z, \varepsilon)}\right|_{2}^{2}=O\left(\varepsilon^{1 / 2}\right), \quad\left|w_{(z, \varepsilon)}\right| 2_{2^{*}}^{2^{*}}=O\left(\varepsilon^{N / 2(N-2)}\right), \quad\left\langle f, w_{(z, \varepsilon)}\right\rangle=O\left(\varepsilon^{1 / 4}\right)$
for ε sufficiently small. We put $y_{(z, \varepsilon)}(x)=v_{(d, z, \varepsilon)}+v_{(d,-z, \varepsilon)}+w_{(z, \varepsilon)}$. Let $t=t_{f, y_{(z, \varepsilon)}}$. Then t satisfies

$$
t^{2}\left|\nabla y_{(z, \varepsilon)}\right|_{2}^{2}=t^{2^{*}}\left|y_{(z, \varepsilon)}\right|_{2^{*}}^{2^{*}}+t\left\langle f, y_{(z, \varepsilon)}\right\rangle
$$

Then noting that

$$
\left|\nabla y_{(z, \varepsilon)}\right|_{2}^{2}=\left|\nabla v_{\left(r^{\prime}, z, \varepsilon\right)}\right|_{2}^{2}+\left|\nabla v_{\left(r^{\prime},-z, \varepsilon\right)}\right|_{2}^{2}+\left|\nabla w_{(z, \varepsilon)}\right|_{2}^{2}
$$

and

$$
\left|y_{(z, \varepsilon)}\right|_{2^{*}}^{2^{*}}=\left|v_{\left(r^{\prime}, z, \varepsilon\right)}\right| 2_{2^{*}}^{2^{*}}+\left|v_{\left(r^{\prime},-z, \varepsilon\right)}\right| 2_{2^{*}}^{2^{*}}+\left.\left|w_{(z, \varepsilon)}\right|\right|_{2^{*}} ^{2^{*}}
$$

we find from $(2.13)-(2.15)$ that $t=1-O\left(\varepsilon^{1 / 4}\right)$. Then we have

$$
I\left(\mathcal{N}_{f} y_{(z, \varepsilon)}\right)=\frac{\left(2^{*}-2\right) t^{2^{*}}}{2 \cdot 2^{*}}\left|y_{(z, \varepsilon)}\right|_{2^{*}}^{2^{*}}-\frac{t}{2}\left\langle f, y_{(z, \varepsilon)}\right\rangle \leq 2\left(1-O\left(\varepsilon^{1 / 4}\right)\right) c
$$

Thus we find that the assertion holds by taking ε_{0} sufficiently small.

Throughout the rest of this paper, we assume that $k(\Omega) \leq k_{0}$ holds. We fix $r>0$ and $\bar{\delta}>0$ satisfying the assertion of Lemma 2.2. From the definition of $\mathcal{S}_{f}(\Omega)$, we have that $\mathcal{N}_{f}(u) \rightarrow \mathcal{N}_{0}(u)$ and $I_{f}\left(\mathcal{N}_{f} u\right) \rightarrow I_{0}\left(\mathcal{N}_{0} u\right)$, as $f \rightarrow 0$, uniformly on $I_{f}^{d} \cap \mathcal{S}_{f}(\Omega)$ for each $d>0$. That is we have

Lemma 2.4. Let $d>0$ and $\delta>0$. Then there exists $\varepsilon \in(0, \bar{\varepsilon})$ such that for each $f \in H$ with $|f|_{2}<\varepsilon$,

$$
I_{0}\left(\mathcal{N}_{0} u\right) \leq I_{f}(u)+\delta \quad \text { for all } u \in I_{f}^{d} \cap \mathcal{S}_{f}(\Omega)
$$

The assertion of Lemma 2.4 is a direct consequence of the definition of \mathcal{N}_{f}. Then we omit the proof. We now put $\delta=\bar{\delta}$ and $d=c$ in Lemma 2.4. Then by Lemma 2.4, we can choose $\widetilde{\varepsilon} \in(0, \bar{\varepsilon})$ such that for $f \in H$ with $|f|_{2}<\widetilde{\varepsilon}$

$$
\begin{equation*}
I_{0}\left(\mathcal{N}_{0} u\right) \leq 2 c+\bar{\delta} \quad \text { for } u \in \widetilde{I}_{f}^{2 c} \tag{2.17}
\end{equation*}
$$

We may assume that $\bar{\delta}<c / 4$. Then again by Lemma 2.4 and Lemma 2.2 that

$$
\begin{equation*}
I_{f}(u) \geq \frac{13}{12} c \quad \text { for all } u \in \mathcal{S}_{f}(\Omega) \cap H \tag{2.17}
\end{equation*}
$$

Here we note that Palais-Smale (PS) condition holds in the interval $(c, 2 c)$ for I_{f} (cf. [10], [5]). That is if $\left\{u_{n}\right\} \subset H_{0}^{1}(\Omega)$ with $\lim _{n \rightarrow \infty} I_{f}\left(u_{n}\right)=d \in(c, 2 c)$ and $\lim _{n \rightarrow \infty} \nabla I_{f}\left(u_{n}\right)=0$, then there exists a convergent sequence $\left\{u_{n_{i}}\right\} \subset\left\{u_{n}\right\}$ with $u_{n_{i}} \rightarrow u, I_{f}(u)=d$ and $\nabla I_{f}(u)=0$. Therefore from (2.17), we find that (PS) condition holds on $\widetilde{I}_{f}^{2 c-\sigma}$. In the following, we assume that $f \in H$ satisfies $|f|_{2}<\widetilde{\varepsilon}$. Then there exists $r>0$ satisfying the assertion of Lemma 2.2. Here we fix a continuous function $\xi:[0, \infty) \rightarrow[0,1]$ such that $\xi(t)=1$ for $t \geq 2 / 3$ and $\xi(t)=0$ for $t \leq 1 / 2$. For each $u \in H_{0}^{1}(\Omega) \backslash\{0\}$, we define a continuous function $\beta: \mathbb{R}^{N} \rightarrow[0,1]$ by

$$
\beta_{u}(x)=\xi\left(\frac{\int_{B_{r}(x)}|u|^{2^{*}} d x}{|u|_{2^{*}}^{2^{*}}}\right) \quad \text { for } x \in \mathbb{R}^{N}
$$

In the following we assume that $f \in L$ with $|f|_{2}<\widetilde{\varepsilon}$. Then we have
Lemma 2.5. Let $u \in \widetilde{I}_{f}^{2 c} \cap \mathcal{S}_{f}(\Omega)$. Then there exists $z \in \mathbb{R}^{N}$ such that $|z|>4 r, \Omega^{\prime}=\left\{x \in \Omega: \beta_{u}(x)>0\right\} \subset B_{2 r}(z) \cup B_{2 r}(-z)$, and

$$
\begin{equation*}
\frac{\int_{B_{r}(z) \cap \Omega^{\prime}} \beta_{u}(x) x}{\int_{B_{r}(z) \cap \Omega^{\prime}} \beta_{u}(x)} \in \Omega_{3 r} \tag{2.18}
\end{equation*}
$$

Proof. Let $u \in \widetilde{I}_{f}^{2 c}$. Then by Lemma 2.2, there exists $z \in \Omega_{r}$ such that

$$
\int_{B_{r}(z) \cup B_{r}(-z)}\left|\mathcal{N}_{0} u\right|^{2^{*}} d x \geq \frac{4}{3} c_{0}
$$

From the inequality above, it is obvious that

$$
\beta_{u}(x)=\beta_{\mathcal{N}_{0} u}(x)=0 \quad \text { for } x \in \mathbb{R}^{N} \backslash\left(B_{2 r}(z) \cup B_{2 r}(-z)\right) .
$$

Then

$$
\Omega^{\prime}=\left\{x \in \Omega: \beta_{u}(x)>0\right\} \subset B_{2 r}(z) \cup B_{2 r}(-z)
$$

Since $z \in \Omega_{r}$, we have that $\Omega^{\prime} \subset \Omega_{3 r}$. Then (2.18) holds.
From lemma above, we can define a mapping $\widetilde{\gamma}: \widetilde{I}_{f}^{2 c} \rightarrow \widehat{\Omega}_{3 r}$ by

$$
\widetilde{\gamma}(u)=\left\{\frac{\int_{B_{r}(z) \cap \Omega^{\prime}} \beta_{u}(x) x}{\int_{B_{r}(z) \cap \Omega^{\prime}} \beta_{u}(x)}, \frac{\int_{B_{r}(-z) \cap \Omega^{\prime}} \beta_{u}(x) x}{\int_{B_{r}(-z) \cap \Omega^{\prime}} \beta_{u}(x)}\right\},
$$

where $z \in \mathbb{R}^{N}$ is the point obtained in Lemma 2.5. One can see, from the fact $\Omega^{\prime} \subset B_{2 r}(z) \cup B_{2 r}(-z)$, that $\widetilde{\gamma}(u)$ does not depend on the choice of z, and $\widetilde{\gamma}: \widetilde{I}_{f}^{2 c} \rightarrow \widehat{\Omega}_{3 r}$ is continuous. Then we have

LEMMA 2.6. For each $p \geq 1$, $\operatorname{rank} H_{p}\left(\widetilde{I}_{f}^{2 c-\sigma}\right) \geq \operatorname{rank} H_{p}(\widehat{\Omega})$ for $\sigma>0$ sufficiently small.

Proof. By Lemma 2.3, there exists positive numbers r_{1}, ε_{0}, such that $\Omega \cong$ $\Omega_{-r_{1}}$ and that for each $(z, \varepsilon) \in \Omega_{-r_{1}} \times\left(0, \varepsilon_{0}\right)$,

$$
\begin{equation*}
\sup \left\{I_{f}\left(\mathcal{N}_{f}\left(v_{\left(r_{1}, z, \varepsilon\right)}+v_{\left(r_{1},-z, \varepsilon\right)}+w_{(z, \varepsilon)}\right): z \in \Omega_{-r_{1}}\right\}<2 c,\right. \tag{2.19}
\end{equation*}
$$

where $w_{(z, \varepsilon)} \in H$ the function defined in the proof of Lemma 2.3. Then we have that $\widehat{\Omega}_{3 r} \cong \widehat{\Omega} \cong \widehat{\Omega}_{-r_{1}}$, and $H_{p}\left(\widehat{\Omega}_{3 r}\right) \cong H_{p}(\widehat{\Omega}) \cong H_{p}\left(\widehat{\Omega}_{-r_{1}}\right)$ for each $p \geq 0$. We denote by θ the retraction from $\Omega_{3 r}$ to $\Omega_{-r_{1}}$. We put

$$
W_{1}=\left\{\mathcal{N}_{f}\left(v_{\left(r_{1}, z, \varepsilon\right)}+v_{\left(r_{1},-z, \varepsilon\right)}+w_{(z, \varepsilon)}\right): z \in \Omega_{-r_{1}}\right\} .
$$

Let $j: \widehat{\Omega}_{-\delta_{1}} \rightarrow W_{1}$ be the mapping defined by

$$
j[(z,-z)]=\mathcal{N}_{f}\left(v_{\left(r_{1}, z, \varepsilon\right)}+v_{\left(r_{1},-z, \varepsilon\right)}+w_{(z, \varepsilon)}\right) \quad \text { for each } x \in \Omega_{-r_{1}} .
$$

From the definition of $w_{(z, \varepsilon)}$, we have that $w_{(z, \varepsilon)} \rightarrow 0$ as $\varepsilon \rightarrow 0$. Then

$$
\gamma\left(\mathcal{N}_{f}\left(v_{\left(r_{1}, z, \varepsilon\right)}+v_{\left(r_{1},-z, \varepsilon\right)}+w_{(z, \varepsilon)}\right)\right) \rightarrow \gamma\left(\mathcal{N}_{f}\left(v_{\left(r_{1}, z, \varepsilon\right)}+v_{\left(r_{1},-z, \varepsilon\right)}\right)=(z,-z),\right.
$$

as $\varepsilon \rightarrow 0$. That is $\theta \circ \gamma \circ j \rightarrow i$, as $\varepsilon \rightarrow 0$, where $i: \Omega_{-r_{1}} \rightarrow \Omega_{-r_{1}}$ is the identity mapping. Therefore we have by choosing $\varepsilon_{1} \in\left(0, \varepsilon_{0}\right)$ sufficiently small that $\theta \circ \gamma \circ j\left(\Omega_{-r_{1}}\right) \cong \Omega_{-r_{1}}$. By Lemma 2.3, we have that there exists $\sigma>0$ such that

$$
\begin{equation*}
\sup \left\{I_{f}\left(\mathcal{N}_{f}\left(v_{\left(r_{1}, z, \varepsilon_{1}\right)}+v_{\left(r_{1},-z, \varepsilon_{1}\right)}+w_{\left(z, \varepsilon_{1}\right)}\right): z \in \Omega_{-r_{1}}\right\}<2 c-\sigma .\right. \tag{2.20}
\end{equation*}
$$

We now consider the following sequence:

$$
\widehat{\Omega}_{-r_{1}} \xrightarrow{j} \widetilde{I}_{f}^{2 c-\sigma} \xrightarrow{\gamma} \widehat{\Omega}_{3 r} \xrightarrow{\theta} \widehat{\Omega}_{-r_{1}} .
$$

Then noting that $\theta_{*} \circ \gamma_{*} \circ j_{*}$ is the identity mapping on $H_{p}\left(\widehat{\Omega}_{-r_{1}}\right)$, we have from the sequence

$$
H_{p}\left(\widehat{\Omega}_{-r_{1}}\right) \xrightarrow{j^{*}} H_{p}\left(\widetilde{I}_{f}^{2 c-\sigma}\right) \xrightarrow{\widetilde{\gamma}^{*}} H_{p}\left(\widehat{\Omega}_{3 r}\right) \xrightarrow{\theta^{*}} H_{p}\left(\widehat{\Omega}_{-r_{1}}\right),
$$

that
$\operatorname{rank} H_{p}\left(\widetilde{I}_{f}^{2 c-\sigma}\right) \geq \operatorname{rank} H_{p}\left(\widehat{\Omega}_{-r_{1}}\right)=\operatorname{rank} H_{p}(\widehat{\Omega}) \quad$ for each $p \geq 1$.
Proof of Theorem 1.1. From the assumption (Ω), we have that $H_{0}(\Omega) \neq$ $\{0\}$ and $H_{p}(\Omega) \neq\{0\}$ for some $p \geq 1$. By the Thom-Gysin exact sequence

$$
\cdots \rightarrow H_{p}(\Omega) \xrightarrow{p_{*}} H_{p}(\widehat{\Omega}) \xrightarrow{\xi \cap} H_{p-1}(\widehat{\Omega}) \longrightarrow H_{q-1}(\Omega) \rightarrow \cdots
$$

where $\xi \in H^{1}(\widehat{\Omega})$ (cf. [9, Chapter 5.3, Theorem 11], we find that $\sum_{p=0}^{\infty} H_{p}(\widehat{\Omega}) \geq 2$ holds. We choose $\sigma>0$ sufficiently small that the assertion of Lemma 2.6 holds. We may assume that $2 c-\sigma$ is a regular value of I_{f}. Since (PS) condition holds on the interval $[13 c / 12,2 c-\sigma]$ for I_{f} on H, we have that $m=\inf \left\{I_{f}(v): v \in \widetilde{I}_{f}^{2 c-\sigma}\right\}$ is attained by an element in $\mathcal{S}_{f}(\Omega)$. That is there exists a subset $K \subset H$ of critical points of I_{f} such that

$$
I_{f}(u)=\min \left\{I_{f}(v): v \in \widetilde{I}_{f}^{2 c-\sigma}\right\} \quad \text { for each } u \in K
$$

If K contains more than two points, the assertion holds. Then we assume that K consists of single point u_{1}. Then we have that there exists $\delta>0$ such that $m+\delta<2 c-\sigma, H_{0}\left(I_{f}^{m+\delta}\right)=Z_{2}$ and $H_{p}\left(I_{f}^{m+\delta}\right)=\{0\}$ for $p \geq 1$. Then since $\sum_{p=0}^{\infty} H_{p}\left(I_{f}^{2 c-\sigma}\right) \geq 2$, we find that there exists a critical point $u_{2} \in \mathcal{S}_{f}(\Omega)$ with $u_{1} \neq u_{2}$.

Proof of Theorem 1.2. As in the proof of Theorem 1.1, we choose $\sigma>0$ so small that the assertion of Lemma 2.6. Since $\left\{g \in C^{\infty}(\Omega): g>0\right.$ on $\left.\Omega\right\}$ is dense $\left\{g \in L^{2}(\Omega): g \geq 0\right\}$, we may assume that $f \in C^{\infty}(\Omega)$ and $f>0$ on Ω. We suppose that $n \geq 0$ and there exist critical points $u_{1}, \ldots, u_{n} \in H$ of I_{f} such that each of them is nondegenerate. If $\sum_{p \geq 0} \operatorname{rank} H_{p}(\widehat{\Omega}) \leq n$, the assertion holds. Suppose that $\sum_{p \geq 0} \operatorname{rank} H_{p}(\widehat{\Omega})>n$. Then since $\sum_{p \geq 0} \operatorname{rank} H_{p}\left(\widetilde{I}_{f}^{2 c-\sigma}\right)>n$, we have by the Morse inequality that there exists a critical point $u_{n+1} \in \widetilde{I}_{f}^{2 c-\sigma}$ of I_{f} such that $u_{n+1} \neq u_{i}$ for $1 \leq i \leq n$. We define a mapping $\mathcal{F}: H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \rightarrow$ $L^{2}(\Omega)$ by

$$
\mathcal{F}(u)=-\left(\Delta u+|u|^{2^{*}-2} u\right) \quad \text { for } u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)
$$

We denote by $\mathcal{B}_{r}^{(2)}, \mathcal{B}_{r}^{(h)}$ and $\mathcal{B}_{r}^{(\infty)}$ the balls centered at 0 with radius r in $L^{2}(\Omega), H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$ and $C_{0}^{\infty}(\Omega)$, respectively. Since each critical point u_{i} is nondegenerate for $1 \leq i \leq n$, we can choose $r_{i}>0$ such $\operatorname{Ker} I_{f}^{\prime \prime}(u)=\{0\}$ for each $u \in u_{i}+\mathcal{B}_{r_{i}}^{(h)}$ and the mapping $\mathcal{F}: u_{i}+\mathcal{B}_{r_{i}}^{(h)} \rightarrow \mathcal{F}\left(u_{i}+\mathcal{B}_{r_{i}}^{(h)}\right)$ is an isomorphism, for each $1 \leq i \leq n$, where $I_{f}^{\prime \prime}$ denotes the Hessian of I_{f}. Recall that $v \in \operatorname{Ker}$ $I^{\prime \prime}\left(u_{n+1}\right)$ if and only if

$$
-\Delta v-\left(2^{*}-1\right)\left|u_{n+1}\right|^{2^{*}-2} v=0
$$

and that there exists $m>0$ such that for each

$$
\left.\left|\left\langle-\Delta v-\left(2^{*}-1\right)\right| u_{n+1}\right|^{2^{*}-2} v, v\right\rangle\left.|\geq m| v\right|^{2}, \quad \text { for } v \in\left(\operatorname{Ker} I_{f}^{\prime \prime}\left(u_{n+1}\right)\right)^{\perp} .
$$

Then we can choose $r^{\prime} \in(0, r)$ such that

$$
\mathcal{F}\left(u_{n+1}+\mathcal{B}_{r^{\prime}}^{(h)}\right) \subset \bigcap_{i=1}^{n} \mathcal{F}\left(u_{i}+\mathcal{B}_{r_{i}}^{(h)}\right),
$$

and that for each $u \in u_{n+1}+\mathcal{B}_{r^{\prime}}^{(h)}$,

$$
\begin{equation*}
\left.\left|\left\langle-\Delta v-\left(2^{*}-1\right)\right| u\right|^{2^{*}-2} v, v\right\rangle\left.|\geq(m / 2)| v\right|^{2} \quad \text { for } v \in\left(\operatorname{Ker} I^{\prime \prime}\left(u_{n+1}\right)\right)^{\perp} \tag{2.21}
\end{equation*}
$$

We can also choose $\widehat{r}>0$ such that $\mathcal{B}_{\widehat{r}}^{(\infty)} \subset \mathcal{B}_{r^{\prime}}^{(h)}$ and for each $u \in u_{n+1}+\mathcal{B}_{\widehat{r}}^{(h)}$.

$$
\mathcal{F}(u)=-\Delta u-|u|^{2^{*}-2} u>0 \quad \text { on } \Omega .
$$

Then since Ker $I^{\prime \prime}\left(u_{n+1}\right)$ is a finite dimensional space, one can see that there exists $u^{\prime} \in u_{n+1}+\mathcal{B}_{\widehat{r}}^{(\infty)}$ such that

$$
-\Delta v-\left(2^{*}-1\right)\left|u^{\prime}\right|^{2^{*}-2} v \neq 0 \quad \text { for } v \in \operatorname{Ker} I^{\prime \prime}\left(u_{n+1}\right) \backslash\{0\}
$$

and that

$$
f^{\prime}=-\Delta u^{\prime}-\left|u^{\prime}\right|^{2^{*}-2} u^{\prime}>0 \quad \text { on } \Omega \text {. }
$$

Then u^{\prime} is nondegenerate critical point of problem $\left(\mathrm{P}_{f^{\prime}}\right)$. Since $f^{\prime}=\mathcal{F}\left(u^{\prime}\right) \in$ $\bigcap_{i=1}^{n} \mathcal{F}\left(u_{i}+\mathcal{B}_{r_{i}}^{(*)}\right)$, there exist critical points $u_{1}^{\prime}, \ldots, u_{n}^{\prime}$ of $I_{f^{\prime}}$ such that $u_{i}^{\prime} \in$ $u_{i}+\mathcal{B}_{r_{i}}^{(h)}$. From the definition of r_{i}, each u_{i}^{\prime} is a nondegenerate critical point of $\left(\mathrm{P}_{f^{\prime}}\right)$. Thus we find that problem ($\mathrm{P}_{f^{\prime}}$) has $n+1$ nondegenerate critical points. Repeating this procedure, we reaches to the conclusion.

References

[1] A. Bahri and M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent. The effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), 253-294.
[2] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exonents, Comm. Pure Appl. Math. 36 (1983), 437-477.
[3] K. C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhauser, 1993.
[4] A. Dold, Lectures in Algebraic Topology, Springer-Verlag, 1972.
[5] N. Hirano, Multiplicity of solutions for nonhomogeneous nonlinear elliptic equations with critical exponent, Topol. Mathods Nonlinear Anal. 18 (2001), 269-281.
[6] J. Kazdan and F. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1975), 567-597.
[7] S. I. Phozaev, Eigenfunctions fo the equations $-\Delta u+\lambda f(u)=0$, Sov. Math. Dokl. 6 (1965), 1408-1411.
[8] O. Rey, Concentration of solutions to elliptic equations with ciritcal nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1990), 201-218.
[9] E. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
[10] G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992), 281-304.

Norimichi Hirano

Graduate School of Environment
and Information Sciences
Yokohama National University
Tokiwadai, Hodogayaku
Yokohama, JAPAN
E-mail address: hirano@mth.sci.ynu.ac.jp

