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ON THE SCHRÖDINGER EQUATION
INVOLVING A CRITICAL SOBOLEV EXPONENT

AND MAGNETIC FIELD

Jan Chabrowski — Andrzej Szulkin

To Professor Kazimierz Gęba on the occasion of his 70th birthday

Abstract. We consider the semilinear Schrödinger equation

−∆Au + V (x)u = Q(x)|u|2
∗−2u.

Assuming that V changes sign, we establish the existence of a solution u 6= 0

in the Sobolev space H1
A,V +

(RN ). The solution is obtained by a min–max

type argument based on a topological linking. We also establish certain

regularity properties of solutions for a rather general class of equations

involving the operator −∆A.

1. Introduction

In this paper we consider the semilinear Schrödinger equation

(1.1) −∆Au+ V (x)u = Q(x)|u|2
∗−2u, u ∈ H1A,V (RN ),

where −∆A = (−i∇+A)2, u:RN → C, N ≥ 3, 2∗ := 2N/(N − 2) is the critical
Sobolev exponent. The coefficient V is the scalar (or electric) potential and
A = (A1, . . . , AN ):RN → RN the vector (or magnetic) potential. Throughout
this paper we assume that A ∈ L2loc(RN ), V ∈ L1loc(RN ) and V − ∈ LN/2(RN ).
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Here V − is the negative part of V , that is V −(x) = max(−V (x), 0). It is assumed
that the coefficient Q is positive, continuous and bounded on RN . Further
assumptions on Q will be formulated later.
We now define some Sobolev spaces. By D1,2A (RN ) we denote the Sobolev

space defined by

D1,2A (R
N ) = {u : u ∈ L2

∗
(RN ), ∇Au ∈ L2(RN )},

where ∇A = (∇ + iA). The space D1,2A (RN ) is a Hilbert space with the inner
product ∫

RN
∇Au∇Av dx.

It is known that the space C∞0 (RN ) is dense in D
1,2
A (RN ) [8]. Equivalently

D1,2A (RN ) can be defined as the closure of C∞0 (RN ) with respect to the norm

‖u‖2
D1,2A
=
∫

RN
|∇Au|2 dx.

By H1A,V +(R
N ) we denote the Sobolev space obtained as the closure of C∞0 (RN )

with respect to the norm

‖u‖2H1
A,V+
=
∫

RN
(|∇Au|2 + V +(x)|u|2) dx,

where V +(x) = max(V (x), 0). H1A,V +(R
N ) is a Hilbert space with the inner

product ∫
RN
(∇Au∇Av + V +(x)uv) dx.

Obviously, we have a continuous embedding H1A,V +(R
N ) ⊂ D1,2A (RN ); hence in

particular, |u| ∈ L2∗(RN ) whenever u ∈ H1A,V +(R
N ).

We shall frequently use in this paper the diamagnetic inequality (see [11])

(1.2) |∇|u|| ≤ |∇Au| a.e. in RN .

This inequality implies that if u ∈ H1A,V +(R
N ), then |u| ∈ D1,2(RN ), where

D1,2(RN ) is the usual Sobolev space of real valued functions defined by

D1,2(RN ) = {u : ∇u ∈ L2(RN ) and u ∈ L2
∗
(RN )}.

Solutions of (1.1) will be sought in the Sobolev space H1A,V +(R
N ) as critical

points of the functional

J(u) =
1
2

∫
RN
(|∇Au|2 + V (x)|u|2) dx−

1
2∗

∫
RN

Q(x)|u|2
∗
dx.

It is easy to see that J is a C1-functional on H1A,V +(R
N ).

The paper is organized as follows. Section 2 is devoted to the regularity prop-
erties of solutions of (1.1). We show that solutions in H1A,V +(R

N ) are bounded
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and decay to 0 at infinity. In Section 3 we establish the Palais–Smale condi-
tion for the variational functional J . The existence results for (1.1) are given in
Section 4. First we solve a weighted linear eigenvalue problem for the operator
−∆A + V +. If the first eigenvalue µ1 > 1, then a solution is obtained through
a constrained minimization. This situation has already been envisaged in the
paper [1]. If µ1 ≤ 1 we employ a topological linking argument.
Problem (1.1) with A = 0 has an extensive literature. However, the interest

in the case A 6= 0 has arisen recently ([1], [7], [8], [10], [14]). The importance of
problem (1.1) in physics has been discussed in the paper [1].

In this paper we use standard notations. In a given Banach space X weak
convergence is denoted by “⇀” and strong convergence by “→”.

2. The regularity of solutions involving the operator ∆A

Let V be a nonnegative function in L1loc(RN ). We commence by establishing
the integrability properties of solutions of the equation

(2.1) −∆Au+ V (x)u = g(x)u in RN .

It is assumed that g:RN → R is a measurable function satisfying

|g(x)| ≤ a+ b(x) on RN ,

where a ≥ 0 is a constant and b is a nonnegative function in LN/2(RN ). Let

φ(x) = η(x)2u(x)min(|u(x)|β−1, L),

where β > 1 and L > 0 are constants, u ∈ H1A,V (RN ) and η is a C1-real valued
function which is bounded together with its derivatives.

In what follows, χΩ denotes the characteristic function of the set Ω. By
straightforward computations we have

∇Aφ =2η∇ηumin(|u|β−1, L) + η2∇Aumin(|u|β−1, L)
+ (β − 1)η2u|u|β−2∇|u|χ{|u|β−1<L}

and

∇Au∇Aφ = |∇Au|2η2min(|u|β−1, L) + 2η∇ηumin(|u|β−1, L)∇Au
+ (β − 1)η2u|u|β−2∇|u|χ{|u|β−1<L}∇Au.

We now observe that

Re (u∇Au) = Re (∇u+ iAu)u = Re (u∇u) = |u|Re
(
u

|u|
∇u
)
= |u|∇|u|.
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Taking the real part of ∇Au∇Aφ we obtain the following inequality:

(2.2) Re (∇Au∇Aφ) = |∇Au|2η2min(|u|β−1, L) + 2η∇η∇|u||u|min(|u|β−1, L)
+ (β − 1)η2|u|β−1|∇|u||2χ{|u|β−1<L}

≥ |∇Au|2η2min(|u|β−1, L) + 2η∇η∇|u||u|min(|u|β−1, L).

Lemma 2.1. Solutions of equation (2.1) in H1A,V (RN ) belong to Lp(RN ) for
every p ∈ [2∗,∞).

Proof. We adapt to our case an argument which may be found e.g. in [16,
Appendix B]. We test equation (2.1) with φ = umin(|u|β−1, L). It then follows
from inequality (2.2), with η = 1, that for every constant K > 0 we have

(2.3)
∫

RN
|∇Au|2min(|u|β−1, L) dx

≤ a
∫

RN
|u|2min(|u|β−1, L) dx+K

∫
b(x)≤K

|u|2min(|u|β−1, L) dx

+
(∫
b(x)>K

b(x)N/2 dx
)2/N

·
(∫

RN
(|u|min(|u|(β−1)/2, L1/2))2

∗
dx

)(N−2)/N
≤ (a+K)

∫
RN
|u|2min(|u|β−1, L) dx+

(∫
b(x)>K

b(x)N/2 dx
)2/N

·
(∫

RN
(|u|min(|u|(β−1)/2, L1/2))2

∗
dx

)(N−2)/N
.

On the other hand, by the diamagnetic inequality we have

(2.4)
∫

RN
|∇|u||2min(|u|β−1, L) dx ≤

∫
RN
|∇Au|2min(|u|β−1, L) dx.

We also have∫
RN
|∇(|u|min(|u|(β−1)/2, L1/2))|2 dx(2.5)

≤2
∫

RN
|∇|u||2min(|u|β−1, L) dx

+
(β − 1)2

2

∫
RN
|∇|u||2|u|β−1χ{|u|β−1<L} dx

≤
(
2 +
(β − 1)2

2

)∫
RN
|∇|u||2min(|u|β−1, L) dx.
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Combining (2.3)–(2.5) we obtain∫
RN
|∇(|u|min(|u|(β−1)/2, L1/2))|2 dx

≤ (a+K)
(
2 +
(β − 1)2

2

)∫
RN
|u|2min(|u|β−1, L) dx

+
(
2 +
(β − 1)2

2

)(∫
b(x)>K

b(x)N/2 dx
)2/N

·
(∫

RN
(|u|min(|u|(β−1)/2, L1/2))2

∗
dx

)(N−2)/N
.

Since
∫
b(x)>K b(x)

N/2 dx→ 0 as K →∞, taking K sufficiently large and apply-
ing the Sobolev inequality to the left-hand side above, we obtain

(2.6)
(∫

RN
(|u|min(|u|(β−1)/2, L1/2))2

∗
dx

)2/2∗
≤ C1(K,β)

∫
RN
|u|2min(|u|β−1, L) dx

for some constant C1(K,β) > 0. We now set β + 1 = 2∗. Letting L → ∞ we
derive from the above inequality that(∫

RN
|u|(2

∗N)/(N−2) dx

)2/2∗
≤ C1(K, 2∗)

∫
RN
|u|2

∗
dx

and thus u ∈ L(2∗N)/(N−2)(RN ). A standard application of a boot-strap argu-
ment to (2.6) completes the proof. �

Proposition 2.2. If u ∈ H1A,V (RN ) is a solution of (2.1), then u∈L∞(RN )
and lim|x|→∞ u(x) = 0.

Proof. We follow some ideas from the proof of Theorem 8.17 in [9] (in par-
ticular, we use Moser’s iteration technique). Let η be a C1-function in RN with a
compact support. Testing (2.1) with φ = η2umin(|u|β−1, L) and using inequality
(2.2) we obtain the estimate∫

RN
|∇Au|2η2min(|u|β−1, L) dx+ 2

∫
RN

η∇η∇|u||u|min(|u|β−1, L) dx

≤
∫

RN
b|u|2η2min(|u|β−1, L) dx+ a

∫
RN
|u|2η2min(|u|β−1, L) dx.

Hence by the diamagnetic inequality and since

1
2
η2|∇|u||2 − 2|u|2|∇η|2 ≤ η2|∇|u||2 + 2η|u|∇|u|∇η,
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we get

1
2

∫
RN
|∇|u||2η2min(|u|β−1, L) dx ≤

∫
RN

b|u|2η2min(|u|β−1, L) dx

+ 2
∫

RN
|∇η|2|u|2min(|u|β−1, L) dx+ a

∫
RN
|u|2η2min(|u|β−1, L) dx.

Letting L→∞ we obtain

1
2

∫
RN
|∇|u||2η2|u|β−1 dx ≤

∫
RN

b|u|β+1η2 dx

+ 2
∫

RN
|∇η|2|u|β+1 dx+ a

∫
RN
|u|β+1η2 dx.

Substituting w = |u|(β+1)/2 in this inequality, we obtain

(2.7)
2

(β + 1)2

∫
RN
|∇w|2η2 dx

≤
∫

RN
bw2η2 dx+ 2

∫
RN
|∇η|2w2 dx+ a

∫
RN

w2η2 dx.

We now observe that∫
RN
|∇(wη)|2 dx ≤ 2

∫
RN
|∇w|2η2 dx+ 2

∫
RN
|∇η|2w2 dx,

which combined with (2.7) gives∫
RN
|∇(wη)|2 dx ≤ (β + 1)2

∫
RN

bw2η2 dx

+ 2((β + 1)2 + 1)
∫

RN
|∇η|2w2 dx+ (β + 1)2a

∫
RN

η2w2 dx.

It then follows from the Hölder and Sobolev inequalities that

(2.8) S

(∫
RN
(wη)2

∗
dx

)(N−2)/N
≤ (β + 1)2

(∫
RN

bN/2 dx

)2/N(∫
RN
(wη)2

∗
dx

)(N−2)/N
+ 2((β + 1)2 + 1)

∫
RN
|∇η|2w2 dx+ a(β + 1)2

∫
RN

η2w2 dx,

where

S = inf
{∫

RN
|∇u|2 dx : u ∈ C∞◦ (RN ),

∫
RN
|u|2

∗
dx = 1

}
is the Sobolev constant. To proceed further we choose R > 0 so that

(β + 1)2
(∫
|x|>R

bN/2 dx

)2/N
≤ S

2
.
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Assuming that supp η ⊂ (|x| > R) we derive from (2.8) that

S

(∫
RN
(wη)2

∗
dx

)(N−2)/N
≤ 4((β + 1)2 + 1)

∫
RN
|∇η|2w2 dx(2.9)

+ 2a(β + 1)2
∫

RN
η2w2 dx.

We now make a more specific choice of η: η ∈ C1(RN , [0, 1]), η(x) = 1 in
B(x0, r1), η(x) = 0 in RN − B(x0, r2), |∇η(x)| ≤ 2/(r2 − r1) in RN , 1 ≤ r1 <

r2 ≤ 2. It is also assumed that B(x0, r2) ⊂ (|x| > R). It then follows from (2.9)
that (∫

B(x0,r1)
w2

∗
dx

)1/2∗
≤ A(β + 1)

r2 − r1

(∫
B(x0,r2)

w2 dx

)1/2
,

where A is an absolute constant. Setting γ = β+1 = 2∗, χ = N/(N − 2) we get(∫
B(x0,r1)

|u|γχ dx
)1/γχ

≤
(

Aγ

r2 − r1

)2/γ(∫
B(x0,r2)

|u|γ dx
)1/γ

.

To iterate this inequality (which holds for any γ ≥ 2∗), we take sm = 1 + 2−m,
r1 = sm, r2 = sm−1 and replace γ = 2∗ by γχm−1, m = 1, 2, . . . . Then we get(∫

B(x0,sm)
|u|χ

mγ dx

)1/(γχm)
≤
(

Aγχm−1

sm−1 − sm

)2/(γχm−1)(∫
B(x0,sm−1)

|u|χ
m−1γ dx

)1/(γχm−1)
=(Aγ)2/(γχ

m−1)2(2m)/(γχ
m−1)χ2(m−1)/(γχ

m−1)

·
(∫
B(x0,sm−1)

|u|χ
m−1γ dx

)1/(γχm−1)
,

and by induction,(∫
B(x0,sm)

|u|χ
mγ dx

)1/(γχm)
≤ (Aγ)(2/γ)

Pm−1
j=0 (1/χ

j)2(2/γ)
Pm−1
j=0 ((j+1)/χ

j)χ(2/γ)
Pm−1
j=0 (j/χ

j)

·
(∫
B(x0,s0)

|u|γ dx
)1/γ

for each m > 1. Since s0 = 2 and sm → 1, we deduce the following estimate
by letting m → ∞: there exist constants R > 0 and C > 0 such that for every
B(x0, 2) ⊂ (|x| > R) we have

sup
B(x0,1)

|u(x)| ≤ C
(∫
B(x0,2)

|u|γ dx
)1/γ

.
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This inequality yields lim|x|→∞ |u(x)| = 0. To prove the boundedness of u in the
ball B(0, R) we fix x ∈ B(0, R), choose r > 0 so that

(β + 1)2
(∫
B(x,r)

bN/2 dx

)2/N
≤ S

2
,

and then let η have support in B(x, r). We now repeat the previous argument
with a suitable rescaling in the ball B(x, r) to obtain the boundedness of u in
B(x, r/2). By a standard compactness argument we show that u is bounded in
B(0, R). This combined with the first part of the proof shows that u ∈ L∞. �

We now observe that any solution u ∈ H1A,V +(R
N ) of the equation

(2.10) −∆Au+ V (x)u = f(x, |u|)u,

where |f(x, |u|)| ≤ c(1 + |u|2∗−2), satisfies

(2.11) −∆Au+ V +(x)u = (V −(x) + f(x, |u|))u ≡ g(x)u.

Since |g(x)| ≤ c + (V −(x) + c|u(x)|2∗−2) and V − ∈ LN/2(RN ), |u|2∗−2 ∈
L2
∗/(2∗−2)(RN ) = LN/2(RN ), we can state the following result:

Corollary 2.3. Let u ∈ H1A,V +(R
N ), N ≥ 3, be a solution of (2.10). Then

u ∈ L∞(RN ) and
lim
|x|→∞

u(x) = 0

(in the sense that limR→∞ ‖u‖L∞(RN−B(0,R)) = 0).

Remark 2.4. Let N = 2. If u ∈ H1A,V +(R
2) ∩ L2(R2), then u ∈ Lp(R2)

for all p ∈ [2,∞) by the diamagnetic inequality and the Sobolev embedding
theorem. Suppose g(x) in (2.1) is such that b ∈ Lq(R2) for some q ∈ (1, 2)
and u ∈ H1A,V +(R

2) ∩ L2(R2) is a solution of (2.1). Then the conclusion of
Proposition 2.2 remains valid. Indeed, the argument employed there applies
except that the L2

∗
-norm in (2.8) should be replaced by the Lq

′
-norm, where

q′ = q/(q − 1), and one needs to take γ = β + 1 = q′, χ = q′/2. Also the
conclusion of Corollary 2.3 remains valid if u ∈ H1A,V +(R

2) ∩ L2(R2), V − ∈
Lq(R2) and |f(x, |u|)| ≤ c(1 + |u|r) for some q ∈ (1, 2) and r > 0.

Note in particular that Corollary 2.3 (or Remark 2.4 if N = 2) applies to all
solutions found in [1], [8] as well as to the solutions found in Theorems 4.1, 4.2
and Corollary 4.3 below.

As an application of Corollary 2.3 and Remark 2.4 we establish an exponen-
tial decay of solutions of (2.10). However, we need additional assumptions on V
and f .
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Proposition 2.5. Suppose that f ≥ 0, f(x, 0) = 0, V + ∈ Lploc(RN ) and
V − ∈ Lp(RN ) for some p > N/2. Moreover, assume that there exist constants
a > 0 and R > 0 such that V (x) ≥ a for |x| ≥ R. If u ∈ H1A,V +(R

N ) is a solution
of (2.10), then

|u(x)| ≤ Ce−α|x| a.e. in RN ,

where α2 = a/2.

Proof. Since V ≥ a for |x| ≥ R, it is easy to see that u ∈ L2(RN ), and
hence u ∈ Lq(RN ) for all 2 ≤ q ≤ ∞ according to Corollary 2.3 (or Remark 2.4).
Therefore there exists a unique solution v ∈ H1(RN ) of the equation

−∆v + V +(x)v = (V −(x) + f(x, |u|))|u|,

and by standard regularity theory and the maximum principle v is continuous
and ≥ 0. Moreover, it follows from (2.11) and Theorem B.13.2 in [15] that
|u| ≤ v a.e. (more precisely, one obtains this inequality by integrating (B41) of
[15] from t = 0 to t = ∞; the hypothesis that p > N/2 is used in order to
have v continuous and V + ∈ K locN , V − ∈ KN in the notation of [15]). Now it
remains to establish the exponential decay of v. We follow the argument used in
Proposition 4.4 from [17]. Since v satisfies

−∆v + V +(x)v ≤ (V −(x) + f(x, |u|))v in RN ,

we have

−∆v ≤ (−V (x) + f(x, |u|))v ≤ −a
2
v for |x| ≥ R

by taking R larger if necessary. Let

W (x) =Me−α(|x|−R) and Ω(L) = {x : R < |x| < L and v(x) > W (x)},

where a constantM > 0 is chosen so that v(x) ≤W (x) for |x| = R. If α2 = a/2,
we get

∆(W − v) =
(
α2 − α(N − 1)

|x|

)
W −∆v ≤ α2(W − v) ≤ 0

on Ω(L). By the maximum principle

W (x)− v(x) ≥ min
x∈∂Ω(L)

(W − v) ≥ min(0, min
|x|=L
(W − v)).

Since lim|x|→∞ v(x) = lim|x|→∞W (x) = 0, letting L→∞, we deduce that

v(x) ≤W (x) =Me−α(|x|−R) for |x| ≥ R. �
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3. Palais–Smale sequences

The following result is well-known, but we include it for the sake of com-
pleteness:

Lemma 3.1. Let {um} ⊂ H1A,V +(R
N ) be a sequence such that

J ′(um)→ 0 in H−1A,V +(R
N ) and J(um)→ c.

Then {um} is bounded in H1A,V +(R
N ).

Proof. Arguing by contradiction, let {um} be unbounded in H1A,V +(R
N ).

We set vm = um/‖um‖H1
A,V+
. We may assume that vm ⇀ v in H1A,V +(R

N )

and vm → v in Lploc(RN ) for each 2 ≤ p < 2∗ and a.e. on RN . For every
φ ∈ H1A,V +(R

N ) we have

(3.1)
1

‖um‖2
∗−2
H1
A,V+

∫
RN
(∇Avm∇Aφ+ V vmφ) dx =

∫
RN

Q|vm|2
∗−2vmφdx+ o(1).

Hence ∫
RN

Q|v|2
∗−2vφ dx = 0

for every φ ∈ H1A,V +(R
N ) and consequently v = 0 a.e. on RN (recall Q > 0).

Since V − ∈ LN/2(RN ) we see that limm→∞
∫

RN V
−|vm|2 dx = 0. Therefore

substituting φ = vm in (3.1) we get

‖vm‖2H1
A,V+
≡
∫

RN
(|∇Avm|2+V +|vm|2) dx = ‖um‖2

∗−2
H1
A,V+

∫
RN

Q|vm|2
∗
dx+ o(1).

Since J(um)→ c, we also have

1
2
‖vm‖2H1

A,V+
≡ 1
2

∫
RN
(|∇Avm|2 + V +|vm|2) dx

=
‖um‖2

∗−2
H1
A,V+

2∗

∫
RN

Q|vm|2
∗
dx+ o(1).

The last two relations imply that ‖vm‖H1
A,V+
→ 0, which is impossible. �

In Proposition 3.2 below we determine the energy level of the functional J
below which the Palais–Smale condition holds. Let

Q̃ = sup
x∈RN

Q(x).
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Proposition 3.2. Let a sequence {um} ⊂ H1A,V +(R
N ) be such that

J(um)→ c <
SN/2

NQ̃(N−2)/2
and J ′(um)→ 0 in H−1A,V +(R

N ).

Then {um} is relatively compact in H1A,V +(R
N ).

Proof. By Lemma 3.1 {um} is bounded. Therefore we may assume um ⇀ u

in H1A,V +(R
N ) and um → u a.e. Let um = vm + u. Then∫

RN
(|∇Aum|2 + V +|um|2) dx =

∫
RN
(|∇Avm|2 + V +|vm|2) dx

+
∫

RN
(|∇Au|2 + V +|u|2) dx+ o(1),∫

RN
V −|um|2 dx =

∫
RN

V −|vm|2 dx+
∫

RN
V −|u|2 dx+ o(1)

=
∫

RN
V −|u|2 dx+ o(1)

and by the Brézis–Lieb lemma [2], [18],∫
RN

Q|um|2
∗
dx =

∫
RN

Q|vm|2
∗
dx+

∫
RN

Q|u|2
∗
dx+ o(1).

As u is a solution of (1.1), it follows that

o(1) = 〈J ′(um), um〉 = 〈J ′(vm), vm〉+ 〈J ′(u), u〉+ o(1) = 〈J ′(vm), vm〉+ o(1),

and thus

(3.2) lim
m→∞

∫
RN
(|∇Avm|2 + V +|vm|2) dx = lim

m→∞

∫
RN

Q|vm|2
∗
dx = l

after passing to a subsequence. It remains to show that l = 0. We have

J(u) = J(u)− 1
2
〈J ′(u), u〉 = 1

N

∫
RN

Q|u|2
∗
dx ≥ 0

and

c = J(um) + o(1) = J(vm) + J(u) + o(1) ≥ J(vm) + o(1).
Hence, using (3.2),

l

N
=
(
1
2
− 1
2∗

)
l ≤ c < SN/2

NQ̃(N−2)/2
.

By the Sobolev and the diamagnetic inequalities,(∫
RN

Q|vm|2
∗
dx

)2/2∗
≤ Q̃2/2

∗
(∫

RN
|vm|2

∗
dx

)2/2∗
≤S−1Q̃2/2

∗
∫

RN
(|∇Avm|2 + V +|vm|2) dx.
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Letting m → ∞ we get l2/2∗ ≤ S−1Q̃2/2
∗
l, so either l ≥ SN/2/Q̃(N−2)/2 which

contradicts (3.3) or l = 0. �

4. Existence results — linking

First we study the linear eigenvalue problem

(4.1) −∆Au+ V +(x)u = µV −(x)u in RN .

We assume that V − 6= 0. Since the functional u 7→
∫

RN V
−|u|2 dx is weakly

continuous in H1A,V +(R
N ), problem (4.1) has a sequence of eigenvalues µ1 <

µ2 ≤ µ3 ≤ . . . µn → ∞. Let us denote the corresponding orthonormal system
of eigenfunctions by e1(x), e2(x), . . . . Since the first eigenvalue is defined by the
Rayleigh quotient

µ1 = inf
u∈H1

A,V+
(RN )−{0}

∫
RN (|∇Au|

2 + V +|u|2) dx∫
RN V

−|u|2 dx
,

we see that µ1 > 0. Indeed, the denominator is weakly continuous, so the
infimum is attained at some u 6= 0. It follows from Proposition 2.2 that ei ∈
L∞(RN ) and lim|x|→∞ ei(x) = 0, i = 1, 2, . . .

Following the paper [6] we distinguish two cases: (i) µ1 > 1 and (ii) 0 < µ1 ≤
. . . ≤ µn−1 ≤ 1 < µn ≤ . . . .
In the proofs of the existence results in both cases, we shall use a family of

instantons

Uε,y(x) = ε−(N−2)/2U
(
x− y
ε

)
, ε > 0, y ∈ RN ,

where U(x) =
(N(N − 2))(N−2)/4

(1 + |x|2)(N−2)/2
.

It is known [18] that

−∆U = U2
∗−1 in RN .

Moreover, we have ∫
RN
|∇U |2 dx =

∫
RN

U2
∗
dx = SN/2.

Let ψ be a C1-function such that ψ(x) = 1 for |x − y| ≤ δ/2 and ψ(x) = 0
for |x− y| > δ. We need the following asymptotic relations for wε,y = ψUε,y:

(4.2)

‖wε,y‖2
∗

2∗ = S
N/2 +O(εN ),

‖∇wε,y‖22 = SN/2 +O(εN−2),
‖wε,y‖2

∗−1
2∗−1 = O(ε

(N−2)/2).
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Since V − ∈ LN/2(RN ), we also have

(4.3)
∫

RN
V −wε,y dx = O(ε(N−2)/2| log ε|(N−2)/N ).

Indeed, ∣∣∣∣ ∫
RN

V −wε,y dx

∣∣∣∣ ≤ ‖V −‖N/2‖wε,y‖N/(N−2)
and

‖wε,y‖N/(N−2)N/(N−2) =
∫

RN
|wε,y|N/(N−2) dx ≤ c1

∫
B(0,δ)

εN/2

(ε2 + |x|2)N/2
dx

= c1εN/2
∫
B(0,δ/ε)

1
(1 + |x|2)N/2

dx ≤ c2εN/2| log ε|.

In case (i) (
∫

RN (|∇Au|
2+V |u|2) dx)1/2 is an equivalent norm in H1A,V +(R

N ).
Indeed, we have∫

RN
(|∇Au|2 + V +|u|2) dx ≥

∫
RN
(|∇Au|2 + V |u|2) dx

≥
(
1− 1

µ1

)∫
RN
(|∇Au|2 + V +|u|2) dx.

In this case the spectrum of the operator −∆A + V is contained in (0,∞). So
we can obtain a solution of (1.1) as a multiple of a minimizer of the constrained
minimization problem

(4.4) SQ = inf
u∈H1

A,V+
(RN )−{0}

∫
RN (|∇Au|

2 + V |u|2) dx
(
∫

RN Q(x)|u|2
∗ dx)(N−2)/N

.

In fact, we have the following existence result:

Theorem 4.1. Let N ≥ 4 and µ1 > 1. Suppose that there exists an x ∈ RN

such that Q(x) = Q̃, V (x) < −c < 0 in some neighbourhood of x, A is continuous
at x and

|Q(x)−Q(x)| = o(|x− x|2)
for x close to x. Then the infimum of (4.4) is attained at some u ∈ H1A,V +(R

N )
(and a multiple of u is a solution of (1.1)).

Proof. First, we claim that

SQ <
S

Q̃(N−2)/N
.

Without loss of generality we may assume that x = 0. Let

ϑ(x) = −
N∑
j=1

Aj(0)xj .
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Then (A + ∇ϑ)(0) = 0 and by the continuity |(A + ∇ϑ)(x)|2 ≤ c′ < c for all
|x| < δ and sufficiently small δ. Let uε(x) = wε,0(x)eiϑ(x). Letting Uε = Uε,0
and using (4.2) we obtain∫

RN
(|∇Auε|2 + V |uε|2) dx ≤

∫
RN
(|∇(ψUε)|2 + ψ2U2ε |∇ϑ+A|2 − cψ2U2ε ) dx

≤SN/2 + (c′ − c)
∫
B(0,δ/2)

U2ε dx+O(ε
N−2).

It follows from the assumption on Q that

(4.5)
∫

RN
Qw2

∗

ε dx =
∫

RN
Q|uε|2

∗
dx = SN/2Q̃+ o(ε2),

where wε = wε,0. For small ε > 0 we have

(4.6)
∫
B(0,δ/2)

U2ε dx ≥

{
Cε2| log ε| if N = 4,
Cε2 if N ≥ 5.

Combining the last three relations our claim easily follows. Let {um} be a min-
imizing sequence for SQ such that

∫
RN Q|um|

2∗ dx = 1. Let vm = S
(N−2)/4
Q um.

The rescaled sequence {vm} is a Palais–Smale sequence for the functional J
at the level c = (1/N)SN/2Q < SN/2/(NQ̃(N−2)/2) (cf. Theorem 2.1 in [13]
or Lemma 8.2.1 in [3]). By Proposition 3.2 {vm} is relatively compact in
H1A,V +(R

N ) and the result easily follows. �

Therefore, it remains to consider the case (ii). In this case we use the topo-
logical linking. Let Y = span (e1, . . . , en−1), Z = Y ⊥ and let z ∈ Z − {0}.
Obviously, we have H1A,V +(R

N ) = Y ⊕ Z. Define

M = {u = y + λz : y ∈ Y, ‖u‖H1
A,V+
≤ R, λ ≥ 0},

M◦ = {u = y + λz : y ∈ Y, ‖u‖H1
A,V+
= R, λ ≥ 0} ∪ {u ∈ Y : ‖u‖H1

A,V+
≤ R},

N = {u ∈ Z : ‖u‖H1
A,V+
= r}.

First we check that

(4.7) max
u∈M◦

J(u) = 0 < inf
u∈N

J(u)

provided 0 < r < R are suitably chosen. To show (4.7) we note that on Z

J(u) ≥ 1
2
(1− µ−1n )

∫
RN
(|∇Au|2 + V +|u|2) dx−

1
2∗

∫
RN

Q(x)|u|2
∗
dx

≥ 1
2
(1− µ−1n )‖u‖2H1

A,V+
− S−2

∗/2

2∗
Q̃‖u‖2

∗

H1
A,V+

.

Taking r > 0 sufficiently small we get

inf{J(u) : ‖u‖H1
A,V+
= r, u ∈ Z} > 0.
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Since Y ⊕Rz is finite dimensional and 2∗ > 2, it is easy to see that J(u)→ −∞
as ‖u‖H1

A,V+
→∞, u ∈ Y ⊕ Rz. We choose R > 0 so that maxu∈M◦ J(u) = 0.

We now state and prove the existence theorem for problem (1.1) in case (ii).

Theorem 4.2. Suppose that supx∈RN Q(x) = Q(x) for some x ∈ RN and
Q(x)−Q(x) = o(|x− x|2) for x close to x. Further assume that V (x) ≤ −c < 0
in some neighbourhood of x and that A is continuous at x.

(a) If µn−1 = 1, then problem (1.1) has a solution for N ≥ 7.
(b) If µn−1 < 1, then problem (1.1) has a solution for N ≥ 5.
(c) If µn−1 < 1 and V − ∈ LN/2(RN ) ∩ Lq(B(x, δ)) for some q > N/2 and

δ > 0, then problem (1.1) has a solution for N = 4.

Proof. Without loss of generality we assume that Q̃ = Q(0), that is, x = 0.
Let

c = min
γ∈Γ
max
u∈M

J(γ(u)),

where Γ = {γ : γ ∈ C(M,H1A,V +(R
N )), γ |M◦= id}. According to (4.7) and the

linking theorem [18], c > 0 and there exists a Palais–Smale sequence for J at the
level c. So by Proposition 3.2 it suffices to show that

(4.8) c <
SN/2

NQ̃(N−2)/2
.

We follow a modified argument from pp. 51–52 in [18] and from [5]. For u ∈
H1A,V +(R

N ) with
∫

RN (|∇Au|
2 + V |u|2) dx > 0, we have

(4.9) max
s≥0

J(su) =
1
N

(
∫

RN (|∇Au|
2 + V |u|2) dx)N/2

(
∫

RN Q|u|2
∗ dx)(N−2)/2

.

As in the proof of Theorem 4.1, let ϑ(x) = −
∑N
j=1Aj(0)xj . Then V (x) ≤ −c

and |(A + ∇ϑ)(x)|2 ≤ c′ < c for |x| < δ, if δ > 0 is sufficiently small. Let
uε be the function introduced in the proof of Theorem 4.1 and take z = u+ε
in the definition of the set M , where u+ε is the projection of uε on Z. Then
Y ⊕ Ruε = Y ⊕ Ru+ε . According to (4.9) it is enough to show that

(4.10) max
u∈Y⊕R+uεR

RN Q|u|
2∗ dx=1

∫
RN
(|∇Au|2 + V |u|2) dx <

S

Q̃(N−2)/N
.

Suppose that the maximum above is attained at u = y+tuε = ỹ+tu+ε . It is clear
that t > 0, and since Y is finite dimensional and ei ∈ L∞(RN ), all Lp-norms on
Y are equivalent for 2 ≤ p ≤ ∞. Therefore ‖u−ε ‖2∗ ≤ c1‖u−ε ‖2 ≤ c1‖uε‖2 → 0,
so ‖u+ε ‖2

∗

2∗ → SN/2 as ε → 0. Moreover, since Q is bounded away from 0 on
compact sets and suppuε ⊂ B(0, δ), c2‖u‖2

∗

2∗ ≤
∫

RN Q|u|
2∗ dx ≤ c3‖u‖2

∗

2∗ for all
u ∈ Y ⊕Ru+ε and all ε > 0. Using the inequality ‖ỹ‖2∗ ≤ c4‖u‖2∗ it is now easy
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to see that
∫

RN Q|y|
2∗ dx and t are bounded, uniformly in ε. Since y ∈ Y , we

have y =
∑n−1
i=1 αiei and by straightforward computations we get

(4.11)
∫

RN
(|∇Au|2 + V |u|2) dx

=
∫

RN
(|∇Ay|2 + V |y|2) dx+

∫
RN
(|∇A(tuε)|2 + V |tuε|2) dx

+ 2Re
(∫

RN
(∇Ay∇A(tuε) + V ytuε) dx

)
≤ (1− µ−1n−1)

∫
RN
(|∇Ay|2 + V +|y|2) dx

+
∫

RN
(|∇A(tuε)|2 + V |tuε|2) dx+O(ε(N−2)/2| log ε|(N−2)/N )‖y‖H1

A,V+
.

In estimating the last term on the right-hand side of the equality above we have
used the identity∫

RN
(∇Aei∇Auε + V +eiuε) dx = µi

∫
RN

V −eiuε dx,

the fact that the L∞- and the H1A,V + -norms are equivalent on Y and (4.3).

Recalling that uε = wεeiϑ(x), we see that

(4.12)
∫

RN
(|∇Auε|2 + V |uε|2) dx ≤

∫
RN
(|∇wε|2 + w2ε |∇ϑ+A|2 − cw2ε) dx

≤SN/2 + (c′ − c)
∫

RN
w2ε dx+O(ε

N−2).

Combining (4.11) and (4.12) we get

(4.13)
∫

RN
(|∇Au|2 + V |u|2) dx

≤ (1− µ−1n−1)‖y‖2H1
A,V+
+ t2SN/2 + t2(c′ − c)

∫
RN

w2ε dx

+O(ε(N−2)/2| log ε|(N−2)/N )‖y‖H1
A,V+

.

Moreover, by the convexity of the mapping s 7→ |sy + tuε|2
∗
,

1 =
∫

RN
Q|u|2

∗
dx ≥

∫
RN

Q(twε)2
∗
dx− 2∗

∫
RN

Q|y|(twε)2
∗−1 dx

≥
∫

RN
Q(twε)2

∗
dx−O(ε(N−2)/2)‖y‖H1

A,V+
,
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and hence, using (4.2), (4.5) and (4.6),

(4.14) t2SN/2 + t2(c′ − c)
∫

RN
w2ε dx

=
(SN/2 + (c′ − c)

∫
RN w

2
ε dx)(

∫
RN Q(twε)

2∗ dx)2/2
∗

(
∫

RN Qw
2∗
ε dx)2/2∗

≤
(SN/2 + (c′ − c)

∫
RN w

2
ε dx)(1 +O(ε

(N−2)/2))‖y‖H1
A,V+
)

(SN/2Q̃+ o(ε2))2/2∗

=
S

Q̃(N−2)/N
− d
∫

RN
w2ε dx+ o(ε

2) +O(ε(N−2)/2)‖y‖H1
A,V+

,

where d > 0. If µn−1 ≤ 1 and N ≥ 7, the conclusion easily follows from (4.13),
(4.14) and (4.6). Suppose µn−1 < 1. Since

(4.15) (1− µ−1n−1)‖y‖2H1
A,V+
+O(ε(N−2)/2| log ε|(N−2)/N )‖y‖H1

A,V+

≤ O(εN−2| log ε|2(N−2)/N )

in this case, the conclusion remains valid for N = 5 and 6. If N = 4 and
V − ∈ LN/2(RN ) ∩ Lq(B(0, δ)), then

∫
RN V

−uε dx = O(ε(N−2)/2) = O(ε) by an
argument similar to that of (4.3), so the right-hand side above is O(ε2) and the
conclusion follows again. �

We remark that if µn−1 < 1 and N = 4 in Theorem 4.2, then we may assume
Q(x)−Q(x) = O(|x− x|2) because in this case it suffices to have O(ε2) instead
of o(ε2) in (4.14).

Corollary 4.3. Suppose that supx∈RN Q(x) = Q(x) for some x ∈ RN and
Q(x)−Q(x) = O(|x−x|2) for x close to x. Further assume that there are α > 0,
c > 0 such that V −(x) ≥ c/|x− x|α in a neighbourhood of x and A is continuous
at x. Then problem (1.1) has a solution u 6= 0 in each of the following cases:

(a) µn−1 = 1, N ≥ 6 and 0 < α < 2,
(b) µn−1 = 1, N = 3, 4 or 5 and (6−N)/2 < α < 2,
(c) µn−1 < 1, N ≥ 4 and 0 < α < 2,
(d) µn−1 < 1, N = 3 and 1 ≤ α < 2.

Note that since V − ∈ LN/2(RN ), 0 < α < 2.

Proof. We may asssume x = 0. A small change is needed in the argument
of Theorem 4.2. Now in (4.12) we have

(4.16)
∫

RN
(|∇Auε|2 + V |uε|2) dx ≤ SN/2 −

c

2

∫
RN

w2ε
|x|α

dx+O(εN−2).
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Moreover,

(4.17)
∫

RN

w2ε
|x|α

dx ≥
∫
B(0,δ/2)

U2ε
|x|α

dx

≥

{
c1ε
2−α + c2εN−2 if N 6= 3 or α 6= 1,

c1ε| log ε| if N = 3 and α = 1.

So the conclusion follows using (4.13)–(4.15) and taking into account the changes
prompted by (4.16), (4.17). Note that since Q(x) − Q(0) = O(|x|2), o(ε2) is
replaced by O(ε2) in (4.14). �

As a final remark we would like to mention that combining the above es-
timates with those appearing in [4], it is possible to show the existence of a
nontrivial solution of (1.1) also if Q̃ = lim|x|→∞Q(x) and Q(x) < Q̃ for all
x ∈ RN . However, since the assumptions we would need to make on V , Q, A
and the dimension N are rather restrictive (in particular, we need A globally
Lipschitzian and V −(x) ≥ c/|x|α for some α > 2 and all large |x|), we omit the
details.
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