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SOME PROPERTIES
OF INFINITE DIMENSIONAL DISCRETE OPERATORS

Narcisia C. Apreutesei — Vitaly A. Volpert

Abstract. The paper is devoted to infinite dimensional discrete operators

that can be considered as a difference analog of differential equations on the
whole axis. We obtain a necessary and sufficient condition in order for the

linear operator to be normally solvable. Topological degree for nonlinear

operators is constructed.

1. Introduction

In this work we consider linear

(1.1) (Lu)j = aj
−muj−m + . . .+ aj

0uj + . . .+ aj
muj+m, j ∈ Z

and semilinear discrete operators

(1.2) (Au)j = aj
−muj−m + . . .+ aj

0uj + . . .+ aj
muj+m + F (uj), j ∈ Z,

in the Banach space E of sequences {uj}j∈Z with the supremum norm. Here
m ≥ 0 is a given integer. These operators generalize the operators in the left-
hand side of the linear

(1.3) aj(uj+1 − 2uj + uj−1) + bj(uj+1 − uj−1) + cjuj = fj , j ∈ Z
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and semilinear

aj(uj+1 − 2uj + uj−1) + bj(uj+1 − uj−1) + F (uj) = 0, j ∈ Z

problems arising as discretization of second order ordinary differential equations
on the whole axis. Problems of this type are intensively studied in relation with
discrete travelling waves (see [4]) or with convergence of finite difference schemes
(see [1]). Properties of solutions of infinite algebraic systems are studied in [2],
[3], [6], [9] in some particular cases.

If we introduce an infinite matrixA and the vectors U = (. . . , u−1, u0, u1, . . . )
and f = (. . . , f−1, f0, f1, . . . ) we can write (1.3) in the matrix form AU = f .
Contrary to the finite dimensional case where the solvability condition for this
equation is given by the Fredholm alternative, the solvability condition in the in-
finite dimensional case to our knowledge is not known. This situation is to some
extent similar to the case of elliptic problems where we cannot directly apply the
results and the methods developed for the case of bounded domains to the case
of unbounded domains. The theory of elliptic operators in unbounded domains
is now well developed [11], [10]. We cannot use it directly to study discretized
operators. It appears however that many of the approaches developed for el-
liptic problems in unbounded domains can be adapted for infinite dimensional
algebraic systems. This concerns not only linear but also nonlinear problems.

In this work we prove normal solvability for a class of discrete operators. It
should be noted that the condition of normal solvability is not always fulfilled and
the operator may not satisfy the Fredholm property. We find conditions when
L is a Fredholm operator with the index zero and A is proper. The topological
degree for a class of nonlinear operators is constructed.

In Section 2 we define the spaces and the linear operators we study in this
work. Section 3 is devoted to the linear difference equations with constant coef-
ficients

a−muj−m + . . .+ a0uj + . . .+ amuj+m = 0, j ∈ Z.

Necessary and sufficient conditions are established in order for this equation to
have a bounded nonzero solution, and the form of the bounded solution is given
(Proposition 3.3). This is an auxiliary result which is important for the theory
we develop in the sequel. In Section 4 one proves that the linear operator given
by (1.1) is normally solvable with a finite dimensional kernel if and only if the
limiting equations

a±−muj−m + . . .+ a±0 uj + . . .+ a±muj+m = 0, j ∈ Z

do not have nonzero bounded solutions (Theorem 4.6). Here and everywhere
below in this work we suppose that the coefficients aj

l , −m ≤ l ≤ m, have limits
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a±l as j → ±∞. Under some additional conditions, L is a Fredholm operator
and its index is zero (Theorem 4.10).

Next section deals with the spectrum of L. We introduce the notion of NS-
spectrum as a set of points λ in the complex plane where the operator L− λI is
not normally solvable with a finite dimensional kernel. We give some examples
and show that the NS-spectrum of the discrete operator

(L̃u)j = aj(uj+1 − 2uj + uj−1) + bj(uj+1 − uj) + cjuj , j ∈ Z

approaches the NS-spectrum of the differential operator

Lu = au′′ + bu′ + cu.

The properties of the linear operator L are used to study the properness of
the semilinear operator A in (1.2) (Section 6). To this end, one supposes that F
is smooth enough and the equations

[a±−muj−m + . . .+ a±0 uj + . . .+ a±muj+m] + c±uj = 0, j ∈ Z

do not have nonzero bounded solutions. Here we denote

(1.4) c± = lim
j→±∞

F ′(uj), if uj → 0.

One works in a weighted space Eµ, where µj ≥ 1, j ∈ Z and µj →∞ as j → ±∞.
Then operator A is proper in Eµ. Moreover, the result is true also for semilinear
difference operators Aτ :Eµ → Eµ depending on parameter τ ∈ [0, 1],

(Aτu)j = aj
−m(τ)uj−m + . . .+ aj

0(τ)uj + . . .+ aj
m(τ)uj+m + F (uj , τ),

where aj
l (τ), −m ≤ l ≤ m and F are smooth enough (Theorem 6.3).

The last section is devoted to the topological degree for the class of operators
A given in (1.2) and a class of homotopies Aτ of the form (1.4). One uses
the topological degree constructed in [10] for Fredholm and proper operators in
a more general case.

2. Operators and spaces

Let E be the space of sequences u = {uj}, j ∈ Z of real numbers, with the
norm

||u|| = sup
j∈Z

|uj |.

Obviously, E is a real Banach space.
Let L:E → E be an operator defined as follows. For any u = {uj} ∈ E, Lu

is a sequence f = {fj}, j ∈ Z such that (Lu)j ≡ AjUj = fj , where Aj and Uj
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are the (2m+ 1)−vectors,

Uj = (uj−m, . . . , uj , . . . , uj+m), Aj = (aj
−m, . . . , a

j
0, . . . , a

j
m),

AjUj = aj
−muj−m + . . .+ aj

0uj + . . .+ aj
muj+m,(2.1)

the vectors Aj being given.

Example 2.1. The definition is motivated by applications to finite difference
approximations of differential equations on the whole axis. A typical example is

(Lu)j = aj(uj+1 − 2uj + uj−1) + bj(uj+1 − uj−1) + cjuj .

In this case, we have Aj = (aj − bj ,−2aj + cj , aj + bj), Uj = (uj−1, uj , uj+1).

Lemma 2.2. If
sup

j∈Z|l∈Z∩[−m,m]

|aj
l | ≤M,

for some constant M then the operator L is bounded.

The proof is obvious.

3. Equations with constant coefficients

In this section we present some auxiliary results that will be used below (see
also [5]). Suppose that the vectors Aj in (2.1) do not depend on j, hence

Aj = (a−m, . . . , a0, . . . , am) = A∗.

Consider the equation

(3.1) A∗Uj = 0, j ∈ Z.

We will find conditions on A∗ such that it has nonzero solutions.

Example 3.1. If
∑

j∈Z aj = 0, then there exists a constant solution uj = c,
(for all) j ∈ Z.

First we establish the number of linearly independent solutions of the equa-
tion (3.1).

Lemma 3.2. Let A∗ = (a0, . . . , ak), for a0, ak 6= 0, k ≥ 1, u = (. . . , u−1,

u0, u1, . . . ), and Uj = (uj−k, uj−k+1, . . . , uj−1, uj), j = 0,±1, . . . be (k + 1)-
component subvectors of the infinite vector u. Then the system of equations

A∗Uj ≡ a0uj−k + a1uj−k+1 + . . .+ ak−1uj−1 + akuj = 0, j = 0,±1, . . .

has k linearly independent solutions um = (. . . , um
−1, u

m
0 , u

m
1 , . . . ), m = 1, . . . , k.

Proof. Suppose that u−k, . . . , u−1 are given. Then from the equation
A∗U0 = 0 we find a uniquely defined u0. The equation A∗U1 = 0 allows us
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to find u1, from A∗U2 = 0 we find u2, and so on. Similarly we determine
u−k−1, u−k−2, . . .

Thus the dimension of the subspace of solutions is less or equal to k. On the
other hand, each vector

u−k = 1, u−k+1 = 0, . . . , u−1 = 0,

u−k = 0, u−k+1 = 1, . . . , u−1 = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

generates a solution. There are k of them, and they are linearly independent.
Therefore there are exactly k linearly independent solutions. The lemma is
proved. �

Now we are going to find some necessary and sufficient conditions in order
that equation (3.1) has a bounded nonzero solution.

Assuming that a0, ak 6= 0, we can rewrite (3.1) as

(3.2) a0uj + a1uj+1 + . . .+ akuj+k = 0, j ∈ Z

and look for the solution of this equation in the form uj = eµj , j ∈ Z. Then,

a0 + a1e
µ + . . .+ ake

µk = 0.

If we denote σ = eµ, this equation can be written as

(3.3) akσ
k + . . .+ a1σ + a0 = 0,

therefore there are k solutions (possibly multiple) of this equation, σ1, . . . , σk.
We note that if the values of µ differ by 2πn with an integer n, then they give
the same value of σ. To have a one to one correspondence we will assume that
µ ∈ [0, 2π).

If all solutions σ1, . . . , σk are different, then we have k linearly independent
solutions of the equation (3.2), u(l)

j = (σl)j , l = 1, . . . , k. From Lemma 3.2 it
follows that all solutions of the equation (3.2) have the form

uj = c1σ
j
1 + . . .+ ckσ

j
k, j ∈ Z.

Suppose now that not all solutions of (3.3) are different. Consider the func-
tion

G(σ) = akσ
k + . . .+ a1σ + a0.

If for example σ = σ1 is a double root, then G(σ1) = 0, G′(σ1) = 0. The last
equality gives

(3.4) akkσ
k−1
1 + ak−1(k − 1)σk−2

1 + . . .+ 2a2σ1 + a1 = 0.
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Put

(3.5) uj = jσj
1, j ∈ Z.

Substituting in (3.2), we have

a0jσ
j
1 + a1(j + 1)σj+1

1 + . . .+ ak(j + k)σj+k
1 = 0.

From this equality and G(σ1) = 0 we obtain a1 + . . .+ akkσ
k−1
1 = 0. By virtue

of (3.4), uj given by (3.5) is a solution. It is linearly independent with respect
to other solutions.

Hence in the case of multiple roots, if for example σ is a root of order q of
(3.3), then solutions are given by the formula

uj = P (j)σj , j ∈ Z,

where P (j) is a polynomial of degree q − 1. Thus we have proved the following
result (cf. [8]).

Proposition 3.3. Equation

A∗Uk = 0, k ∈ Z

has a bounded for all j nonzero solution uj, j ∈ Z if and only if equation (3.3)
has a root σ = eiξ, for some real ξ. The bounded nonzero solution has the form

uj = eiξj .

We note that if ξ is not in a rational relation with π, uj is not periodic but
quasi-periodic.

4. Normal solvability and Fredholm property

In this section we give a condition in order for the operator L to be nor-
mally solvable with a finite dimensional kernel. Next we prove that, under some
additional assumptions, L is a Fredholm operator and its index is zero.

We recall that a bounded linear operator L:E → E is normally solvable if its
image ImL is closed. A bounded linear operator L:E → E is called a Fredholm
operator if L is normally solvable, it has a finite dimensional kernel and the
codimension of its image is finite. The index κ(L) of the Fredholm operator L
is κ(L) = α(L)− β(L), where α(L) = dim(kerL) and β(L) = codim(ImL). The
index does not change under deformation in the class of Fredholm operators.

Consider linear difference operators of the form

(4.1) (Lu)j ≡ AjUj = aj
−muj−m + . . .+ aj

0uj + . . .+ aj
muj+m,

where Aj = (aj
−m, . . . , a

j
0, . . . , a

j
m) is given. Suppose that there exist limits

(4.2) lim
j→±∞

Aj = A±.
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Condition 4.1. Equations A±Uj = 0 for j ∈ Z do not have nonzero
bounded solutions.

Lemma 4.2. If Condition 4.1 is satisfied, then the image of the operator L
is closed.

Proof. Let {fn} be a sequence in ImL, fn → f0. We show that f0 ∈ ImL.
Consider a sequence {un}, such that Lun = fn.

Case 1. Suppose that {un} is bounded in E, ||un|| ≤ M , (for all) n ≥ 1.
We prove that it has a convergent subsequence. Observe that for every integer
N > 0, we can choose a subsequence unk

= {unk
j } and some u0 = {u0

j} for
−N ≤ j ≤ N , such that

sup
−N≤j≤N

|unk
j − u0

j | → 0.

Using a diagonalization process we can extend u0
j for all j ∈ Z. Obviously,

supj |u0
j | ≤M . Passing to the limit in AjU

nk
j = fnk

j , i.e. in

aj
−mu

nk
j−m + . . .+ aj

0u
nk
j + . . .+ aj

mu
nk
j+m = fnk

j , j ∈ Z,

one obtains

aj
−mu

0
j−m + . . .+ aj

0u
0
j + . . .+ aj

mu
0
j+m = f0

j , j ∈ Z.

Hence Lu0 = f0. We now prove that unk
→ u0 in E. To do this, denote

vk = unk
− u0 and observe vk → 0, as k → ∞, uniformly on each bounded

interval of j. We show this convergence is uniform with respect to all j ∈ Z.
Assume that it is not true. Then there is an unbounded subsequence jk such
that |vk

jk
| ≥ ε > 0. Without loss of generality we can suppose that jk → ∞.

Denote
wk

j = vk
j+jk

= uk
j+jk

− u0
j+jk

.

Then wk
j satisfies the difference equation

(4.3) aj+jk
−m wk

j−m + . . .+ aj+jk

0 wk
j + . . .+ aj+jk

m wk
j+m = fnk

j+jk
− f0

j+jk
, j ∈ Z

and the inequality

(4.4) |wk
0 | = |vk

jk
| ≥ ε.

As above, we can choose a subsequence {wkl
j } converging to some {w0

j} uniformly
on every bounded interval of j. Letting kl → ∞ in (4.3) and (4.4) one obtains
with the aid of (4.2),

a+
−mw

0
j−m + . . .+ a+

0 w
0
j + . . .+ a+

mw
0
j+m = 0, j ∈ Z, |w0

0| ≥ ε.

Thus the limiting equation A+Uj = 0, j ∈ Z has a nonzero bounded solution.
This contradiction proves the existence of a subsequence unk

→ u0 (in the supre-
mum norm), such that Lu0 = f0. Therefore ImL is closed.
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Case 2. Suppose {un} is unbounded in E. Writing un = vn + wn, where
vn ∈ kerL and wn belongs to the supplement of kerL, we get Lun = Lwn = fn.
If {wn} is bounded, we repeat the reasoning of Case 1, for {wn} instead of {un}
and find that ImL is closed. If {wn} is unbounded, we take

w̃n =
wn

‖wn‖
, f̃n =

fn

‖wn‖
.

Then Lw̃n = f̃n and f̃n → 0. Using Case 1 for w̃n, we can choose a convergent
subsequence {w̃nk

}, say w̃nk
→ w̃0. Passing to the limit in Lw̃nk

= f̃nk
, we

arrive at L w̃0 = 0, i.e. w̃0 ∈ kerL. This contradiction shows that this case is
not possible, and therefore ImL is closed. The lemma is proved. �

We now prove that Condition 4.1 implies that kerL is finite dimensional.

Lemma 4.3. If the operator L:E → E satisfies Condition 4.1 then the kernel
of L has a finite dimension.

Proof. It is sufficient to prove that if the sequence un = {un
j }, n = 1, 2, . . .

belongs to the unit ball B in kerL, then it has a converging sequence. Using the
same method as in the previous lemma for fn ≡ 0, we can choose a subsequence
unk

→ u0, for some u0, such that Lu0 = 0. As above we can show that the
convergence unk

j → u0
j is uniform with respect to all integers j. The lemma is

proved. �

Definition 4.4. Operator L:E → E is called proper if the inverse image
L−1(G) of any compact set G ⊂ E is compact in any bounded ball B.

It is known that an operator L is proper if and only if it is normally solvable
with a finite dimensional kernel.

Example 4.5. Let L be defined by (Lu)j = uj+1 − 2uj + uj−1. Condition
4.1 is not satisfied since uj ≡ const is a solution of the equation

uj+1 − 2uj + uj−1 = 0, j ∈ Z.

We can construct a sequence {un}, such that Lun = fn → 0 and {un} is not
compact. Indeed, we put un

j = sin(εnj), j ∈ Z where εn → 0 as n → ∞. This
means that L is not proper.

We are ready to establish one of the main results of the section.

Theorem 4.6. The operator L is proper if and only if Condition 4.1 is
satisfied.

Proof. The sufficiency follows from Lemmas 4.2 and 4.3.
To prove the necessity, suppose that Condition 4.1 is not satisfied, i.e. there

exists a nontrivial bounded solution u to one of the equations L±u = 0. Let it
be the first one.
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From Proposition 3.3 it follows that such a solution has the form u = {uj},
j ∈ Z, where for some ξ ∈ R

(4.5) uj = eiξj , j ∈ Z.

Let α = {αj}, βN = {βN
j }, γN = {γN

j } be a partition of unity (αj + βN
j +

γN
j = 1), such that

αj =

{
1 for j ≤ 0,

0 for j ≥ 1,

βN
j =

{
1 for 1 ≤ j ≤ N,

0 for j ≤ 0, j ≥ N + 1,

γN
j =

{
1 for j ≥ N + 1,

0 for j ≤ N,

respectively. Consider the sequences un = {un
j }, vn = {vn

j }, where un
j =

ei(ξ+εn)j , with εn → 0, as n → ∞ and vn
j = (1 − αj)(un

j − uj), j ∈ Z. Ob-
viously, un

j → uj (n→∞) uniformly on every bounded set of integers j.
In what follows we will denote by vw the component-wise product of se-

quences v and w such that (vw)j = vjwj .
Denoting fn = Lvn, we are going to prove that fn → 0. To this end, we

write fn = {fn
j } under the form

(4.6) fn
j =(αj + βN

j + γN
j )(L[(βN + γN )(un − u)])j

=αj(L[(βN + γN )(un − u)])j + βN
j (L

[
(βN + γN )(un − u)

]
)j

+ γN
j (L[βN (un − u)])j + γN

j ((L− L+)[γN (un − u)])j

+ γN
j (L+[γN (un − u)])j .

Denote by T1, . . . , T5 the terms in the right-hand side of (4.6). We estimate each
term and show that it goes to 0 as n→∞. Observe that T1 = 0, j ≤ −m, j ≥ 1,
where m is defined in (4.1),

T2 =

{
(L(un − u))j for 1 ≤ j ≤ N,

0 for j ≤ 0, j ≥ N + 1,

T3 =0, j ≤ N, j ≥ N +m+ 1,

T5 =

{
(L+(un − u))j for j ≥ N +m+ 1,

0 for j ≤ N.

Using the uniform convergence un
j → uj on every bounded interval of j, we get,

for N fixed, T1 → 0, T2 → 0, T3 → 0 as n → ∞, uniformly with respect to
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all integers j. By hypotheses (4.2) and the boundedness ||un|| = ‖u‖ = 1, one
deduces that

|T4| ≤ ]γN (L− L+)] · ‖γN (un − u)‖ → 0, N →∞.

Here ] · ] is the norm of the operator. We now estimate (L+(un−u))j for a fixed
N . Since u in (4.5) is a solution of the equation L+u = 0, we have

(L+(un − u))j =(L+un)j = (L+un)j − eiεnj(L+u)j

= ei(ξ+εn)j [a+
−me

−iξm(e−iεnm − 1) + . . .+ a+
−1e

−iξ(e−iεn − 1)

+ a+
1 e

iξ(eiεn − 1) + . . .+ a+
me

iξm(eiεnm − 1)].

Therefore

(L+(un − u))j = iεne
i(ξ+εn)j [a+

−m(−m)e−iξmeic−m + . . .− a+
−1e

−iξeic−1

+ a+
1 e

iξ.eic1 + . . .+ a+
mme

iξmeicm ], j ∈ Z,

where c−m, . . . c−1, c1, . . . , cm are intermediate points. Since εn → 0, then

(L+(un − u))j → 0, as n→∞,

uniformly with respect to all j ∈ Z. Hence T5 → 0 as n → ∞. From the
estimates for T1, . . . , T5 one deduces that fn

j → 0, uniformly with respect to all
j ∈ Z. Indeed, for any given positive ε we first choose N sufficiently large to
get an estimate for T4 (independent of n), and then for the fixed N we choose n
sufficiently large to estimate other terms in such a way that |fn

j | ≤ ε for all j.
Since L is proper and fn → 0, it follows that {vn} → 0. On the other hand,

‖vn‖ = sup
j>0

|ei(ξ+εn)j − eiξj | ≥ σ > 0

for some σ. The contradiction proves the theorem. �

Condition 4.7. Equations L±uj − λuj = 0 for j ∈ Z do not have nonzero
bounded solutions for any λ ≥ 0.

We begin with some auxiliary results.

Lemma 4.8. Consider the linear difference operators (L0u)j = AjUj − ρuj¡
(L1u)j = uj+1 − (2 + ρ)uj + uj−1 and the homotopy Lτ = (1 − τ)L0 + τL1,
τ ∈ [0, 1]. Then there exists ρ ≥ 0 such that the equations

(4.7) L±τ u = 0

do not have nonzero bounded solutions for any τ ∈ [0, 1].

Proof. Suppose that at least one of the equations (4.7) admits nonzero
bounded solutions. By Proposition 3.3 such a solution has the form uk =
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exp(iξk), k ∈ Z, for some ξ ∈ R. Writing L0 under the form

(L0u)k = ak
−muk−m + . . .+ ak

0uk + . . .+ ak
muk+m − ρuk, k ∈ Z,

equation (4.7) becomes

(1− τ)a±−muk−m + . . .+ (1− τ)a±−2uk−2 + [(1− τ)a±−1 + τ ]uk−1

+ [(1− τ)(a±0 − ρ)− τ(2 + ρ)]uk + [(1− τ)a±1 + τ ]uk+1

+ (1− τ)a±2 uk+2 + . . .+ (1− τ)a±muk+m = 0,

for k ∈ Z. Since uk = exp(iξk), k ∈ Z is a solution of this equation, it follows
that

(1− τ)a±−me
−imξ + . . .+ (1− τ)a±−2e

−i2ξ + [(1− τ)a±−1 + τ ]e−iξ

+ [(1− τ)a±0 − 2τ − ρ] + [(1− τ)a±1 + τ ]eiξ

+ (1− τ)a±2 e
i2ξ + . . .+ (1− τ)a±me

imξ = 0.

Taking the real part of the last equality, we obtain

(1−τ)a±−m cosmξ+. . .+(1−τ)a±−2 cos 2ξ+[(1−τ)a±−1+τ ] cos ξ+(1−τ)a±0 −2τ

+ [(1− τ)a±1 + τ ] cos ξ + (1− τ)a±2 cos 2ξ + . . .+ (1− τ)a±m cosmξ = ρ.

Since the coefficients a±j are bounded, this equality does not hold for ρ sufficiently
large. This contradiction proves the lemma. �

Lemma 4.9. If (L1u)j = uj+1 − (2 + ρ)uj + uj−1, then for sufficiently large
ρ, we have ImL1 = E.

Proof. The operator B given by

(Bu)j = (1/ρ)(uj+1 − 2uj + uj−1), j ∈ Z,

has a small norm, for each ρ > 0 large enough. Therefore the operator T = B−I
is invertible. The lemma is proved. �

Theorem 4.10. If the operator (Lu)j = AjUj verifies Condition 4.7, then
L is a Fredholm operator with the zero index.

Proof. Denote by α(L) and β(L) the dimension of kerL and the codimen-
sion of ImL, respectively. Condition 4.7 for L implies that Condition 4.1 for
L − λI is satisfied for any λ ≥ 0. Therefore, by Lemmas 4.2 and 4.3, it follows
that ker(L − λI) is finite dimensional and Im (L − λI) is closed. In order to
obtain the Fredholm property for L − λI, it is enough to prove that β(L − λI)
is finite for all λ ≥ 0.

To do this, we put L0 = L − λI, (L1u)j = uj+1 − 2uj + uj−1 − λuj and
Lτ = (1 − τ)L0 + τL1, τ ∈ [0, 1]. By Lemma 4.8, Lτ verifies Condition 4.1 for
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sufficiently large λ ≥ 0 and consequently Lτ is normally solvable with a finite
dimensional kernel.

Thus we have a continuous deformation of the operator L to the invertible
operator L1 in the class of normally solvable operators with finite dimensional
kernels. Therefore the index of L equals zero. The theorem is proved. �

5. NS-spectrum

By essential spectrum of a linear operator L we understand the set σess of all
values λ such that the operator L − λI is not Fredholm. Here I is the identity
operator. We introduce also the notion of NS-spectrum σNS as the set of λ for
which the operator L − λI is not normally solvable with a finite dimensional
kernel. It is clear that σNS ⊂ σess.

From the results of the previous section, it follows that the NS-spectrum of
the operator L given by (4.1) is the set of all λ with the property that one of the
equations

a±−muj−m + . . .+ a±0 uj + . . .+ a±muj+m = λuj , j ∈ Z

has nonzero bounded solutions. If uj = eiξj , j ∈ Z (ξ ∈ R) is a solution (see
Proposition 3.3), then

λ = a±−me
−iξm + . . .+ a±0 + . . .+ a±me

iξm, ξ ∈ R,

that is

λ = a±−m cos ξm+ a±−m+1 cos ξ(−m+ 1) + . . .+ a±m cos ξm

+ i(a±−m sin(−ξm) + a±−m+1 sin ξ(−m+ 1) + . . .+ a±m sin ξm).

Now we apply this result to some particular difference operators, arising as
discrete variants of some differential operators.

Example 5.1. Consider the linear difference operator

(Lu)j = aj(uj+1 − 2uj + uj−1) + bj(uj+1 − uj) + cjuj , j ∈ Z.

The NS-spectrum is given by

a±(uj+1 − 2uj + uj−1) + b±(uj+1 − uj) + c±uj = λuj .

Then

λ = a±(eiξ − 2 + e−iξ) + b±(eiξ − 1) + c±,

or

(5.1) λ = (2a± + b±) cos ξ + ib± sin ξ − 2a± − b± + c±.
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Consider λ as a function of ξ. Let us take the case a+, b+, c+. Put

a+ =
a

h2
, b+ =

b

h
, c+ = c.

Then λ in (5.1) becomes

λ = (2
a

h2
+
b

h
) cos ξ + i

b

h
sin ξ − 2

a

h2
− b

h
+ c.

Let λ = µ+ iν. Then

µ =
(

2
a

h2
+
b

h

)
cos ξ − 2

a

h2
− b

h
+ c, ν =

b

h
sin ξ.

This implies that

ν =
b

h

√
− (c− µ)2

(2a/h2 + b/h)2
+

2(c− µ)
2a/h2 + b/h

.

Passing to the limit as h→ 0, one obtains

ν = b

√
c− µ

a
.

From this we deduce µ = c− aν2/b2, therefore

λ = µ+ iν = c− a
ν2

b2
+ iν, ν ∈ R.

Since ν takes all real values, we can replace it by bξ. Hence

λ = −aξ2 + ibξ + c, ξ ∈ R.

This is the NS-spectrum of the differential operator Lu = au′′+bu′+cu. Thus the
spectrum of the difference operator converges to the spectrum of the differential
operator.

Example 5.2. We put

(Lu)j = aj(uj+1 − 2uj + uj−1) + bj(uj+1 − uj−1) + cjuj , j ∈ Z.

In this case, the NS-spectrum of L is given by

λ = a±(eiξ − 2 + e−iξ) + b±(eiξ − e−iξ) + c±

= 2a± cos ξ + 2ib± sin ξ − 2a± + c±.

We note that since the operator is bounded, its spectrum lies in a circle of
radius ||L||. Outside of it, the operator L− λI is invertible.

If λ = 0 is not inside the domain bounded by the NS-spectrum, then the
index of L equals zero. To show this, we construct a homotopy to invertible
operators.
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6. Properness of semilinear difference operators

In this section, we consider semilinear difference operators A:E → E, of the
form (Au)j = AjUj + F (uj), j ∈ Z, that is

(6.1) (Au)j = aj
−muj−m + . . .+ aj

0uj + . . .+ aj
muj+m + F (uj),

where the coefficients aj
l , −m ≤ l ≤ m, have limits

(6.2) lim
j→±∞

aj
l = a±l , −m ≤ l ≤ m,

the function F is continuous, and its derivative satisfies the Lipschitz condition.
It is easy to verify that the operator A is bounded and continuous.

In this section we study its properness. Recall that an operator A:E → E is
proper if the intersection of an inverse image A−1(D) of a compact set D with
any bounded closed set is compact in E.

Example 6.1. Let u = {uj} be a symmetric sequence (uj = u−j , for all
j ∈ Z), such that uj → 0 as j → ±∞. We put F (uj) = −(uj+1 − 2uj + uj−1).
Then u is a solution of the equation

uj+1 − 2uj + uj−1 + F (uj) = 0.

For any integer k, the sequence v(k) = {v(k)
j }, where v(k)

j = uj+k, is also a
solution of this equation. Hence an inverse image of 0 for the operator

(Au)j = uj+1 − 2uj + uj−1 + F (uj)

is not compact.

This example shows that discrete operators similar to differential operators
in unbounded domains may be not proper. To obtain properness, we introduce
weighted spaces.

Denote Eµ the space of the sequences u = {uj} with the norm

‖u‖µ = sup
j
|µjuj |,

where µj ≥ 1, j ∈ Z and µj →∞, as j → ±∞. Denote

νj+l =
µj − µj+l

µj+l
, −m ≤ l ≤ m

and assume that, for −m ≤ l ≤ m,

(6.3) νj+l → 0, as j → ±∞.

As an example we can take µj = 1 + j2. Then νj+l = (−2jl − l2)/[1 + (j + l)2]
and the condition above is satisfied.
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To study the topological degree in the next section, we need the properness
of the operator A in the case where the coefficients aj

l (−m ≤ l ≤ m) and the
function F depend also on a parameter τ ∈ [0, 1].

In what follows we consider semilinear τ -dependent operators Aτ :Eµ → Eµ,
τ ∈ [0, 1],

(Aτu)j = aj
−m(τ)uj−m + . . .+ aj

0(τ)uj + . . .+ aj
m(τ)uj+m + F (uj , τ),

satisfying the following conditions:

(H1) The function F (u, τ) is continuous together with its first derivative with
respect to u, and F (0, τ) = 0 for all τ ,

(H2) There exists limiting functions a±l (τ) (−m ≤ l ≤ m) and c±(τ) such
that, for all τ ∈ [0, 1],

lim
j→±∞

aj
l (τ) = a±l (τ), −m ≤ l ≤ m,

lim
j→±∞

F ′u(uj , τ) = c±(τ), if uj → 0,

(H3) For every τ, τ0 ∈ [0, 1], we have

‖al(τ)− al(τ0)‖ ≤ c|τ − τ0|, ‖F (u, τ)− F (u, τ0)‖µ ≤ k|τ − τ0|,

for all u from a bounded set in E and some c and k.

Denote E′ = Eµ × [0, 1]. Assume that the following hypothesis holds:

Condition 6.2. For each τ ∈ [0, 1] the system

a±−m(τ)uj−m + . . .+ a±−1(τ)uj−1 + [a±0 (τ) + c±(τ)]uj

+ a±1 (τ)uj+1 + . . .+ a±m(τ)uj+m = 0,

for j = 0,±1,±2, . . . , does not have nonzero bounded solutions.

We can state now the main result of this section.

Theorem 6.3. If (6.3), (H1)–(H3) and Condition 6.2 hold, then the opera-
tor Aτ (u) is proper with respect to both u and τ (in E′).

Proof. Let B be a ball of radius M in E, f (n) ∈ Eµ a converging sequence,
f (n) → f (0) in Eµ. Suppose that (u(n), τn) satisfies

(6.4) Aτn
(u(n)) = f (n), ‖u(n)‖µ ≤M, n = 1, 2, . . .

Without loss of generality, we may assume τn → τ0 as n → ∞. We show
that there exists a converging subsequence of the sequence u(n).

In order to do this, we write equation (6.4) in the form

(6.5) aj
−m(τn)u(n)

j−m + . . .+ aj
0(τn)u(n)

j + . . .+ aj
m(τn)u(n)

j+m +F (u(n)
j , τn) = f

(n)
j
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and multiply it by µj . Denoting v(n)
j = µju

(n)
j and g

(n)
j = µjf

(n)
j and using the

equality

µju
(n)
j+l = µj+lu

(n)
j+l + (µj − µj+l)u

(n)
j+l = v

(n)
j+l + νj+lv

(n)
j+l,

for −m ≤ l ≤ m, we obtain from equation (6.5)

(6.6) (1 + νj−m)aj
−m(τn)v(n)

j−m + . . .+ (1 + νj)a
j
0(τn)v(n)

j + . . .

+ (1 + νj+m)aj
m(τn)v(n)

j+m + µjF (u(n)
j , τn) = g

(n)
j .

We note that the sequence v(n) = {v(n)
j }, v(n)

j = µju
(n)
j is uniformly bounded

in E. Hence, for any interval [−N,N ] of j, we can choose a subsequence (denoted
also v(n)) converging to some limiting element v(0) = {v(0)

j } uniformly in j ∈
[−N,N ]. Using a diagonalization process, we can extend it for all j ∈ Z. Let
u(0) be the limit of the corresponding subsequence of u(n). It is easy to verify
that ‖v(0)‖ ≤ M . Since F and aj

l satisfy the hypothesis (H3), passing to the
limit as n→∞ in (6.5), we find

aj
−m(τ0)u

(0)
j−m + . . .+ aj

0(τ0)u
(0)
j + . . .+ aj

m(τ0)u
(0)
j+m + F (u(0)

j , τ0) = f
(0)
j ,

i.e. Aτ0(u
(0)) = f (0). We have used the convergence

F (u(n)
j , τn)− F (u(0)

j , τ0)

= [F (u(n)
j , τn)− F (u(n)

j , τ0)] + [F (u(n)
j , τ0)− F (u(0)

j , τ0)] → 0, n→∞,

by virtue of (H3) and the continuity of F with respect to the first variable.
On the other hand, letting n → ∞ in (6.6) and using (H3) again, together

with the uniform boundedness of v(n)
j , one obtains

(6.7) (1 + νj−m)aj
−m(τ0)v

(0)
j−m + . . .+ (1 + νj)a

j
0(τ0)v

(0)
j + . . .

+ (1 + νj+m)aj
m(τ0)v

(0)
j+m + µjF (u(0)

j , τ0) = g
(0)
j ,

where g(0)
j = µjf

(0)
j . Subtracting (6.6) and (6.7), we get

(1 + νj−m)[aj
−m(τn)v(n)

j−m − aj
−m(τ0)v

(0)
j−m] + . . .(6.8)

+ (1 + νj)[a
j
0(τn)v(n)

j − aj
0(τ0)v

(0)
j ] + . . .

+ (1 + νj+m)[aj
m(τn)v(n)

j+m − aj
m(τ0)v

(0)
j+m]

+ µj [F (u(n)
j , τn)− F (u(0)

j , τ0)] = g
(n)
j − g

(0)
j .

Denote w(n) = v(n) − v(0) and observe that for each l ∈ Z, −m ≤ l ≤ m,

aj
l (τn)v(n)

j+l − aj
l (τ0)v

(0)
j+l = aj

l (τn)w(n)
j+l + [aj

l (τn)− aj
l (τ0)]v

(0)
j+l.
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Then (6.8) becomes

(6.9) (1 + νj−m)aj
−m(τn)w(n)

j−m + . . .+ (1 + νj)a
j
0(τn)w(n)

j + . . .

+ (1 + νj+m)aj
m(τn)w(n)

j+m

+ µj [F (u(n)
j , τn)− F (u(0)

j , τ0)]

+ (1 + νj−m)[aj
−m(τn)− aj

−m(τ0)]v
(0)
j−m + . . .

+ (1 + νj)[a
j
0(τn)− aj

0(τ0)]v
(0)
j + . . .

+ (1 + νj+m)[aj
m(τn)− aj

m(τ0)]v
(0)
j+m = g

(n)
j − g

(0)
j .

Recall that w(n)
j → 0 as n → ∞ uniformly on each bounded interval of j.

Suppose that this convergence is not uniform for all j ∈ Z. Then, without loss
of generality, we may assume that there exists a sequence jn → ∞ such that
|w(n)

jn
| ≥ ε > 0. Denote

(6.10) w̃
(n)
j = w

(n)
j+jn

= µj+jn(u(n)
j+jn

− u
(0)
j+jn

).

Then,

(6.11) |w̃(n)
0 | = |w(n)

jn
| ≥ ε > 0

and from (6.9) we get

(6.12) (1 + νj+jn−m)aj+jn

−m (τn)w̃(n)
j−m + . . .+ (1 + νj+jn

)aj+jn

0 (τn)w̃(n)
j + . . .

+ (1 + νj+jn+m)aj+jn
m (τn)w̃(n)

j+m + µj+jn
[F (u(n)

j+jn
, τn)− F (u(0)

j+jn
, τ0)]

+ (1 + νj+jn−m)[aj+jn

−m (τn)− aj+jn

−m (τ0)]v
(0)
j+jn−m + . . .

+ (1 + νj+jn)[aj+jn

0 (τn)− aj+jn

0 (τ0)]v
(0)
j+jn

+ . . .

+ (1 + νj+jn+m)[aj+jn
m (τn)− aj+jn

m (τ0)]v
(0)
j+jn+m = g

(n)
j+jn

− g
(0)
j+jn

.

We intend to take the limit as n → ∞ in (6.12). To this end, first observe
that (H3) and the boundedness ‖v(0)‖ ≤M imply

(6.13) [aj+jn

l (τn)− aj+jn

l (τ0)]v
(0)
j+jn+l → 0,

for −m ≤ l ≤ m. By (H2), we also have

(6.14) aj+jn

l (τn) = [aj+jn

l (τn)− aj+jn

l (τ0)] + aj+jn

l (τ0) → a+
l (τ0),

for every integer l, with −m ≤ l ≤ m. Next, we write

(6.15) µj+jn
[F (u(n)

j+jn
, τn)− F (u(0)

j+jn
, τ0)]

= µj+jn
[F (u(n)

j+jn
, τn)− F (u(n)

j+jn
, τ0)] + µj+jn

[F (u(n)
j+jn

, τ0)− F (u(0)
j+jn

, τ0)]

and denote by Tn
1 , T

n
2 the two terms in the right-hand side of (6.15). Hypothesis

(H3) for F leads us to the convergence Tn
1 → 0 as n→∞.
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Using (6.10), we get

Tn
2 = w̃

(n)
j ·

F (u(n)
j+jn

, τ0)− F (u(0)
j+jn

, τ0)

u
(n)
j+jn

− u
(0)
j+jn

= w̃
(n)
j F ′u(tu(n)

j+jn
+ (1− t)u(0)

j+jn
, τ0),

for some t ∈ [0, 1]. By (6.4) we have

|u(n)
j+jn

| ≤ M

µj+jn

, |u(0)
j+jn

| ≤ M

µj+jn

,

hence
tu

(n)
j+jn

+ (1− t)u(0)
j+jn

→ 0, as n→∞,

uniformly in j on every bounded interval. The equality (6.10) shows that

(6.16) w̃
(n)
j → w̃

(0)
j ,

for some w̃(0) ∈ E, also uniformly in j on bounded intervals. Thus, using (H2)
one obtains

Tn
2 → c+(τ0)w̃

(0)
j .

Introducing this, together with Tn
1 → 0 in (6.15), we find

(6.17) µj+jn [F (u(n)
j+jn

, τn)− F (u(0)
j+jn

, τ0)] → c+(τ0)w̃
(0)
j .

Now we may pass to the limit in (6.12). Taking into account (6.3), (6.13),
(6.14), (6.16), (6.17), and the convergence g(n)

j+jn
− g

(0)
j+jn

→ 0, we get

a+
−m(τ0)w̃

(0)
j−m + . . .+ a+

0 (τ0)w̃
(0)
j + . . .+ a+

m(τ0)w̃
(0)
j+m + c+(τ0)w̃

(0)
j = 0.

From (6.11) it is obvious that w̃(0) 6= 0. Thus Condition 6.2 is not satisfied. This
contradiction shows that the convergence w(n)

j → 0 as n → ∞ is uniform with
respect to all j ∈ Z and thus the theorem is completely proved. �

We note that the sequences from Eµ converge to 0 as j → ±∞. If we want to
have different limits for j →∞ and j → −∞ in the definition of c±(τ) (see (H2)),
we can consider operators of the form

(Au)j = AjUj +AjΨj + F (ψj + uj),

where Ψj = (ψj−m, . . . , ψj , . . . , ψj+m) and ψj → u± as j → ±∞. In this case,
in Condition 6.2 we take c±(τ) = F ′u(u±, τ).

Finally, taking τ = const, we obtain the properness of A:E → E given
by (6.1). In this case, Condition 6.2 becomes:

Condition 6.2’. The equation

a±−muj−m + . . .+ a±−1uj−1 + (a±0 + c±)uj + a±1 uj+1 + . . .+ a±muj+m = 0,

where c± = F ′(0), does not have nonzero bounded solutions.
Then we have the following consequence of Theorem 6.3.
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Corollary 6.4. Suppose that F is bounded and continuous on every boun-
ded interval together with its first derivative. If (6.2), (6.3) and Condition 6.2’
are satisfied, then the operator A given by (6.1) is proper.

7. Topological degree

We are going to prove that a topological degree can be constructed for the
class of the difference operators Aτ :E → E, τ ∈ [0, 1] which have two Fréchet
derivatives with respect to u and τ , Aτ satisfying Condition 7.1 below for every
τ ∈ [0, 1].

We begin with the definition of the topological degree (see e.g. [7]).
Consider E1, E2 two Banach spaces, a class Φ of operators acting from E1

to E2 and a class of homotopies

H = {Aτ (u):E1 → E2, τ ∈ [0, 1], u ∈ E1

such that Aτ (u) ∈ Φ for all τ ∈ [0, 1]}.

Let D ⊂ E1 be an open bounded set and A ∈ Φ such that A(u) 6= 0, u ∈ ∂D,
where ∂D is the boundary of D. Suppose that for such a pair (D,A), there exists
an integer γ(A,D) with the following properties:

(i) (Homotopy invariance) If Aτ (u) ∈ H and Aτ (u) 6= 0, for u ∈ ∂D,
τ ∈ [0, 1], then γ(A0, D) = γ(A1, D).

(ii) (Additivity) If A ∈ Φ and A(u) 6= 0, u ∈ D \ (D1∪D2), where D1, D2 ⊂
D are open sets, D1 ∩D2 = Φ, then

γ(A,D) = γ(A,D1) + γ(A,D2).

(Here D denotes the closure of D.)
(iii) (Normalization) There exists a bounded linear operator J :E1 → E2

with a bounded inverse defined on all E2 such that γ(J,D) = 1 for
every bounded set D ⊂ E1 with 0 ∈ D.

The integer γ(A,D) is called topological degree. In [11], [10] a topological
degree is constructed for the class F of operators and the class H of homotopies
given below.

Let E0 and E1 be Banach spaces, E0 ⊆ E1 algebraically and topologically
and G ⊂ E0 be an open bounded set. Consider a class Φ of bounded linear
operators A:E0 → E1 satisfying:

(a) The operator A + λI:E0 → E1, where I is the identity operator, is
Fredholm for all λ ≥ 0,

(b) There is λ0 = λ0(A) such that each operator A + λI has a uniformly
bounded inverse for all λ > λ0.
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Denote by F the class

F = {f∈C1(G,E1), f proper, f ′(x) ∈ Φ, for all x ∈ G},

where f ′(x) is the Fréchet derivative of the operator f.
Finally, one introduces the class H of homotopies given by

(7.1) H = {f(x, τ) ∈ C1(G× [0, 1], E1) :

f proper, f( · , τ) ∈ F , for all τ ∈ [0, 1]}.

Here the properness of f is understood in both variables x ∈ G and τ ∈ [0, 1].
In [10] the authors prove that for every f ∈ F and every open set D, with

D ⊂ G, there is a topological degree γ(f,D).
Now let E0 = E1 = E2 = Eµ be the weighted space of sequences defined in

Section 6. We apply this result for difference operators of the form

(7.2) (Au)j = AjUj +F (uj) = aj
−muj−m + . . .+ aj

0uj + . . .+ aj
muj+m +F (uj),

such that

(7.3) lim
j→±∞

aj
l = a±l , −m ≤ l ≤ m.

To this end, assume that the following condition takes place.

Condition 7.1. The equation

A±Uj + c±uj − λuj = 0

(where c± = limj→±∞ F ′(uj), if uj → 0) do not have nonzero bounded solutions,
for all λ ≥ 0.

Let F̃ be the class of operators A defined in (7.2), where F has two derivatives
and such that (6.3), (7.3) and Condition 7.1 are satisfied.

Corollary 6.4 and Theorem 4.10 assure that A is proper and the Fréchet
derivative A′ of A is a Fredholm operator.

Now we take the τ -dependent operators Aτ (u):Eµ → Eµ, τ ∈ [0, 1],

(7.4) (Aτu)j = aj
−m(τ)uj−m + . . .+ aj

0(τ)uj + . . .+ aj
m(τ)uj+m + F (uj , τ)

satisfying hypotheses (6.3), (H1)–(H3) and

Condition 7.2. For every τ ∈ [0, 1], the equations

A±(τ)Uj + c±(τ)uj − λuj = 0

do not have nonzero bounded solutions, for all λ ≥ 0, where

c±(τ) = lim
j→±∞

F ′u(uj , τ) if uj → 0.
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Let H̃ be the class of all operators Aτ :Eµ → Eµ of the form (7.4) satisfying
the above assumptions, such that F has two derivatives with respect to u and τ.

Using Theorems 6.3 and 4.10 for each τ ∈ [0, 1], we deduce that H̃ has the
form (7.1).

Now we may apply the above result to conclude that the topological degree
can be constructed for difference operators of the form (7.2). More precisely, we
have

Theorem 7.3. Suppose that the function F has two derivatives with respect
to u and τ , Condition 7.2, hypotheses (H1)–(H3) and (6.3) hold. Then the topo-
logical degree exists for the class F̃ of operators and the class H̃ of homotopies.

We will finish this section with one example of application of the topological
degree to prove existence of solutions. Consider the system

(7.5) ui+1 − 2ui + ui−1 + F (ui) = 0, i = 0,±1,±2, . . . ,

where F = −au with a > 0. Put

(7.6) Fi(u, τ) = (1− τ)F (ui) + τFi(ui),

where Fi are sufficiently smooth functions, and Fi(ui) = F (ui) for |i| ≥ N with
some positive N . Consider equation (7.5) with the function Fi(u, τ) instead of
F (ui). This means that we change our problem on a finite interval of i. Then
for τ = 0 we have problem (7.5), and for τ = 1 the problem

(7.7) ui+1 − 2ui + ui−1 + Fi(ui) = 0, i = 0,±1,±2, . . .

This homotopy satisfies conditions of Sections 6 and 7, and the topological degree
can be defined for it.

For τ = 0, ui = 0 is a solution of this problem. Moreover this solution is
unique. Indeed, suppose that there exists another bounded solution. It can be
easily verified that it cannot have a positive maximum or a negative minimum.
Therefore there exist limits of the sequence ui as i→ ±∞. If these limits equal
zero, then the solution is identically zero. Otherwise, the sequence ui converges
to some nonzero value either at ∞ or at −∞. Substituting this value into (7.5)
we obtain a contradiction.

Problem (7.5) linearized around ui = 0 has all spectrum in the left-half plane.
Therefore the index of the solution ui = 0, that is (−1)ν where ν is the number
of positive eigenvalues, equals 1.

Suppose in addition that for some positive r,

(7.8) Fi(u) < 0, u ≥ r, Fi(u) > 0, u ≤ −r, i = 0,±1,±2, . . .
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Let us verify that there exist a priori estimates of solutions for homotopy (7.6) in
the weighted space. First of all, we note that |ui| ≤ r for all i. Next, for |j| ≥ N ,
uj = exp(µj), where µ = lnσ, and σ is one of two solutions of the equation

σ2 − (2 + a)σ + 1 = 0.

Since a > 0, then one of the solutions of this equation is greater than 1, and
another one is less than 1. Therefore

|uj | ≤ reµ1(j−N), j ≥ N, |uj | ≤ reµ2(j+N), j ≤ −N,

where µ1 < 0, µ2 > 0. This estimate gives a priori estimates of solutions in the
weighted space.

Thus, applying the Leray–Schauder method we conclude that problem (7.7)
has a solution satisfying the estimate |ui| ≤ r for all i. This estimate does not
depend on N . Consider a sequence Nk → ∞. We have a solution uk for each
Nk. From the sequence of solutions uk we can choose a subsequence converging
to some limiting solution u0 on every bounded interval of i. It is easy to see that
u0 is a solution of the limiting problem. We have proved the following theorem.

Theorem 7.4. Suppose that the functions Fi(ui) are sufficiently smooth and
satisfy condition (7.8). Then problem (7.7) has a solution satisfying the estimate
|ui| ≤ r, i = 0,±1,±2, . . .
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