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COUNTING SOLUTIONS
OF NONLINEAR ABSTRACT EQUATIONS

Julián López-Gómez — Carlos Mora-Corral

Abstract. In this paper we use the topological degree to estimate the
minimal number of solutions of the sections (defined by fixing a parameter)
of the semi-bounded components of a general class of one-parameter ab-
stract nonlinear equations by means of the signature of the semi-bounded
component. A semi-bounded component is, roughly speaking, a component
that is bounded along one direction of the parameter. The signature con-
sists of the set of bifurcation values from the trivial state of the component
together with their associated parity indices. The parity is a local invariant
measuring the change of the local index of the trivial state.

1. Introduction

Suppose U is a real Banach space, denote by L(U) the set of linear continuous
operators in U , and consider a continuous map F: R × U → U of the form

F(λ, u) = L(λ)u + N(λ, u),
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where

(HL) L: R → L(U) is a continuous mapping such that L(λ) − I is compact
for each λ ∈ R; I being the identity operator on U .

(HN) N: R × U → U is a compact operator, such that

lim
u→0

sup
λ∈K

‖N(λ, u)‖
‖u‖ = 0

for every compact set K ⊂ R.

The main goal of this paper is to analyze some fine properties of the semi-
bounded components of the set of non-trivial solutions of

(1.1) F(λ, u) = 0.

Thanks to (HL) and (HN), (λ, u) = (λ, 0) solves equation (1.1) for each λ ∈ R.
This is why any solution of the form (λ, 0) will be called a trivial solution, while
solutions of the form (λ, u) with u �= 0 are referred to as non-trivial solutions.
More precisely, although it may contain some trivial solution, the set of non-
trivial solutions of equation (1.1) is defined by

(1.2) S := {(λ, u) ∈ R × (U \ {0}) : F(λ, u) = 0} ∪ (Σ × {0}),
where Σ stands for the spectrum of the family L(λ), i.e., the set of σ ∈ R such
that L(σ) has a non-trivial kernel. Since L(λ) is Fredholm of index zero, by the
open mapping theorem, it is an isomorphism if λ ∈ R \ Σ. Combining this fact
together with (HN), it is easily seen that Σ is a closed subset of R and that all
bifurcation values of λ to non-trivial solutions of (1.1) from the trivial solution
(λ, 0) must lie in Σ. In particular, by the continuity of F, S is a closed subset
of R × U (cf. [6, Section 6.1]). The set S consists of all non-trivial solutions
of (1.1) plus all possible bifurcation points from the trivial solution curve (λ, 0).
Although far from necessary, throughout this paper we assume that Σ is discrete.
Then, one can introduce a parity map P : Σ → {−1, 0, 1}, as follows

P (λ) :=
1
2

lim
ε↓0

[Ind(0,L(λ + ε)) − Ind(0,L(λ− ε))]

where Ind(0, · ) stands for the local topological degree of zero — the index. So
the parity vanishes if, and only if, the local topological degree does not change.
In the sequel, when writing Ind(u, f), it entails that the Leray–Schauder degree
Deg(f,BR(u)) is defined and independent for every R > 0 small enough, and
Ind(u, f) equals this common value; BR(u) being the ball of radius R centered
at u ∈ U .

As usual in global bifurcation theory, throughout this work by a component
of a closed subset S of S it is meant a maximal (for the inclusion) closed and
connected subset of S. The most powerful result available in global bifurcation
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theory establishes that if C is a bounded component of S, necessarily compact,
with

(1.4) B := C ∩ (Σ × {0}) �= ∅,

then

(1.5)
∑

σ∈PλB
P (σ) = 0,

where Pλ stands for the projection Pλ(λ, u) = λ (cf. P. H. Rabinowitz [9], [10],
E. N. Dancer [1], [74], R. J. Magnus [7], J. Ize [4], [6, Chapter 6] and the references
therein). As a consequence, if we denote by C the component emanating from
(λ, 0) at a value λ = σ ∈ Σ with |P (σ)| = 1, whose existence is guaranteed from
the pioneering results by M. A. Krasnosel’skĭı [5], then, some of the following
alternatives occurs:

(1) C is unbounded.
(2) C contains another point of the form

(σ̃, 0) �= (σ, 0) with P (σ̃)P (σ) = −1.

In particular, it must be unbounded if B = {(σ, 0)}. This result, found in the
pioneering paper of P. H. Rabinowitz [9], and usually refereed to as Rabinowitz’s
alternative, has been one of the paradigms of nonlinear analysis during the last
three decades, because of its huge number of applications (cf. H. Amann [1],
P. M. Fitzpatrick and J. Pejsachowicz [3], J. Mawhin [8], as well as the refer-
ences therein). Precisely because of the great number of applications — as well
as its really simple statement, easily retained by non-experts — Rabinowitz’s al-
ternative has not facilitated the development of sharper topological tools based
on Leray–Schauder degree towards ascertaining further hidden properties of the
solution components of nonlinear abstract equations. Concretely, it seems that,
in practice, most of nonlinear analysts using these global bifurcation results are
forgetting that the Leray–Schauder degree is a generalized counter of the num-
ber of zeros of F(λ, · ), for each value of λ, and that Rabinowitz’s Alternative
exclusively expresses the fact that C is unbounded if (1.5) fails.

In this paper we go back to the roots of the theory by using the topological
degree to count the exact number of solutions of C for each of the values of λ
where PλC �= ∅. As a result, rather naturally, we are conducted towards the
problem of analyzing the fine global topological structure of the semi-bounded
and bounded components of S; an analysis which seems to be completely pio-
neering in the field.

To summarize the main results of this paper, we need to sketch the main
methodology adopted in it. Throughout this paper, for any subset S ⊂ R × U
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and λ ∈ R we will denote

Sλ := {u ∈ U : (λ, u) ∈ S}.
Suppose C is a component of S, not necessarily bounded, set

B := C ∩ (Σ × {0}),
pick Λ ∈ R \ PλB and consider J ∈ {(−∞,Λ], [Λ,∞)}. Let {Cα}α∈A be the
family of components of C ∩ (J × U) and set

Bα := Cα ∩ (Σ × {0}), α ∈ A.

Then, {Bα}α∈A is a family of disjoint subsets with union C∩(J×{0}). Except for
a countable set of α ∈ A, Bα = ∅, since Σ is countable. Actually, if B∩ (J ×{0})
is finite, then Bα = ∅ except for a finite set of α ∈ A. In general, for each λ ∈ J ,
one has that

CardCλ =
∑
α∈A

Card (Cα)λ.

The main goal of this paper is to get optimal general estimates for Card (Cα)λ.
For each α ∈ A some of the following alternatives occurs:

(1) Cα is bounded in J × U .
(2) Cα is unbounded in J × U .

Suppose alternative (2) occurs and set

Jα := PλCα.

Then, Card (Cα)λ ≥ 1 for each λ ∈ Jα, while Card (Cα)λ = 0 if λ ∈ J \ Jα. In
general, Card (Cα)λ might be arbitrarily large for some λ ∈ Jα, and hence 1 can
be regarded as the minimal cardinal of (Cα)λ.

Now, suppose Cα satisfies alternative (1); an Cα arising in this way is called
a semi-bounded component. The main result of this paper establishes that for
any open isolating neighbourhood of Cα in J × U , say Ωα (cf. Definition 2.1),
and any λ∗ ∈ J \ PλBα there exists ρ∗ > 0 such that for any 0 < ρ ≤ ρ∗

(1.6) Deg(F(λ∗, · ), (Ωα)λ∗ \Bρ) = 2 signJ∗ ∑
σ∈J∗∩PλBα

P (σ),

where

J∗ :=

{
(λ∗,∞) if J = [Λ,∞),

(−∞, λ∗) if J = (−∞,Λ],
signJ∗ :=

{
1 if J = [Λ,∞),

−1 if J = (−∞,Λ].

Besides providing (1.5) and, hence, all existing abstract global bifurcation results
(cf. Theorem 2.3), equation (1.6) also gives, in a rather natural manner, the
minimal number of solutions of (Cα)λ∗ under some additional non-degeneracy
conditions which are satisfied in many special circumstances of great interest.
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The knowledge of the minimal number of solutions of (Cα)λ∗ in these special
cases conducts rather naturally towards the problem of analyzing all admissible
structures that Cα may have in the special case when Cα consists of a finite
number of compact arcs of continuous curves in terms of the signature of Cα

(cf. Definition 3.4); the signature being defined as the set PλBα together with
the parity value at these points. It seems this is the first work where this problem
has been addressed in the context of global bifurcation theory. We refrain from
giving more details herein.

This paper is organized as follows. In Section 2 we prove (1.6). In Section 3
we use (1.6) to estimate the number of solutions of (Cα)λ∗ and, then, introduce
the concept of signature of Cα and the concept of minimal number of solutions.
Finally, in Sections 4 and 5 we analyze the case when Cα consists of compact arcs
of continuous curves under certain regularity assumptions. Although the analysis
of this special situation is very simple, it is certainly the beginning of a general
abstract theory that should provide us with the minimal topological structure
that Cα should have in order to be an admissible semi-bounded component of C.

2. The main theorem

Throughout this section we suppose that

(2.1) J ∈ {R, (−∞,Λ], [Λ,∞)}
for some Λ ∈ R, and that C is a bounded (hence compact) component of S ∩
(J × U). The main goal of this section is to study general properties about the
number of elements of Cλ for each λ ∈ J . Most of the results of this section are
new even in the classical case when J = R. Subsequently, we denote by B the
set of bifurcation points from J × {0} of C, i.e.

(2.2) B := C ∩ (Σ × {0}).
The set B is compact and discrete, so finite, possibly empty. The following
concept will play a crucial role in the subsequent analysis.

Definition 2.1. A bounded open set Ω ⊂ R × U is said to be an open
isolating neighbourhood of C in J × U if the following conditions are satisfied:

(2.3) C ⊂ Ω, ∂Ω ∩ S ⊂ (R \ J) × U, B = Ω ∩ (Σ × {0}),
where B is the set defined by (2.2). In the special case when J = R, the second
relation of (2.3) should be read as ∂Ω ∩ S = ∅.

The following result establishes the existence of open isolating neighbour-
hoods satisfying some adequate properties to calculate the topological degree
of F, which will provide us with the desired multiplicity results. Subsequently,
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we denote by BR(λ, u) the ball of radius R > 0 centered at (λ, u) ∈ R × U , and
by BR the ball of radius R centered at the origin in U .

Proposition 2.2. Suppose (2.1) and let C be a bounded component of S∩
(J × U). Then, for each β > 0, C possesses an open isolating neighbourhood
in J × U , say Ω, with the property Ω ⊂ C + Bβ(0, 0). Moreover, for any open
isolating neighbourhood Ω of C in J×U and any ε > 0 there exists ρ∗ = ρ∗(ε) > 0
such that for any 0 < ρ ≤ ρ∗ and any

λ ∈ Jε := J \
⋃

σ∈PλB
(σ − ε, σ + ε)

some of the following alternatives occurs:

(a) Bρ ∩ Ωλ = ∅.
(b) {u ∈ Bρ : F(λ, u) = 0} = {0}.

Proof. First, we will construct an open isolating neighbourhood. Fix α > 0
small so that U := C +Bα(0, 0) satisfies

(2.4) U ∩ (Σ × {0}) = B.

If ∂U∩S ⊂ (R\J)×U , then U provides us with an open isolating neighbourhood
of C in J × U , but, in general, this will not be the case. So, suppose

∂U ∩ S ∩ (J × U) �= ∅

and set

M := U ∩ S ∩ (J × U), A := C, B := ∂U ∩ S ∩ (J × U).

Then, M is a compact metric space and A,B are two disjoint compact non-empty
subsets ofM . Moreover, by the maximality of C, no subcontinuum ofM connects
A with B. Thus, by a well-known result going back to G. T. Whyburn [11], there
exist two disjoint compact subsets of M , say, MA and MB, such that

A ⊂MA, B ⊂MB, M = MA ∪MB.

Then, the open set neighbouring Ω := MA + Bη(0, 0) provides us with an open
isolating neighbourhood of C in J × U for any sufficiently small η > 0. Indeed,
by (2.4), we have MA∩(Σ×{0}) = B and hence, for any sufficiently small η > 0,

Ω ∩ (Σ × {0}) = B.

Moreover, C ⊂MA ⊂ Ω. Thus, it remains to check that

(2.5) ∂Ω ∩ S ⊂ (R \ J) × U.
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Since dist(MA,MB) > 0, reducing η > 0, if necessary, one has that ∂Ω∩M = ∅,
since M = MA ∪MB. Moreover, since MA ⊂ U , for any sufficiently small η > 0,
∂Ω ⊂ U . Thus,

∅ = ∂Ω ∩M = ∂Ω ∩ U ∩ S ∩ (J × U) = ∂Ω ∩ S ∩ (J × U).

This concludes the proof of (2.5) and shows that Ω is an open isolating neigh-
bourhood. Moreover, by construction,

Ω ⊂ C +Bα(0, 0) +Bη(0, 0)

and α, η > 0 can be arbitrarily small. So for any β > 0 we can obtain Ω an open
isolating neighbourhood of C in J × U such that Ω ⊂ C +Bβ(0, 0).

Now, let Ω be any open isolating neighbourhood of C. To show the existence
of ρ∗ > 0 satisfying all the requirements of the statement we will argue by
contradiction. Assume that there exists ε > 0 such that for each integer n ≥ 1
there exist ρn > 0, λn ∈ Jε, and un ∈ Bρn \ {0} such that

lim
n→∞ ρn = 0, Bρn ∩ Ωλn �= ∅, F(λn, un) = 0.

If {λn}n∈N is unbounded, then Ωλk
= ∅ for some k, which is impossible, since

Bρn ∩ Ωλn �= ∅. Then, {λn}n∈N must be bounded. Thus, by extracting an
adequate subsequence, labeled again by n, one can suppose that

lim
n→∞λn = σ ∈ Jε.

Since un �= 0 and limn→∞(λn, un) = (σ, 0), necessarily σ ∈ Σ. Moreover, σ �∈
PλB, since σ ∈ Jε. Thus, σ ∈ Σ \ PλB and, hence, (σ, 0) �∈ Ω, by the definition
of open isolating neighbourhood. Now, pick a vn ∈ Bρn ∩ Ωλn for each n ≥ 1.
Then, for each n ≥ 1, (λn, vn) ∈ Ω and

lim
n→∞(λn, vn) = (σ, 0).

Thus, (σ, 0) ∈ Ω \ Ω = ∂Ω, and therefore, (σ, 0) ∈ ∂Ω ∩ S ∩ (J × U), which is
impossible, since ∂Ω∩S ⊂ (R\J)×U . This contradiction concludes the proof.�

Now, we can give the main result of this section.

Theorem 2.3. Suppose (2.1) and C is a bounded component of S∩ (J×U).
Let Ω be any open isolating neighbourhood of C in J × U . Then, for each λ∗ ∈
J \ PλB there exists ρ∗ > 0 such that for any 0 < ρ ≤ ρ∗

(2.6) Deg(F(λ∗, · ),Ωλ∗ \Bρ) = 2 signJ∗ ∑
σ∈J∗∩PλB

P (σ),

where

J∗ :=

{
(λ∗,∞) if J = [Λ,∞),

(−∞, λ∗) if J = (−∞,Λ],
signJ∗ :=

{
1 if J = [Λ,∞),

−1 if J = (−∞,Λ],



316 J. López-Gómez — C. Mora-Corral

and J∗ ∈ {(−∞, λ∗), (λ∗,∞)} if J = R. Actually, if J = R, then

(2.7) Deg(F(λ∗, · ),Ωλ∗ \Bρ) = 2
∑

σ∈(λ∗,∞)∩PλB
P (σ) = −2

∑
σ∈(−∞,λ∗)∩PλB

P (σ)

and, therefore,

(2.8)
∑

σ∈PλB
P (σ) = 0.

In any of those cases, when the set over which the summation runs is empty
the sum should be taken as zero.

Proof. We shall give all details of the proof in the case when J = [Λ,∞).
Since Ω is bounded, there exists b ∈ J∗ \ Σ such that PλΩ ⊂ (−∞, b). Now, we
have to distinguish two different cases. Suppose

(2.9) J∗ ∩ PλB = ∅.

Then, thanks to Proposition 2.2, there exists ρ∗ > 0 such that for each ρ ∈ (0, ρ∗]
and λ ≥ λ∗ some of the following alternatives occurs: either Bρ ∩ Ωλ = ∅, or
{u ∈ Bρ : F(λ, u) = 0} = {0}. Thus, for each λ ≥ λ∗, the topological degree
Deg(F(λ, · ),Ωλ \ Bρ) is well defined. Moreover, the invariance by homotopy
shows that

Deg(F(λ∗, · ),Ωλ∗ \Bρ) = Deg(F(b, · ),Ωb \Bρ) = 0,

since Ωb = ∅, which concludes the proof of the theorem under condition (2.9).
Now, suppose

(2.10) J∗ ∩ PλB = {σ1, . . . , σM},

instead of (2.9), where σi < σj if 1 ≤ i < j ≤ M . Let δ > 0 be such that
B +Bδ(0, 0) ⊂ Ω,

λ∗ < σ1 − δ < σ1 + δ < σ2 − δ < . . . < σM + δ < b,

and, if PλB\J∗ �= ∅, sup[PλB\J∗]+δ < λ∗. Pick 0 < ρ ≤ ρ∗, where ρ∗ = ρ∗(δ/2)
is the value whose existence was shown by Proposition 2.2. By the homotopy
invariance of the degree, for each 1 ≤ j ≤M , Deg(F(λ, · ),Ωλ) is constant in the
interval λ ∈ (σj − δ, σj + δ). Indeed, if λ ∈ (σj − δ, σj + δ) for some 1 ≤ j ≤M ,
and (λ, u) ∈ ∂Ω, then (λ, u) /∈ S, since ∂Ω ∩ S ⊂ (R \ J) × U , by (2.3), and
λ ∈ J . Moreover, (λ, 0) ∈ B + Bδ(0, 0) ⊂ Ω, and, hence, (λ, 0) /∈ ∂Ω either.
Thus, F(λ, u) �= 0 and, therefore,

(2.11) Deg(F(σj − δ/2, · ),Ωσj−δ/2) = Deg(F(σj + δ/2, · ),Ωσj+δ/2),

for 1 ≤ j ≤M.
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Also, again by the homotopy invariance of the degree, there exists (d0, . . . , dM ) ∈
Z

M+1 such that

(2.12)

Deg(F(λ, · ),Ωλ \Bρ) = dj , λ ∈ [σj + δ/2, σj+1 − δ/2],

1 ≤ j ≤M − 1,

Deg(F(λ, · ),Ωλ \Bρ) = dM , λ ∈ [σM + δ/2, b],

Deg(F(λ, · ),Ωλ \Bρ) = d0, λ ∈ [λ∗, σ1 − δ/2].

In order to prove (2.12) it suffices to show that F(λ, u) �= 0 if

λ ∈ [λ∗, σ1 − δ/2] ∪ [σM + δ/2, b] ∪
M−1⋃
j=1

[σj + δ/2, σj+1 − δ/2]

and u ∈ ∂(Ωλ \Bρ). Pick (λ, u) satisfying those requirements. Obviously, u �= 0.
Moreover, by Proposition 2.2, either Bρ ∩ Ωλ = ∅ or {u ∈ Bρ : F(λ, u) = 0} =
{0}. Suppose

Bρ ∩ Ωλ = ∅.
Then Ωλ \Bρ = Ωλ, and, hence, (λ, u) ∈ ∂Ω∩ (J ×U) and (λ, u) /∈ S, by (2.3).
Thus, F(λ, u) �= 0, since u �= 0. Now, suppose

(2.13) {u ∈ Bρ : F(λ, u) = 0} = {0}.
Clearly, ∂(Ωλ \ Bρ) ⊂ ∂Ωλ ∪ ∂Bρ. Due to (2.13), u ∈ ∂Bρ implies F(λ, u) �= 0,
whereas if u ∈ ∂Ωλ then (λ, u) ∈ ∂Ω ∩ (J × U) and, hence, thanks to (2.3),
(λ, u) /∈ S. Therefore, F(λ, u) �= 0, since u �= 0. This concludes the proof
of (2.12). Further, note that, since Ωb = ∅, dM = 0.

On the other hand, for each sufficiently small ρ > 0 and 1 ≤ j ≤M , we have
that

Deg(F(σj − δ/2, · ),Ωσj−δ/2) = dj−1 + Ind(0,L(σj − δ/2)),

Deg(F(σj + δ/2, · ),Ωσj+δ/2) = dj + Ind(0,L(σj + δ/2)),

and, hence, using (1.3), the identity (2.11) can be written in the form

dj−1 − dj = Ind(0,L(σj + δ/2)) − Ind(0,L(σj − δ/2)) = 2P (σj), 1 ≤ j ≤M.

Thus, adding these equalities and using the fact that dM = 0 we obtain that

d0 =
M∑

j=1

(dj−1 − dj) = 2
M∑

j=1

P (σj).

Therefore, thanks to (2.12),

(2.14) Deg(F(λ∗, · ),Ωλ∗ \Bρ) = 2
M∑

j=1

P (σj).

Thanks to (2.10), (2.14) provides us with (2.6) when J = [Λ,∞).
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Now, we will explain the changes that one has to implement to get the result
in the case when J = (−∞,Λ]. First, pick a ∈ J∗ \ Σ such that PλΩ ⊂ (a,∞).
As in the previous case, if J∗ ∩ PλB = ∅, then the invariance by homotopy of
the degree gives, for small ρ > 0,

Deg(F(λ∗, · ),Ωλ∗ \Bρ) = Deg(F(a, · ),Ωa \Bρ) = 0,

which concludes the proof. So, suppose (2.10), let δ > 0 satisfy B+Bδ(0, 0) ⊂ Ω,

a < σ1 − δ < σ1 + δ < σ2 − δ < . . . < σM + δ < λ∗,

and, if PλB\J∗ �= ∅, λ∗ < inf[PλB\J∗]−δ. Pick 0 < ρ ≤ ρ∗, where ρ∗ = ρ∗(δ/2)
is the value whose existence was shown by Proposition 2.2. Then, adapting the
argument of the previous case, one is led to the identity

Deg(F(λ∗, · ),Ωλ∗ \Bρ) = −2
M∑

j=1

P (σj),

which is (2.6) for this special case.
Finally, suppose J = R, let C be a bounded component of S, Ω an open

isolating neighbourhood of C in R × U , and λ∗ ∈ R \ PλB. Pick up a Λ ≤ λ∗

such that Ω ⊂ [Λ,∞) × U . Then, C is a component of S ∩ ([Λ,∞) × U), and Ω
is an open isolating neighbourhood of C in [Λ,∞)×U . Therefore, thanks to the
first part of the proof,

Deg(F(λ∗, · ),Ωλ∗ \Bρ) = 2
∑

σ∈(λ∗,∞)∩PλB
P (σ).

Analogously, we get the second relation of (2.7), and, as an immediate conse-
quence, (2.8). This completes the proof of the theorem. �

3. Practical consequences of the main theorem

In this section we use Theorem 2.3 to estimate the number of elements of Cλ.

Theorem 3.1. Suppose (2.1) and C is a bounded component of S∩ (J×U).
Suppose, in addition, that there exist λ∗ ∈ J \ PλB, and n ∈ N different isolated
zeros of F(λ∗, · ), uj ∈ Cλ∗ , 1 ≤ j ≤ n, such that

Ind(uj ,F(λ∗, · )) ∈ {−1, 0, 1}, 1 ≤ j ≤ n.

Set
n± := Card {j ∈ {1, . . . , n} : Ind(uj ,F(λ∗, · )) = ±1}.

Then,

(3.1) CardCλ∗ ≥ n+ 1 whenever 2
∣∣∣∣ ∑

σ∈J∗∩PλB
P (σ)

∣∣∣∣ �= ∣∣∣∣n+ − n−

∣∣∣∣.
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In particular, CardCλ∗ ≥ n+ 1 if n+ + n− ∈ 2N + 1.

Proof. Suppose Cλ∗ = {u1, . . . , un}. Necessarily uj �= 0 for each 1 ≤ j ≤ n,
since λ∗ ∈ J \ PλB. Thus, Cλ∗ ∩Bρ = ∅ for sufficiently small ρ > 0.

The set C is compact and has empty intersection with

Z := {λ∗} × {u ∈ U \ Cλ∗ : F(λ∗, u) = 0},
which is closed due to the fact that each uj , 1 ≤ j ≤ n is an isolated zero of
F(λ∗, · ). Therefore, there exists β > 0 such that (C + Bβ(0, 0)) ∩ Z = ∅. By
Proposition 2.2, there exists Ω an open isolating neighbourhood of C in J × U

such that Ω ∩ Z = ∅. Then,

Cλ∗ = {u ∈ Ωλ∗ \Bρ : F(λ∗, u) = 0}.
Thus, the additivity property of the degree gives

Deg(F(λ∗, · ),Ωλ∗ \Bρ) =
n∑

j=1

Ind(uj ,F(λ∗, · )).

Hence, it follows from (2.6) that

2 signJ∗ ∑
σ∈J∗∩PλB

P (σ) =
n∑

j=1

Ind(uj ,F(λ∗, · )),

and, therefore,

2
∣∣∣∣ ∑

σ∈J∗∩PλB
P (σ)

∣∣∣∣ = |n+ − n−|.

This completes the proof of (3.1).
Finally, if n+ + n− is odd, then n+ − n− is as well odd, and, hence,

2
∣∣∣∣ ∑

σ∈J∗∩PλB
P (σ)

∣∣∣∣ �= |n+ − n−|.

This concludes the proof. �

Subsequently, we will use the following concept.

Definition 3.2. Suppose C is a component of S∩(J×U) and λ∗ ∈ J \PλB.
Then, λ∗ is said to be a regular parameter value of C if Cλ∗ consists in exactly
n ∈ N points, uj, 1 ≤ j ≤ n, isolated zeros of F(λ∗, · ), such that

Ind(uj ,F(λ∗, · )) ∈ {−1, 0, 1}, 1 ≤ j ≤ n.

In such case, we set

n± := Card {j ∈ {1, . . . , n} : Ind(uj ,F(λ∗, · )) = ±1}.
Further, λ∗ is said to be a strongly regular parameter value of C if, in addition,
n = n+ + n−.
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Note that the regular-value formula of the degree ensures that λ∗ ∈ J \ PλB
is a strongly regular parameter value of C when DuF(λ∗, u) exists and is an
isomorphism for all u ∈ Cλ∗ .

Theorem 3.3. Suppose (2.1), C is a bounded component of S ∩ (J × U),
and λ∗ ∈ J \ PλB is a regular parameter value of C. Then,

(3.2) CardCλ∗ ≥ 2
∣∣∣∣ ∑

σ∈J∗∩PλB
P (σ)

∣∣∣∣.
Moreover, CardCλ∗ ∈ 2N if λ∗ is a strongly regular parameter value of C.

Proof. It has been assumed that Cλ∗ is finite. Moreover, 0 �∈ Cλ∗ since
λ∗ �∈ PλB. Set n := CardCλ∗ and suppose that Cλ∗ = {u∗1, . . . , u∗n}. Then,
reasoning as in the proof of Theorem 3.1 gives

2signJ∗ ∑
σ∈J∗∩PλB

P (σ) =
n∑

j=1

Ind(uj ,F(λ∗, · )).

Thus,

2
∣∣∣∣ ∑

σ∈J∗∩PλB
P (σ)

∣∣∣∣ =
∣∣∣∣ n∑

j=1

Ind(uj ,F(λ∗, · ))
∣∣∣∣

≤
n∑

j=1

|Ind(uj ,F(λ∗, · ))| = n+ + n− ≤ CardCλ∗

and, therefore, (3.2) holds.
Now, suppose CardCλ∗ = n+ + n−. The last assertion of Theorem 3.1 gives

n+ + n− ∈ 2N. This concludes the proof. �

Strongly motivated by Theorem 3.3, we give the following fundamental con-
cepts.

Definition 3.4 (Signature and minimal cardinal). Suppose (2.1) and C is
a bounded component of S ∩ (J × U). Consider B := C ∩ (J × {0}). If J �= R

suppose CΛ �= ∅ and Λ �∈ PλB. Then:

(a) When PλB = {σ1, . . . , σN} with σi < σi+1, the signature of C in J ×U

is defined by

Signature [C; J × U ] :=
(

σ1 . . . σN

P (σ1) . . . P (σN )

)
,

where P (σj) stands for the parity of σj ∈ Σ, 1 ≤ j ≤ N , whereas the
signature of C in J × U is said to be empty if B = ∅.
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(b) When PλB = {σ1, . . . , σN} with σi < σi+1, the minimal cardinal of C

in J × U is the map MC[C;J×U ]: J \ {σ1, . . . , σN} → N defined by

MC[C;J×U ](λ) :=



2 max
{

1,
∣∣∣∣ N∑

j=1

P (σj)
∣∣∣∣} if λ ∈ [Λ, σ1),

2 max
{

1,
∣∣∣∣ N∑

j=i+1

P (σj)
∣∣∣∣} if λ ∈ (σi, σi+1),

1 ≤ i ≤ N − 1,

0 if λ ∈ (σN ,∞),

if J = [Λ,∞), by

MC[C;J×U ](λ) :=



2 max
{

1,
∣∣∣∣ N∑

j=1

P (σj)
∣∣∣∣} if λ ∈ (σN ,Λ],

2 max
{

1,
∣∣∣∣ i∑

j=1

P (σj)
∣∣∣∣} if λ ∈ (σi, σi+1), 1 ≤ i ≤ N − 1,

0 if λ ∈ (−∞, σ1),

if J = (−∞,Λ], and by

MC[C;J×U ](λ) :=


0 if λ ∈ (−∞, σ1) ∪ (σN ,∞),

2 max
{

1,
∣∣∣∣ i∑

j=1

P (σj)
∣∣∣∣} if λ ∈ (σi, σi+1), 1 ≤ i ≤ N − 1,

if J = R, whereas we take MC[C;J×U ] := 0 if B = ∅.

Note that MC[C;J×U ] is uniquely determined from the Signature of C in J×U .
With this concept Theorem 3.3 may be rephrased as follows: MC[C;J×U ](λ) is
a lower bound of CardCλ for any λ ∈ J \PλB being a strongly regular parameter
value of C. In the subsequent discussion we will assume that J = [Λ,∞).

In the case when the signature of C in J × U is empty we have defined
MC[C;J×U ] = 0. Although Cλ might have an arbitrarily large number of solutions
for some set of values of the parameter λ > Λ, it can have zero for each λ > Λ.
Indeed, this is the case if PλC = {Λ}.

Now, suppose

Signature [C; J × U ] ∈
{(

σ1

−1

)
,

(
σ1

1

)
,

(
σ1

0

)}
.

Then,

MC[C;J×U ](λ) =

{
2 if λ ∈ [Λ, σ1),

0 if λ > σ1.

Although Figure 3.1(a) shows a possible component exhibiting less than two
solutions for a value λ ∈ [Λ, σ1), it should be noted that MC[C;J×U ](λ) equals
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the minimum number of solutions of Cλ guaranteed by Theorem 3.3 at any
strongly regular parameter value λ ∈ [Λ,∞) \ {σ1} of C. In Figure 3.1(b), (c)
we have represented two typical situations where any λ ∈ [Λ, σ1) is a regular
parameter value of C. It should be clear why zero is the minimal number of
solutions of Cλ if λ > σ1, though the compact might have an arbitrarily large
number of solutions for some range of λ.

u

λΛ
σ1

u

λΛ
σ1

u

λΛ
σ1

(a) (b) (c)

Figure 3.1. Three admissible components

In the case when

(3.3) Signature [C; J × U ] ∈
{(

σ1 σ2

−1 −1

)
,

(
σ1 σ2

1 1

)}
,

then,

(3.4) MC[C;J×U ](λ) =


4 if λ ∈ [Λ, σ1),

2 if λ ∈ (σ1, σ2),

0 if λ > σ2.

Figure 3.2 shows some admissible components with signature (3.3) in the special
case when any λ ∈ [Λ,∞) \ {σ1, σ2} is a strongly regular parameter value of C,
and CardCΛ = 4.

It should be noted that, thanks to Theorem 3.3, Cλ must possess an even
number of solutions for each λ ∈ [Λ,∞) \ {σ1, σ2}. The analysis carried out in
the next section shows that all situations illustrated in Figure 3.2 are admissible.
The five cases shown by Figure 3.2 correspond with each of the possible cases
accordingly to the number of arcs of C connecting {Λ}×CΛ to (σ1, 0). Note that,
(3.4) provides the minimal number of solutions in the general case. Of course,
in all cases, (σ1, 0) and (σ2, 0) must be connected by some arc of curve, since C

is connected.
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u

λΛ
σ σ1

u

λΛ

σ σ

σ

1

u

λΛ
σ

1

(a) (b)

2 2

2

u

λΛ

σ σ
1 2

σ

u

λΛ
σ

1 2

(d) (e)

(c)

Figure 3.2. Some admissible components with CardCΛ = 4

Now, suppose

(3.5) Signature [C; J × U ] ∈
{(

σ1 σ2

±1 ∓1

)
,

(
σ1 σ2

±1 0

)
,(

σ1 σ2

0 ±1

)
,

(
σ1 σ2

0 0

)}
.

Then,

(3.6) MC[C;J×U ](λ) =

{
2 if λ ∈ [Λ, σ1) ∪ (σ1, σ2),

0 if λ > σ2.

u

λΛ
σ σ1

u

λΛ

σ σ
1

(a) (b)

2 2

u

λΛ

σ σ
1 2

(c)

Figure 3.3. Some admissible components with CardCΛ = 2
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Figure 3.3 shows some admissible components with signature in the set (3.5)
in the special case when any λ ∈ [Λ,∞)\{σ1, σ2} is a strongly regular parameter
value of C and CardCΛ = 2.

Again, (3.6) provides the universal minimal number of solutions in all these
cases.

When some degenerate points appear along any of these curves of C, the
number of solutions might drastically increase, or decrease, of course, but it
seems the previous diagrams provide us with the minimal topological patterns
that C should contain. We momentarily refrain from going further into the
analysis we are carrying out; it will be completed in the next section.

3.1. The special case when U = R. Although in one dimension it is
very easy to construct examples of components satisfying all requirements of
the theory developed in this section, one should take into account the following
general result, which excludes many different cases which might appear in higher
dimensions.

Theorem 3.5. Suppose (2.1) and C is a bounded component of S∩ (J ×R)
such that PλB = {σ1, . . . , σN} with σ1 < . . . < σN for some N ≥ 2. Suppose, in
addition, that there exist 1 ≤ i < j ≤ N such that P (σi)P (σj) �= 0 and P (σh) = 0
for each i < h < j. Then P (σi) = −P (σj), and therefore MC[C;J×U ] ∈ {0, 2}.

Proof. It is clear that for each 1 ≤ h ≤ N − 1, either

(3.7) Cλ ∩ (0,∞) �= ∅, λ ∈ (σh, σh+1)

or

(3.8) Cλ ∩ (−∞, 0) �= ∅, λ ∈ (σh, σh+1).

Take 1 ≤ h ≤ N − 1 satisfying (3.8). Consider the family F̃: R2 → R defined as
a reflection of F,

F̃(λ, u) := L(λ)u + Ñ(λ, u), Ñ(λ, u) :=

{
N(λ, u) if u ≤ 0,

−N(λ,−u) if u ≥ 0.

Note that F̃ satisfies assumptions (HL), (HN) of Section 1, it is an odd function
of u, and the parity map P is the same for F and for F̃. Let S̃ be the set of
nontrivial solutions, as defined in (1.2), relatively to F̃. Let C̃ be the component of
S̃ containing (σh, 0); note that it is bounded. Let C̃1, . . . , C̃m be the components
of S̃ with non-empty intersection with

Sh × {0}, Sh := (σh, σh+1) ∩ P−1({−1, 1}).
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Necessarily, they are bounded because they have empty intersection with C̃ (re-
call that U = R). Then, ∑

(µ,0)∈�Ck

P (µ) = 0, 1 ≤ k ≤ m,

by Theorem 2.3. Thus,

0 =
m∑

k=1

∑
(µ,0)∈�Ck

P (µ) =
∑

µ∈Sh

P (µ)

and CardSh is even. An analogous reasoning for the case (3.7) proves that
CardSh is even for any 1 ≤ h ≤ N−1. As a consequence, (σi, σj)∩P−1({−1, 1})
is even and this concludes the proof. �

Subsequently, we will suppose that σ1 < σ2 < σ3 < σ4, and, given αi > 0,
1 ≤ i ≤ 4, α2 < α3, consider the function F1: R2 → R defined by

F1(λ, u) = [u2 − α1(λ− σ1)(σ2 − λ)][u2 − α2(λ− σ2)(σ3 − λ)]

· [u2 − α3(λ− σ2)(σ3 − λ)][u2 − α4(λ− σ3)(σ4 − λ)]u

for each (λ, u) ∈ R
2. The set of zeros of F1 consists of the straight line u = 0

plus a bounded component, C1 conformed by 8 elliptic arcs of curve looking like
Figure 3.4(a). It should be noted that

DuF1(λ, 0) = α1α2α3α4(λ− σ1)(λ− σ2)3(λ− σ3)3(λ− σ4)

changes of sign at each σj , and, hence,

Signature [C1; R2] =
(
σ1 σ2 σ3 σ4

−1 1 −1 1

)
.

λ

(a) (b)

(d)(c)

λ

λ

λ

Figure 3.4. Some admissible one-dimensional components
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In Figure 3.4(b) we have represented the connected set C2 of nontrivial so-
lutions of

F2(λ, u) = [u2 − α1(λ− σ1)(σ2 − λ)][u2 − α2(λ− σ1)(σ2 − λ)]

· [u2 − α3(λ− σ2)(σ3 − λ)][u2 − α4(λ− σ3)(σ4 − λ)]

· [u2 − α5(λ− σ3)(σ4 − λ)]u,

where αi > 0, 1 ≤ i ≤ 5, with α1 < α2 and α4 < α5. Now,

Signature [C2; R2] =
(
σ1 σ2 σ3 σ4

0 −1 1 0

)
.

In Figure 3.4(c) we have represented the connected set C3 of nontrivial solutions
of

F3(λ, u) = [u2 − α1(λ− σ1)(σ2 − λ)][u2 − α2(λ− σ2)(σ3 − λ)]

· [u2 − α3(λ− σ3)(σ4 − λ)]u,

where αi > 0, 1 ≤ i ≤ 3. Now,

Signature [C3; R2] =
(
σ1 σ2 σ3 σ4

−1 0 0 1

)
.

Finally, in Figure 3.4(d) we have represented the set C4 of nontrivial solutions of

F4(λ, u) = [u2 − α(λ− σ1)(σ4 − λ)]F3(λ, u),

where α > 0 is sufficiently large. Now,

Signature [C4; R2] =
(
σ1 σ2 σ3 σ4

0 0 0 0

)
.

4. Counting the exact number of solutions

Throughout this section we suppose that J satisfies (2.1), and C is a bounded
component of S ∩ (J × U). When J �= R we also assume Λ �∈ PλB and CΛ �= ∅.
Moreover, we impose the following non-degeneracy conditions:

(1) DuF(λ, u) exists and, for each (λ, u) ∈ C∩ [J × (U \ {0})], is an isomor-
phism

(2) There exists an open neighbourhood O of C \ (Σ × {0}) such that the
map

O → L(U), (λ, u) → DuF(λ, u)

is continuous.

Our main goal is to analyze how CardCλ changes as λ varies along the whole
interval J . Many results are stated and proved for the case J = [Λ,∞), but it
should be clear which modifications are to be implemented for the other cases
of (2.1).



Counting Solutions 327

Theorem 4.1. Under the general assumptions of this section, CardCλ is
finite and locally constant in J \ PλB. Consequently, it is constant on each
connected component of J \ PλB.

To prove Theorem 4.1 we use the following version of the implicit function
theorem.

Theorem 4.2. Let Z, U , V be Banach spaces, Ω an open subset of Z × U ,
and G: Ω → V a continuous map with the property that DuG exists and it is
continuous in Ω. Suppose there exists a point (z0, u0) ∈ Ω such that G(z0, u0) = 0
and DuG(z0, u0) is an isomorphism. Then, there are open balls Br(z0) ⊂ Z and
Bs(u0) ⊂ U such that, for each z ∈ Br(z0), there is a unique u = u(z) ∈ Bs(u0)
satisfying

G(z, u(z)) = 0.

Moreover, the mapping z → u(z) is continuous.

Proof of Theorem 4.1. To prove that Cλ is finite for any λ ∈ J \ PλB
it suffices to show that it is compact and discrete. As C itself is compact, any
section Cλ, λ ∈ J , must be compact. The fact that Cλ is discrete follows at once
from Theorem 4.2, since DuF(λ, u) is an isomorphism for each (λ, u) ∈ C with
λ ∈ J \ PλB.

We now show that CardCλ is locally constant on J \ PλB. Pick up λ∗ ∈
J \ PλB and suppose

r := CardCλ∗ , Cλ∗ = {u∗1, . . . , u∗r}.
If r = 0, the compactness of C shows that Cλ = ∅ for λ � λ∗. Suppose, then,
r > 0. We have that u∗i �= 0 for each 1 ≤ i ≤ r. Moreover, thanks to Theorem 4.2,
there exist δ > 0 and r continuous maps ui: (λ∗− δ, λ∗ + δ) → U , 1 ≤ i ≤ r, such
that

F(λ, ui(λ)) = 0, ui(λ∗) = u∗i ,

if |λ − λ∗| < δ and 1 ≤ i ≤ r. Moreover, if F(λ, u) = 0 with |λ − λ∗| < δ and
|u − u∗i | < δ for some 1 ≤ i ≤ r, then u = ui(λ). Furthermore, reducing δ,
if necessary, one can assume that each of the r curves (λ, ui(λ)), |λ − λ∗| < δ,
1 ≤ i ≤ r, is bounded away from R × {0}, that ui(λ) �= uj(λ) if i �= j, and that

(λ∗ − δ, λ∗ + δ) ∩ PλB = ∅.
Thus, since C is a component of S ∩ (J × U),

r⋃
i=1

{(λ, ui(λ)) : |λ− λ∗| < δ, λ ∈ J} ⊂ C

and
CardCλ ≥ CardCλ∗ = r if λ ∈ (λ∗ − δ, λ∗ + δ) ∩ J.
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To complete the proof of the local constancy of CardCλ, we will argue by con-
tradiction. Suppose that there are sequences {λn}n≥1 ⊂ (λ∗ − δ, λ∗ + δ)∩ J and
{vn}n≥1 ⊂ U , such that

lim
n→∞λn = λ∗, vn ∈ Cλn \ {u1(λn), . . . , ur(λn)}, n ≥ 1.

Necessarily,
|vn − u∗i | ≥ δ, 1 ≤ i ≤ r, n ≥ 1.

Moreover, by compactness, one can extract a subsequence, labeled again by n,
such that

lim
n→∞(λn, vn) = (λ∗, u∗) ∈ C

for some u∗ ∈ Cλ∗ . Necessarily,

|u∗ − u∗i | ≥ δ, 1 ≤ i ≤ r,

and, hence, CardCλ∗ ≥ r + 1, which is impossible. This completes the proof of
the theorem. �

As an immediate consequence of Theorem 4.1, one gets the result that a
change of CardCλ entails the existence of some bifurcation value from the trivial
solution. Moreover, from the regular-value formula of the degree, every λ ∈
J \ PλB is a strongly regular parameter value of C. The following result is then
obtained.

Theorem 4.3. Suppose J = [Λ,∞). Under the general assumptions of this
section, B �= ∅. Moreover, if

B = {(σ1, 0), . . . , (σN , 0)}, σi < σi+1, 1 ≤ i ≤ N − 1,

then

(a) PλC = [Λ, σN ] and CσN = {0}.
(b) CardCλ ∈ 2N is constant in each of the intervals [Λ, σ1), (σi, σi+1),

1 ≤ i ≤ N − 1.
(c) CardCλ ≥ MC[C;J×U ](λ) for each λ ∈ [Λ, σN ] \ {σ1, . . . , σN}.
(d) C can be expressed as

C =
⋃
γ∈Γ

γ([aγ , bγ ]),

where Γ is a finite set of continuous curves γ: [aγ , bγ ] → R × U such
that aγ < bγ, γ(aγ) ∈ ({Λ}× CΛ)∪B, γ(bγ) ∈ B, Pλ(γ(λ)) = λ for any
λ ∈ [aγ , bγ ],

γ((aγ , bγ)) ∩ [B ∪ ({Λ} × CΛ)] = ∅,
and γ([aγ , bγ ]) ∩ η([aη, bη]) ⊂ B for γ, η ∈ Γ, γ �= η.
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Moreover, for each i ∈ {1, . . . , N − 1} and s, t ∈ J such that

(4.1) [s, t] ∩ PλB = {σi}, s < σi < t,

one has that

(4.2) CardCt + �[s, σi] = CardCs + �[t, σi],

where

�[s, σi] := Card {γ ∈ Γ : aγ < s < bγ , bγ = σi} ,
�[t, σi] := Card {γ ∈ Γ : aγ = σi, aγ < t < bγ} .

Thus, �[s, σi]+ �[t, σi] ≥ 2 is an even natural number. Also, �[t, σ1] ≥ 1 if N ≥ 2.

Proof. Theorem 4.1 clearly implies that B �= ∅.
It is plain that [Λ, σN ] ⊂ PλC. Theorem 4.1 proves the equality immediately.

The fact that CσN = {0} can be proved by contradiction by using a standard
continuation argument based on the fact that PλC = [Λ, σN ]. This proves (a).

Parts (b), (c) are immediate consequences of Theorems 4.1 and 3.3. Part (d)
is an easy consequence of the previous features using the continuation method
of the proof of Theorem 4.1.

Now, suppose s, t ∈ J satisfy (4.1). Then, exactly �[s, σi] points of {s} × Cs

are connected by �[s, σi] curves of Γ to (σi, 0). Therefore, by assumptions (1)
and (2), using a standard global continuation argument based on the implicit
function theorem, the remaining

Rs := CardCs − �[s, σi]

points are connected by Rs curves of Γ, separated away from J × {0}, to Rs

points of {t} × Ct. The remaining points of {t} × Ct,

Rt := CardCt −Rs,

must lie in Rt curves of Γ going back necessarily to (σi, 0), because of assumptions
(1) and (2). Moreover, no additional arcs of Γ can connect (σi, 0) to {t} × Ct.
Therefore,

Rt = �[t, σi] = CardCt − CardCs + �[s, σi],

which concludes the proof of (4.2). The fact that �[s, σi] + �[t, σi] is even follows
easily from part (b) and (4.2); it cannot vanish, since (σi, 0) ∈ C and C is
connected. Finally, if i = 1 (and, hence, N ≥ 2) then �[t, σ1] ≥ 1, since otherwise,
denoting Γ1 the set of γ ∈ Γ such that (σ1, 0) ∈ γ([aγ , bγ ]), then⋃

γ∈Γ1

γ([aγ , bγ ]),
⋃

γ∈Γ\Γ1

γ([aγ , bγ ])

would be two disjoint non-empty closed subsets with union C, thus contradicting
that C is connect. This concludes the proof. �
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Note that in the statement of Theorem 4.3 the quantities �[s, σi] and �[s, σi−1]
do not depend on s as soon as s ∈ (σi−1, σi). In the following discussion we
assume J = [Λ,∞).

In general, MC[C;J×U ] provides us with an optimal estimate of the number of
solutions of C. Indeed, under condition (3.3), the counter (3.4) provides us with
the exact number of solutions of the components shown in Figure 3.2(a) and (b).
Similarly, under condition (3.5), (3.6) gives the exact number of solutions of the
components represented in Figure 3.3(a), (b), though in Figure 3.2(c)–(e) and
Figure 3.3(c) one has that

CardCλ > MC[C;J×U ](λ), λ ∈ (σ1, σ2).

Subsequently, we will focus our attention in the case when (3.3) is satisfied. The
minimal number of solutions of CΛ in this case is 4. Suppose this is the case and
pick Λ ≤ s < σ1 < t < σ2. Then, thanks to (4.2),

(4.3) CardCt = CardCs + �[t, σ1] − �[s, σ1] = 4 + �[t, σ1] − �[s, σ1].

On the other hand, accordingly to Theorem 4.3(c),

CardCt ≥ MC[C;J×U ](t) = 2.

Suppose CardCt = 2. Then, it follows from (4.3) that �[s, σ1]− �[t, σ1] = 2, and,
therefore, �[s, σ1] ≥ 3, since �[t, σ1] ≥ 1. Consequently, if �[s, σ1] ≤ 2, then

CardCt ≥ 4 > MC[C;J×U ](t) = 2.

Actually, if �[s, σ1] = 2 (respectively, �[s, σ1] = 1), then the minimal admissible
value for �[t, σ1] is 2 (respectively, 1), and, in that case, CardCt = 4, whereas if
�[s, σ1] = 0, then the four arcs of curve starting at λ = Λ must end at (σ2, 0)
and, since (σ1, 0) must be connected with (σ2, 0) as well, and solutions arise by
pairs, the minimal admissible number of solutions of Ct must be 6. This is the
case already represented in Figure 3.2(e). More generally, one has the following
general consequence of Theorem 4.3.

Corollary 4.4. Suppose J = [Λ,∞). Under the general assumptions of
this section, assume that

Signature [C; J × U ] ∈
{(

σ1 . . . σN

−1 . . . −1

)
,

(
σ1 . . . σN

1 . . . 1

)}
for some N ≥ 2, and pick t ∈ (σ1, σ2). If CardCΛ = 2N , then C must adjust to
some of the following structural patterns:

(a) CardCt = 2(N − 1), �[Λ, σ1] ∈ {3, 4, . . . , 2N}, �[t, σ1] = �[Λ, σ1] − 2.
(b) CardCt = 2N , �[Λ, σ1] = �[t, σ1] ∈ {1, . . . , 2N}.
(c) CardCt = 2k with k ∈ N, k > N , �[Λ, σ1] ≤ 2N , �[t, σ1] = 2(k − N) +

�[Λ, σ1].
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Corollary 4.4 characterizes the admissible structural patterns of C in the in-
terval [Λ, σ1]. Among the several possibilities, the number of solutions of C may
decrease by 2 when we cross each of σi’s, as predicted by the minimal cardinal
function. In Figure 4.1 we have represented three different admissible compo-
nents in case N = 3, each of them satisfying one alternative of Corollary 4.4.

u

λΛ

u

λΛ

(a) (b)

u

λΛ

(c)

Figure 4.1. Some admissible components with N = 3 and Card CΛ = 6

5. The case when C consists of continuous arcs of curve

Instead of assumptions (1), (2) of Section 4, in this section we suppose the
following:

(A) There exists an open neighbourhood O of C \ (Σ × {0}) such that the
map

O → L(R × U ;U), (λ, u) → DF(λ, u)

is continuous.
(B) For each (λ, u) ∈ C ∩ [J × (U \ {0})], DF(λ, u) is surjective.

This section also assumes that J = [Λ,∞). The following result establishes that
C consists of a union of compact arcs of curve ending in ({Λ} × CΛ) ∪ B.

Theorem 5.1. Suppose assumptions (A), (B) are satisfied, and C is a bound-
ed component of S ∩ (J × U) with Λ �∈ PλB. Then, C can be expressed as

C =
⋃
γ∈Γ

γ([0, 1]),

where Γ is a set of continuous curves γ: [0, 1] → R×U such that γ((0, 1))∩B = ∅
and

{γ(0), γ(1)} ⊂ ({Λ} × CΛ) ∪ B.
Furthermore, γ([0, 1]) ∩ η([0, 1]) ⊂ B for γ, η ∈ Γ, γ �= η. Moreover, for each
λ ∈ J \ PλB, the set of γ ∈ Γ satisfying λ ∈ Pλ(γ([0, 1])) is finite.
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Proof. Pick (λ0, u0) ∈ C with u0 �= 0. As DuF(λ0, u0) is Fredholm of
index 0, then DF(λ0, u0) is Fredholm of index 1 and surjective, so

dimN [DF(λ0, u0)] = 1.

Pick up ω ∈ N [DF(λ0, u0)] \ {0}. Subsequently we denote by 〈 · , · 〉 the duality
between R × U and (R × U)′. Let ψ ∈ (R × U)′ be such that 〈ψ, ω〉 = 1, and
consider the operator G: R × U × R → R × U defined by

G(λ, u, t) := (〈ψ, (λ − λ0, u− u0)〉 − t,F(λ, u)).

By construction, G(λ0, u0, 0) = 0 and

(5.1) D(λ,u)G(λ0, u0, 0) =
(

ψ

DF(λ0, u0)

)
∈ L(R × U),

which is an isomorphism, since

N [D(λ,u)G(λ0, u0, 0)] = N [DF(λ0, u0)] ∩N [ψ] = {0}
and for any (a, b) ∈ R × U , there exists (x, y) ∈ R × U such that

DF(λ0, u0)(x, y) = b,

and the image of (x, y) + (a − 〈ψ, (x, y)〉)ω under (5.1) is (a, b). Consequently,
thanks to the implicit function theorem, there exists T > 0 and a continuous
map

[−T, T ]
(λ,u)−→ R × U, t → (λ(t), u(t))

such that (λ(0), u(0)) = (λ0, u0) and

G(λ(t), u(t), t) = 0, t ∈ [−T, T ].

Moreover, those are the unique zeros of G in a neighbourhood of (λ0, u0, 0).
The uniqueness of the implicit function theorem allows us to conclude that

there exists a maximal continuous curve γ: I → J × U , for some interval I ⊂ R,
such that γ(0) = (λ0, u0) and G(γ(t), t) = 0, t ∈ I, maximal with the property

γ(I) ∩ B = ∅.
A simple continuation argument shows that γ can be extended with continuity
to I, the closure of I in R ∪ {−∞,∞}, and

{γ(inf I), γ(sup I)} ⊂ ({Λ} × CΛ) ∪ B.
As C is compact and connect, then γ(I) ⊂ C. Reparametrizing, we can suppose
that this γ is defined on [0, 1]. This proves the existence of Γ with the properties
indicated by the statement of the theorem.

Now we prove the last part of the proof. Suppose there exist λ0 ∈ J \ PλB
and a sequence γn ∈ Γ, n ≥ 1, such that λ0 ∈ Pλ(γn([0, 1])) for each n ≥ 1.
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Then, for each n ≥ 1, there exists un ∈ U such that (λ0, un) ∈ γn([0, 1]). By
compactness, we can assume that

u∞ := lim
n→∞un.

Necessarily u∞ �= 0, since λ0 �∈ PλB and (λ0, u∞) ∈ C. The uniqueness of the
implicit function theorem applied to the function G concludes that γn is the
same curve for any n ≥ n0 and some n0 ∈ N. This concludes the proof. �

Strongly motivated by Theorems 4.3 and 5.1, we give the following definition.

Definition 5.2. Suppose assumptions (A), (B) are satisfied, Λ ∈ R, J =
[Λ,∞), C is a bounded component of S ∩ (J × U) with Λ �∈ PλB, (λ0, u0) ∈ C,
u0 �= 0, and DuF(λ0, u0) is not an isomorphism. Consider the set Γ of the
statement of Theorem 5.1 and take γ ∈ Γ such that γ(t0) = (λ0, u0) for some
t0 ∈ [0, 1]. Then, (λ0, u0) is said to be

(a) a subcritical turning point of C if Pλ(γ(t)) ≤ λ0 for t in some neighbour-
hood of t0 in [0, 1],

(b) a supercritical turning point of C if Pλγ(t) ≥ λ0 for t in some neigh-
bourhood of t0 in [0, 1],

(c) a hysteresis point of C in any other case.

In Figure 5.1 we illustrate each of the situations described by Definition 5.2.
Figure 5.1(a) shows a genuine subcritical turning point, Figure 5.1(b) shows a
supercritical turning point (actually, a segment filled in with this kind of points),
while Figure 5.1(c) shows a genuine hysteresis point.

(a) (b) (c)

Figure 5.1. Turning and hysteresis points

It should be noted that in Theorem 5.1 the component C might consist of a
single point in {Λ} × U , say (Λ, u0). If this is the case, necessarily DuF(Λ, u0)
fails to be invertible. Also, Theorem 5.1 does not entail the number of curves
conforming C to be finite, as their number might grow to infinity as λ approaches
some of the values of PλB. This is the situation illustrated by Figure 5.2(a),
where there is an infinity family of closed loops shrinking to the unique point
of B.
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u

λ

u

λ

(a) (b)

Figure 5.2. Two admissible semi-bounded components

Actually, CardCλ might be infinity for some λ ∈ J \ PλB, as illustrated by
Figure 5.2(b) where a curve exhibiting infinitely many turning points around
some of those λ’s can be shown. Therefore, under the general assumptions
of Theorem 5.1 there is not, in general, limitation for the number of curves
conforming C, or for CardCλ, though all results of Section 3 remain valid in this
context.

(a) (b)

Figure 5.3. Two equivalent components satisfying assumptions (A) and (B)

At this stage of our analysis it should be clear that, under assumptions (A),
(B), the integer number MC[C;J×U ](λ) equals the minimal number of solutions if
C \ B consists of strongly regular parameter values, though this is not the case,
in general, because of the eventual formation of turning and hysteresis points
when those components vary as a result of the variation of some additional
parameter in the problem setting. Actually, from a topological point of view,
the bounded components adjusted to the same signature (−1,−1, 1, 1) shown in
Figure 5.3 are admissible. In both cases, MC[C;J×U ](λ), λ ∈ J \PλB provides us
with a lower bound of the number of solutions of Cλ and of the number of arcs
passing through Cλ, estimations which are exact in case (a). Both components
are equivalent from the point of view of graph theory, which strongly suggests
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Figure 5.4. Unfolding of Figure 5.3(a)

the use of graph theory in order to classify all admissible components under
assumptions (A) and (B).

A quite suggestive feature relies into the fact that Figure 5.3(a) might be
unfolded, by adding some additional parameter, into a component of the type
shown in Figure 5.4, but this analysis is outside the scope of this work.
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[6] J. López-Gómez, Spectral Theory and Nonlinear Functional Analysis, Research Notes
in Mathematics, vol. 426, Chapman & Hall/CRC, Boca Raton, 2001.

[7] R. J. Magnus, A generalization of multiplicity and the problem of bifurcation, Proc.
London Math. Soc. 32 (1976), 251–278.

[8] J. Mawhin, Leray–Schauder degree: A half century of extensions and applications,
Topol. Methods Nonlinear Anal. 14 (1999), 195–228.

[9] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct.
Anal. 7 (1971), 487–513.

[10] , Some aspects of nonlinear eigenvalue problems, Rocky Mountain J. Math. 3
(1973), 161–202.

[11] G. T. Whyburn, Topological Analysis, Princeton University Press, Princeton, 1958.

Manuscript received August 25, 2003
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