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Cm-SMOOTHNESS OF INVARIANT FIBER BUNDLES

Christian Pötzsche — Stefan Siegmund

Abstract. The method of invariant manifolds, now called the Hadamard–

Perron Theorem, was originally developed by Lyapunov, Hadamard and
Perron for time-independent maps and differential equations at a hyper-

bolic fixed point. It was then extended from hyperbolic to non-hyperbolic

systems, from time-independent and finite-dimensional to time-dependent
and infinite-dimensional equations. The generalization of an invariant man-

ifold for a discrete dynamical system (mapping) to a time-variant difference

equation is called an invariant fiber bundle. While in the hyperbolic case
the smoothness of the invariant fiber bundles is easily obtained with the

contraction principle, in the non-hyperbolic situation the smoothness de-

pends on a spectral gap condition, is subtle to prove and proofs were given
under various assumptions by basically three different approaches, so far:

(1) A lemma of Henry, (2) the fiber-contraction theorem, or (3) fixed point
theorems for scales of embedded Banach spaces.

In this paper we present a new self-contained and basic proof of the

smoothness of invariant fiber bundles which relies only on Banach’s fixed
point theorem. Our result extends previous versions of the Hadamard–

Perron Theorem and generalizes it to the time-dependent, not necessarily

hyperbolic, infinite-dimensional, non-invertible and parameter-dependent
case. Moreover, we show by an example that our gap-condition is sharp.
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1. Introduction

One of the basic tasks of the theory of dynamical systems is to study the
qualitative, asymptotic and long-term behavior of solutions or orbits. A main
tool turned out to be invariant manifold theory providing a dynamical skele-
ton of orbits converging with a certain exponential rate to a given rest point
or reference orbit. In this paper we consider time-dependent, not necessarily
hyperbolic, infinite-dimensional, non-invertible and parameter-dependent differ-
ence equations. Invariant fiber bundles are the generalization of invariant man-
ifolds to this situation. It is crucial to allow our difference equations to depend
on a parameter, since this allows to construct invariant foliations as in [4] and
also to apply our result to discretization theory of time-invariant difference equa-
tions. From the point of view of applications it is indispensable to treat difference
equations which are non-invertible. The fact that we will consider invariant fiber
bundles which contain the zero solution is no restriction, in fact, every invariant
fiber bundle through an arbitrary reference solution k 7→ z(k) of a given differ-
ence equation is an invariant fiber bundle of the time-variant difference equation
which we get from the (time-depending) transformation x 7→ x − z(k); this al-
lows e.g. the treatment of the invariant manifolds of an almost periodic orbit of
a map. But also discretization problems of semiflows are in the scope of appli-
cations, since we allow the state space to be infinite-dimensional. The technical
difficulties of the proof of our main result (Theorem 3.5) are due to the fact that
we allow our reference solution to be non-hyperbolic. This flexibility turns out to
be crucial in continuous time applications (see e.g. [13]) when it is necessary not
only to split into stable and unstable manifold but to have a finer decomposition
at hand which provides a more detailed picture of the dynamics. We expect the
same to be true for discrete time applications and provide a theorem which is
flexible and strong enough to apply to various situations without the need to be
reproven for every explicit problem.

The existence of invariant fiber bundles in our general situation has been
proven by Aulbach and the authors in [2], where also the C1-smoothness of the
invariant fiber bundles was showed. Although stable and unstable fiber bundles
are in the same smoothness class as the system, an arbitrary fiber bundle is only
C1 in general. However, sometimes a system restricted to one of its invariant
fiber bundles carries relevant information and therefore it is important to know
the maximal smoothness class of an invariant fiber bundle. It is known that a gap
condition on the spectrum of the linearization along the reference orbit has to
be satisfied in order to get higher order smoothness of the invariant fiber bun-
dles. But it is also well-known from the theory of ordinary differential equations
that the differentiability of invariant manifolds is technically hard to prove. For
a modern approach using sophisticated fixed point theorems see [21], [20], [16]
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or [9]. Another approach to the smoothness of invariant manifolds is essentially
based on a lemma by Henry (cf. [6, Lemma 2.1]) or methods of a more differen-
tial topological nature (cf. [10], [17] or [18]), namely the Cm-section theorem for
fiber contracting maps. In [5] and [19] the problem of higher order smoothness is
tackled directly. Other contemporary theorems on the smoothness of invariant
fiber bundles of difference equations are contained in the articles [9], [7] and in
the monograph [11]. The first two papers deal only with autonomous systems
and apply a fixed point result on scales of Banach spaces and the fiber contrac-
tion theorem, respectively. In [11, Theorem 6.2.8, pp. 242–243] the so-called
Hadamard–Perron Theorem is proved via a graph transformation technique for
a time-dependent family of Cm-diffeomorphisms on a finite-dimensional space.
Using a different method of proof, our main results Theorem 3.5 and Theo-
rem 4.1 generalize this version of the Hadamard–Perron Theorem to not neces-
sarily hyperbolic, non-invertible, infinite-dimensional and parameter-dependent
difference equations. We would like to point out that the hyperbolic theory
is already elegantly and didactically well presented in the survey [22] and the
exposition [8].

Our contribution consists in treating also the technical non-hyperbolic case.
We tried hard to give a clear and accessible “ad hoc” proof of the maximal
smoothness class of pseudo-hyperbolic invariant fiber bundles. Moreover, we
give an example that shows that our gap conditions are sharp. The smooth-
ness proof is basically derived from [19] and needs no technical tools beyond
the contraction mapping principle, the Neumann series and Lebesgue’s theorem.
Cm-smoothness of invariant fiber bundles is proved by induction over m. The
induction over the smoothness class m is the key for understanding the structure
of the problem. Our focus it not to hide the core of the proof by omitting the
technical induction argument as it is usually done in the literature. To our under-
standing this is one of the reasons why the Hadamard–Perron Theorem has been
reproven by so many authors for similar situations over the years. The induction
argument of the proof is crucial because it is needed to rigorously compute the
higher order derivatives of compositions of maps, the so-called derivative tree.
It turned out to be advantageous to use two different representations of the de-
rivative tree, namely a totally unfolded derivative tree to show that a fixed point
operator is well-defined and to compute explicit global bounds for the higher
order derivatives of the fiber bundles and besides a partially unfolded derivative
tree to elaborate the induction argument in a recursive way.

The structure of this paper is as follows: In Section 2 we present the notation
and basic results.

Section 3 is devoted to the C1-smoothness of invariant fiber bundles. We
will also state our main assumptions here and prove some preparatory lemmas
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which will also be needed later. The C1-smoothness follows without any gap
condition from the main result of this section which is Theorem 3.5. Our proof
may seem long and intricate and in fact it would be if we would like to show
only the C1-smoothness, but in its structure it already contains the main idea
of the induction argument for the Cm-case and we will profit then from being
rather detailed in the C1-case.

Section 4 contains our main result (Theorem 4.1), stating that for every spec-
tral gap (α, β) the pseudo-stable fiber bundle (which corresponds to the spectrum
in (−∞, α)) is of class Cms if αms < β and the pseudo-unstable fiber bundle
(which corresponds to the spectrum in (β,∞)) is of class Cmr if α < βmr . Ex-
ample 4.2 shows that these gap conditions are sharp.

2. Preliminaries

N denotes the positive integers and a discrete interval I is defined to be the
intersection of a real interval with the integers Z = {0,±1, . . . }. For an integer
κ ∈ Z we define Z+

κ := [κ,∞) ∩ Z, Z−κ := (−∞, κ] ∩ Z.
The Banach spaces X ,Y are all real or complex throughout this paper and

their norm is denoted by ‖ · ‖X , ‖ · ‖Y or simply by ‖ · ‖. If X and Y are
isometrically isomorphic we write X ∼= Y. Ln(X ;Y) is the Banach space of
n-linear continuous operators from Xn to Y for n ∈ N,

L0(X ;Y) := Y, L(X ;Y) := L1(X ;Y), L(X ) := L1(X ;X ),

IX the identity map on X and GL(X ) the multiplicative group of bijective map-
pings in L(X ). On the product space X ×Y we always use the maximum norm

(2.1)
∥∥∥∥(

x

y

) ∥∥∥∥
X×Y

:= max{‖x‖X , ‖y‖Y}.

We write DF for the Fréchet derivative of a mapping F and if F : (x, y) 7→ F (x, y)
depends differentiable on more than one variable, then the partial derivatives are
denoted by ∂F/∂x and ∂F/∂y, respectively. Now we quote the two versions of
the higher order chain rule for Fréchet derivatives on which our smoothness
proof is based. Thereto let Z be a further Banach space over R or C. With
given j, l ∈ N we write

P<
j (l) := {(N1, . . . , Nj) ⊂ {1, . . . , l}j | Ni 6= ∅, N1 ∪ . . . ∪Nj = {1, . . . , l},

Ni ∩Nk = ∅ for i 6= k, max Ni < max Ni+1}

for the set of ordered partitions of {1, . . . , l} with length j, we write #N for
the cardinality of a finite set N ⊂ N. In case N = {n1, . . . , nk} ⊆ {1, . . . , l}
for k ∈ N, k ≤ l, we abbreviate Dkg(x)xN := Dkg(x)xn1 . . . xnk

for vectors
x, x1, . . . , xl ∈ X , where g:X → Y is l-times continuously differentiable.
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Theorem 2.1 (Chain rule). Given m ∈ N and two mappings f :Y → Z,
g:X → Y which are m-times continuously differentiable. Then also the composi-
tion f ◦ g:X → Z is m-times continuously differentiable and for l ∈ {1, . . . , m},
x ∈ X the derivatives possess the representations as a so-called partially unfolded
derivative tree

(2.2) Dl(f ◦ g)(x) =
l−1∑
j=0

(
l − 1

j

)
Dj [Df(g(x))] ·Dl−jg(x)

and as a so-called totally unfolded derivative tree

(2.3) Dl(f ◦ g)(x)x1 . . . xl

=
l∑

j=1

∑
(N1,... ,Nj)∈P <

j (l)

Djf(g(x))D#N1g(x)xN1 . . . D#Nj g(x)xNj

for any x1, . . . , xl ∈ X .

Proof. A proof of (2.2) follows by an easy induction argument (cf. [19, B.3
Satz, p. 266]), while (2.3) is shown in [15, Theorem 2]. �

We use the notation

(2.4) x′ = f(k, x, p)

to denote the parameter-dependent difference equation x(k + 1) = f(k, x(k), p),
with the right-hand side f : I×X ×P → X , where I is a discrete interval and P is
a topological space. Let λ(k;κ, ξ, p) denote the general solution of equation (2.4),
i.e. λ( · ;κ, ξ, p) solves (2.4) and satisfies the initial condition λ(κ;κ, ξ, p) = ξ for
κ ∈ I, ξ ∈ X , p ∈ P. In forward time λ can be defined recursively as

λ(k;κ, ξ, p) :=

{
ξ for k = κ,

f(k − 1, λ(k − 1;κ, ξ, p), p) for k > κ.

Given an operator sequence A: I → L(X ) we define the evolution operator
Φ(k, κ) ∈ L(X ) of the linear equation x′ = A(k)x as the mapping given by

Φ(k, κ) :=

{
IX for k = κ,

A(k − 1) . . . A(κ) for k > κ

and if A(k) is invertible (in L(X )) for k ≤ κ then

Φ(k, κ) := A(k)−1 . . . A(κ− 1)−1 for k < κ.
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Now we introduce a notion describing exponential growth of sequences or
solutions of difference equations. For a γ > 0, a Banach space X , a discrete
interval I, κ ∈ I and λ: I → X we say that

(a) λ is γ+-quasibounded if I is unbounded above and if

‖λ‖+κ,γ := sup
k∈Z+

κ

‖λ(k)‖γκ−k < ∞,

(b) λ is γ−-quasibounded if I is unbounded below and if

‖λ‖−κ,γ := sup
k∈Z−κ

‖λ(k)‖γκ−k < ∞,

(c) λ is γ±-quasibounded if I = Z and if supk∈Z ‖λ(k)‖γκ−k < ∞.

`+κ,γ(X ) and `−κ,γ(X ) denote the sets of all γ+- and γ−-quasibounded functions
λ: I → X , they are Banach spaces with the norms ‖ · ‖+κ,γ and ‖ · ‖−κ,γ , and satisfy
the following properties (cp. also Lemma 3.3 in [2]).

Lemma 2.2. For real constants γ, δ with 0 < γ ≤ δ, m ∈ N, κ ∈ Z and
Banach spaces X ,Y the following statements are valid:

(a) The Banach spaces `+κ,γ(X )× `+κ,γ(Y) and `+κ,γ(X ×Y) are isometrically
isomorphic,

(b) `+κ,γ(X ) ⊆ `+κ,δ(X ) and ‖λ‖+κ,δ ≤ ‖λ‖+κ,γ for λ ∈ `+κ,γ(X ),
(c) with the abbreviation `0κ,γ := `+κ,γ(X × Y), `m

κ,γ := `+κ,γ(Lm(X ;X × Y)),
the Banach spaces `m

κ,γ and L(X ; `m−1
κ,γ ) are isometrically isomorphic.

3. C1-smoothness of invariant fiber bundles

We begin this section by stating our frequently used main assumptions.

Hypothesis 3.1. Let us consider the system of parameter-dependent differ-
ence equations

(3.1)

{
x′ = A(k)x + F (k, x, y, p),

y′ = B(k)y + G(k, x, y, p),

where X , Y are Banach spaces, P is a topological space satisfying the first axiom
of countability, the discrete interval I is unbounded to the right, A: I → L(X ),
B: I → GL(Y) and the mappings F : I ×X ×Y ×P → X , G: I ×X ×Y ×P → Y
are m-times, m ∈ N, continuously differentiable with respect to (x, y). Moreover
we assume:

(a) Hypothesis on linear part: The evolution operators Φ(k, l) and Ψ(k, l)
of the linear systems x′ = A(k)x and y′ = B(k)y, respectively, satisfy
for all k, l ∈ I the estimates

(3.2)
‖Φ(k, l)‖L(X ) ≤ K1α

k−l for k ≥ l,

‖Ψ(k, l)‖L(Y) ≤ K2β
k−l for l ≥ k,



Cm-Smoothness of Invariant Fiber Bundles 113

with real constants K1,K2 ≥ 1 and α, β with 0 < α < β.
(b) (Hypothesis on perturbation) We have

(3.3) F (k, 0, 0, p) ≡ 0, G(k, 0, 0, p) ≡ 0 on I × P,

and the partial derivatives of F and G are globally bounded, i.e. for
n ∈ {1, . . . , m} we assume

(3.4)

|F |n := sup
(k,x,y,p)∈I×X×Y×P

∥∥∥∥ ∂nF

∂(x, y)n
(k, x, y, p)

∥∥∥∥
Ln(X×Y;X )

< ∞,

|G|n := sup
(k,x,y,p)∈I×X×Y×P

∥∥∥∥ ∂nG

∂(x, y)n
(k, x, y, p)

∥∥∥∥
Ln(X×Y;Y)

< ∞,

and additionally for some real σmax > 0 we require

(3.5) max{|F |1, |G|1} <
σmax

max{K1,K2}
.

Furthermore, we choose a fixed real number

σ ∈ (max{K1,K2}max{|F |1, |G|1}, σmax).

Remark 3.2. In [2] difference equations of the type (3.1) are considered
without an explicit parameter-dependence. Anyhow, every result from [2] re-
mains applicable since all the above estimates in Hypothesis 3.1 are uniform in
p ∈ P.

Lemma 3.3. We assume Hypothesis 3.1 for m = 1, σmax = (β − α)/2 and
choose κ ∈ I. Moreover, let (µ, ν), (µ, ν): Z+

κ → X ×Y be solutions of (3.1) such
that their difference (µ, ν)− (µ, ν) is γ+-quasibounded for any γ ∈ (α+σ, β−σ).
Then, for all k ∈ Z+

κ , the estimate

(3.6)
∥∥∥∥(

µ

ν

)
(k)−

(
µ

ν

)
(k)

∥∥∥∥
X×Y

≤ K1
γ − α

γ − α−K1|F |1
γk−κ‖µ(κ)− µ(κ)‖X ,

holds.

Proof. Choose an arbitrary p ∈ P and κ ∈ I. First of all the difference
µ− µ ∈ `+κ,γ(X ) is a solution of the inhomogeneous difference equation

(3.7) x′ = A(k)x + F (k, (µ, ν)(k), p)− F (k, (µ, ν)(k), p),

where the inhomogeneity is γ+-quasibounded

‖F ( · , (µ, ν)( · ), p)− F ( · , (µ, ν)( · ), p)‖+κ,γ

(3.4)

≤ |F |1
∥∥∥∥(

µ

ν

)
−

(
µ

ν

) ∥∥∥∥+

κ,γ

by Hypothesis 3.1(b). Applying [1, Lemma 3.3] to the equation (3.7) yields

(3.8) ‖µ− µ‖+κ,γ ≤ K1‖µ(κ)− µ(κ)‖+
K1|F |1
γ − α

∥∥∥∥(
µ

ν

)
−

(
µ

ν

) ∥∥∥∥+

κ,γ

;
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note that our definition of ‖ · ‖+κ,γ is slightly different from [1, Definition 3.1(a)].
Because of K1|F |1/(γ − α) < 1 (cf. (3.5)), without loss of generality we can
assume ν 6= ν from now on. Analogously the difference ν − ν ∈ `+κ,γ(Y) is
a solution of the linear equation

y′ = B(k)y + G(k, (µ, ν)(k), p)−G(k, (µ, ν)(k), p),

where the inhomogeneity is also γ+-quasibounded

‖G( · , (µ, ν)( · ), p)−G( · , (µ, ν)( · ), p)‖+κ,γ

(3.4)

≤ |G|1
∥∥∥∥(

µ

ν

)
−

(
µ

ν

) ∥∥∥∥+

κ,γ

by Hypothesis 3.1(b). Now using the result [1, Lemma 3.4(a)] yields

‖ν − ν‖+κ,γ ≤
K2|G|1
β − γ

∥∥∥∥(
µ

ν

)
−

(
µ

ν

) ∥∥∥∥+

κ,γ

,

and since we have K2|G|1/(β − γ) < 1 (cf. assumption (3.5)) as well as ν 6= ν

we get the inequality

‖ν − ν‖+κ,γ < max{‖µ− µ‖+κ,γ , ‖ν − ν‖+κ,γ}

by (2.1). Consequently we obtain ‖µ− µ‖+κ,γ = ‖(µ, ν)− (µ, ν)‖+κ,γ , which leads
to ∥∥∥∥(

µ

ν

)
−

(
µ

ν

) ∥∥∥∥+

κ,γ

(3.8)

≤ K1‖µ(κ)− µ(κ)‖+
K1|F |1
γ − α

∥∥∥∥(
µ

ν

)
−

(
µ

ν

) ∥∥∥∥+

κ,γ

.

This, in turn, immediately implies the estimate (3.6). �

Now we collect some crucial results from the earlier paper [2]. In particular
we can characterize the quasibounded solutions of (3.1) quite easily as fixed
points of an appropriate operator.

Lemma 3.4 the operator Tκ). We assume Hypothesis 3.1 for m = 1, σmax =
(β − α)/2 and choose κ ∈ I. Then for arbitrary γ ∈ [α + σ, β − σ] and ξ ∈ X ,
p ∈ P, the mapping Tκ: `+κ,γ(X × Y)×X × P → `+κ,γ(X × Y),

(3.9) (Tκ(µ, ν; ξ, p))(k) :=


Φ(k, κ)ξ +

k−1∑
n=κ

Φ(k, n + 1)F (n, (µ, ν)(n), p)

−
∞∑

n=k

Ψ(k, n + 1)G(n, (µ, ν)(n), p)

 ,

for k ∈ Z+
κ , has the following properties:

(a) Tκ( · ; ξ, p) is a uniform contraction in ξ ∈ X , p ∈ P with Lipschitz
constant

(3.10) L :=
max{K1,K2}

σ
max{|F |1, |G|1} < 1,
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(b) the unique fixed point (µκ, νκ)(ξ, p) ∈ `+κ,γ(X ×Y) of Tκ( · ; ξ, p) does not
depend on γ ∈ [α + σ, β − σ] and is globally Lipschitzian:

(3.11)
∥∥∥∥(

µκ

νκ

)
(ξ, p)−

(
µκ

νκ

)
(ξ, p)

∥∥∥∥+

κ,γ

≤ K1

1− L
‖ξ−ξ‖X for ξ, ξ ∈ X , p ∈ P,

(c) a function (µ, ν) ∈ `+κ,γ(X × Y) is a solution of the difference equation
(3.1) with µ(κ) = ξ, if and only if it is a solution of the fixed point
equation

(3.12)
(

µ

ν

)
= Tκ(µ, ν; ξ, p).

Proof. See [2], in particular the proof of Theorem 4.11 in the quoted paper
for (a), (b), and Lemma 4.10 for (c). �

Having all preparatory results at hand we may now head for our main the-
orem in the C1-case. As mentioned in the introduction, invariant fiber bundles
are generalizations of invariant manifolds to non-autonomous equations. In or-
der to be more precise, for fixed parameters p ∈ P, we call a subset S(p) of the
extended state space I×X ×Y an invariant fiber bundle of (3.1), if it is positively
invariant, i.e. for any tuple (κ, ξ, η) ∈ S(p) one has (k, λ(k;κ, ξ, η, p)) ∈ S(p) for
all k ≥ κ, k ∈ I, where λ denotes the general solution of (3.1).

Theorem 3.5 (C1-smoothness of invariant fiber bundles). We assume Hy-
pothesis 3.1 for m = 1, σmax = (β − α)/2 and let λ denote the general solution
of (3.1). Then the following statements are valid:

(a) There exists a uniquely determined mapping s: I × X × P → Y whose
graph S(p) := {(κ, ξ, s(κ, ξ, p)) : κ ∈ I, ξ ∈ X} can be characterized
dynamically for any parameter p ∈ P and any constant γ ∈ [α+σ, β−σ]
as S(p) = {(κ, ξ, η) ∈ I × X × Y : λ( · ;κ, ξ, η, p) ∈ `+κ,γ(X × Y)}.
Furthermore we have
(a1) s(κ, 0, p) ≡ 0 on I × P,
(a2) the graph S(p), p ∈ P, is an invariant fiber bundle of (3.1). Addi-

tionally s is a solution of the invariance equation

s(κ + 1, A(κ)ξ + F (κ, ξ, s(κ, ξ, p), p), p) = B(κ)s(κ, ξ, p) + G(κ, ξ, s(κ, ξ, p), p)

for (κ, ξ, p) ∈ I ×X × P,
(a3) s: I × X × P → Y is continuous and continuously differentiable in

the second argument with globally bounded derivative∥∥∥∥∂s

∂ξ
(κ, ξ, p)

∥∥∥∥
L(X ;Y)

≤ K1K2 max{|F |1, |G|1}
σ −max{K1,K2}max{|F |1, |G|1}

for (κ, ξ, p) ∈ I ×X × P.
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The graph S(p), p ∈ P, is called the pseudo-stable fiber bundle of (3.1).
(b) In case I = Z there exists a uniquely determined mapping r: I × Y ×

P → X whose graph R(p) := {(κ, r(κ, η, p), η) : κ ∈ I, η ∈ Y} can be
characterized dynamically for any parameter p ∈ P and any constant
γ ∈ [α + σ, β − σ] as

(3.13) R(p) = {(κ, ξ, η) ∈ I ×X × Y : λ( · ;κ, ξ, η, p) ∈ `−κ,γ(X × Y)}.

Furthermore we have
(b1) r(κ, 0, p) ≡ 0 on I × P,
(b2) the graph R(p), p ∈ P, is an invariant fiber bundle of (3.1). Addi-

tionally r is a solution of the invariance equation

r(κ + 1, B(κ)η + G(κ, r(κ, η, p), η, p), p) = A(κ)r(κ, η, p) + F (κ, r(κ, η, p), η, p)

for (κ, η, p) ∈ I × Y × P,
(b3) r: I × Y × P → X is continuous and continuously differentiable in

the second argument with globally bounded derivative∥∥∥∥∂r

∂η
(κ, η, p)

∥∥∥∥
L(Y;X )

≤ K1K2 max{|F |1, |G|1}
σ −max{K1,K2}max{|F |1, |G|1}

for (κ, η, p) ∈ I × Y × P.
The graph R(p), for p ∈ P, is called the pseudo-unstable fiber bundle
of (3.1).

(c) In case I = Z only the zero solution of equation (3.1) is contained both
in S(p) and R(p), i.e. S(p) ∩ R(p) = Z × {0} × {0} for p ∈ P and
hence the zero solution is the only γ±-quasibounded solution of (3.1) for
γ ∈ [α + σ, β − σ].

Remark 3.6. Since we did not assume invertibility of the difference equation
(3.1) one has to interpret the dynamical characterization (3.13) of the pseudo-
unstable fiber bundle R(p), p ∈ P, as follows. A point (κ, ξ, η) ∈ I × X ×
Y is contained in R(p) if and only if there exists a γ−-quasibounded solution
λ( · ;κ, ξ, η, p): I → X × Y of (3.1) satisfying the initial condition x(κ) = ξ,
y(κ) = η. In this case the solution λ( · ;κ, ξ, η, p) is uniquely determined.

Proof of Theorem 3.5. (a) Our main intention in the current proof is
to show the continuity and the partial differentiability assertion (a3) for the
mapping s: I×X ×P → Y. Any other statement of Theorem 3.5(a) follows from
[2, Proof of Theorem 4.11]. Nevertheless we reconsider the main ingredients in
our argumentation.

Using [2, Proof of Theorem 4.11] we know that for any triple (κ, ξ, p) ∈
I×X ×P there exists exactly one s(κ, ξ, p) ∈ Y such that λ( · ;κ, ξ, s(κ, ξ, p), p) ∈
`+κ,γ(X × Y) for every γ ∈ [α + σ, β − σ]. Then the function s( · , p): I ×X → Y,
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p ∈ P, defines the invariant fiber bundle S(p), if we set s(κ, ξ, p) := (νκ(ξ, p))(κ),
where (µκ, νκ)(ξ, p) ∈ `+κ,γ(X ×Y) denotes the unique fixed point of the operator
Tκ( · ; ξ, p): `+κ,γ(X × Y) → `+κ,γ(X × Y) introduced in Lemma 3.4 for any ξ ∈ X ,
p ∈ P and γ ∈ [α + σ, β − σ]. Here and in the following one should be aware of
the estimate

(3.14) max
{

K1|F |1
γ − α

,
K2|G|1
β − γ

}
(3.10)

≤ L < 1.

The further proof of part (a3) will be divided into several steps. For nota-
tional convenience we introduce the abbreviations µκ(k; ξ, p) := (µκ(ξ, p))(k)
and νκ(k; ξ, p) := (νκ(ξ, p))(k).

Step 1 For every γ ∈ (α+σ, β−σ] the mappings (µκ, νκ): Z+
κ ×X×P → X×Y

and s: I ×X × P → Y are continuous.
By Hypothesis 3.1 the parameter space P satisfies the first axiom of count-

ability. Consequently [14, Theorem 1.1(b), p. 190] implies that in order to prove
the continuity of (µκ, νκ)(κ; ξ0, · ):P → X × Y, it suffices to show for arbitrary
but fixed κ ∈ I, ξ0 ∈ X and p0 ∈ P the following limit relation:

(3.15) lim
p→p0

(
µκ

νκ

)
(κ; ξ0, p) =

(
µκ

νκ

)
(κ; ξ0, p0).

For any parameter p ∈ P we obtain, by using the equations (3.9) and (3.12)∥∥∥∥(
µκ

νκ

)
(k; ξ0, p)−

(
µκ

νκ

)
(k; ξ0, p0)

∥∥∥∥
(3.2)

≤ max
{

K1

k−1∑
n=κ

αk−n−1

· ‖F (n, (µκ, νκ)(n; ξ0, p), p)− F (n, (µκ, νκ)(n; ξ0, p0), p0)‖,

K2

∞∑
n=k

βk−n−1‖G(n, (µκ, νκ)(n; ξ0, p), p)−G(n, (µκ, νκ)(n; ξ0, p0), p0)‖
}

for k ∈ Z+
κ .

Subtraction and addition of the expressions ‖F (n, (µκ, νκ)(n; ξ0, p0), p)‖ and
‖G(n, (µκ, νκ)(n; ξ0, p0), p)‖, respectively, leads to∥∥∥∥(

µκ

νκ

)
(k; ξ0, p)−

(
µκ

νκ

)
(k; ξ0, p0)

∥∥∥∥ ≤ max{a + b, c + d} for k ∈ Z+
κ ,

where (cf. (3.4))

a :=K1

k−1∑
k=κ

αk−n−1‖F (n, (µκ, νκ)(n; ξ0, p0), p)− F (n, (µκ, νκ)(n; ξ0, p0), p0)‖,

b :=K1|F |1
k−1∑
n=κ

αk−n−1

∥∥∥∥(
µκ

νκ

)
(n; ξ0, p)−

(
µκ

νκ

)
(n; ξ0, p0)

∥∥∥∥,
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c :=K2

∞∑
n=k

βk−n−1‖G(n, (µκ, νκ)(n; ξ0, p0), p)−G(n, (µκ, νκ)(n; ξ0, p0), p0)‖,

d :=K2|G|1
∞∑

n=k

βk−n−1

∥∥∥∥(
µκ

νκ

)
(n; ξ0, p)−

(
µκ

νκ

)
(n; ξ0, p0)

∥∥∥∥.

Now and in the further progress of this proof, we often use the relation

(3.16) max{a + b, c + d} ≤ a + c + max{b, d},

which is valid for arbitrary reals a, b, c, d ≥ 0, and obtain the estimate∥∥∥∥(
µκ

νκ

)
(k; ξ0, p)−

(
µκ

νκ

)
(k; ξ0, p0)

∥∥∥∥γκ−k ≤ aγκ−k + cγκ−k

+ max
{

K1|F |1
γ − α

,
K2|G|1
β − γ

}∥∥∥∥(
µκ

νκ

)
(ξ0, p)−

(
µκ

νκ

)
(ξ0, p0)

∥∥∥∥+

κ,γ

for k ∈ Z+
κ . Hence, by passing over to the least upper bound for k ∈ Z+

κ , we get
(cf. (3.10))∥∥∥∥(

µκ

νκ

)
(ξ0, p)−

(
µκ

νκ

)
(ξ0, p0)

∥∥∥∥+

κ,γ

(3.14)

≤ max{K1,K2}γκ

1− L
sup

k∈Z+
κ

U(k, p)

with the mapping

U(k, p) :=
αk−1

γk

k−1∑
n=κ

α−n‖F (n, (µκ, νκ)(n; ξ0, p0), p)(3.17)

− F (n, (µκ, νκ)(n; ξ0, p0), p0)‖

+
βk−1

γk

∞∑
n=k

β−n‖G(n, (µκ, νκ)(n; ξ0, p0), p)

−G(n, (µκ, νκ)(n; ξ0, p0), p0)‖.

Therefore it suffices to prove

(3.18) lim
p→p0

sup
k∈Z+

κ

U(k, p) = 0

to show the limit relation (3.15). We proceed indirectly. Assume (3.18) does not
hold. Then there exists an ε > 0 and a sequence (pi)i∈N in P with limi→∞ pi = p0

and supk∈Z+
κ

U(k, pi) > ε for i ∈ N. This implies the existence of a sequence
(ki)i∈N in Z+

κ such that

(3.19) U(ki, pi) > ε for i ∈ N.

From now on we consider α+σ < γ, choose a fixed growth rate δ ∈ (α+σ, γ) and
remark that the inequality δ/γ < 1 will play an important role below. Because of
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Hypothesis 3.1(b) and the inclusion (µκ, νκ)(ξ0, p) ∈ `+κ,δ(X×Y) we get (cf. (3.4))

‖F (n, (µκ, νκ)(n; ξ0, p0), p)‖
(3.3)

≤ |F |1
∥∥∥∥(

µκ

νκ

)
(ξ0, p0)

∥∥∥∥+

κ,δ

δn−κ for n ∈ Z+
κ ,

‖G(n, (µκ, νκ)(n; ξ0, p0), p)‖
(3.3)

≤ |G|1
∥∥∥∥(

µκ

νκ

)
(ξ0, p0)

∥∥∥∥+

κ,δ

δn−κ for n ∈ Z+
κ ,

and the triangle inequality leads to

U(k, p)
(3.17)

≤ 2|F |1
∥∥∥∥(

µκ

νκ

)
(ξ0, p0)

∥∥∥∥+

κ,δ

αk−1

γk

k−1∑
n=κ

(
δ

α

)n

+ 2|G|1
∥∥∥∥(

µκ

νκ

)
(ξ0, p0)

∥∥∥∥+

κ,δ

βk−1

γk

∞∑
n=k

(
δ

β

)n

≤ 2 max{|F |1, |G|1}
δκ

∥∥∥∥(
µκ

νκ

)
(ξ0, p0)

∥∥∥∥+

κ,δ

(
1

δ − α
+

1
β − δ

)(
δ

γ

)k

for k ∈ Z+
κ . Because of δ/γ < 1, passing over to the limit k → ∞ yields

limk→∞ U(k, p) = 0 uniformly in p ∈ P, and taking into account (3.19) the
sequence (ki)i∈N in Z+

κ has to be bounded above, i.e. there exists an integer
K > κ with ki ≤ K for all i ∈ N. Hence we can deduce

U(ki,pi)

(3.17)

≤ ακ−1

γκ

K−1∑
n=κ

α−n‖F (n, (µκ, νκ)(n; ξ0, p0), pi)− F (n, (µκ, νκ)(n; ξ0, p0), p0)‖

+
βK−1

γK

∞∑
n=κ

β−n‖G(n, (µκ, νκ)(n; ξ0, p0), pi)−G(n, (µκ, νκ)(n; ξ0, p0), p0)‖

for i ∈ N, where the first finite sum tends to zero for i → ∞ by the continuity
of F . Continuity of G implies

lim
i→∞

G(n, (µκ, νκ)(n; ξ0, p0), pi) = G(n, (µκ, νκ)(n; ξ0, p0), p0)

and with the Theorem of Lebesgue1 we get the convergence of the infinite
sum to zero for i → ∞. Thus we derived the relation limi→∞ U(ki, pi) = 0,
which obviously contradicts (3.19). Up to now we have shown the continuity of
(µκ, νκ)(ξ0, · ):P → `+κ,γ(X ×Y) and by properties of the evaluation map (see [2,
Lemma 3.4]) that (3.15) holds. On the other hand, Lemma 3.4(b) gives us the

1To apply this result from integration theory, one has to write the infinite sum as an
integral over piecewise-constant functions and use the Lipschitz estimate of G, which is implied
by (3.4), to get an integrable majorant.
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Lipschitz estimate

∥∥∥∥(
µκ

νκ

)
(κ; ξ, p0)−

(
µκ

νκ

)
(κ; ξ0, p0)

∥∥∥∥
≤

∥∥∥∥(
µκ

νκ

)
(ξ, p0)−

(
µκ

νκ

)
(ξ0, p0)

∥∥∥∥+

κ,γ

(3.11)

≤ K1

1− L
‖ξ − ξ0‖

for any ξ ∈ X and e.g. [3, Lemma B.4] together with the discrete topology on Z+
κ ,

implies the continuity of the fixed point mapping (µκ, νκ): Z+
κ ×X ×P → X ×Y.

With a view to the definition of s: I ×X ×P → Y, its continuity readily follows.

Step 2. Let γ ∈ [α + σ, β − σ], ξ ∈ X and p ∈ P be arbitrary. By formal
differentiation of the fixed point equation (cf. (3.9), (3.12))

(3.20)
(

µκ

νκ

)
(k; ξ, p) =


Φ(k, κ)ξ +

k−1∑
n=κ

Φ(k, n + 1)F (n, (µκ, νκ)(n; ξ, p), p)

−
∞∑

n=k

Ψ(k, n + 1)G(n, (µκ, νκ)(n; ξ, p), p)


for k ∈ Z+

κ , with respect to ξ ∈ X , we obtain another fixed point equation

(3.21)
(

µ1
κ

ν1
κ

)
(ξ, p) = T 1

κ ((µ1
κ, ν1

κ)(ξ, p); ξ, p)

for the formal partial derivative (µ1
κ, ν1

κ) of (µκ, νκ):X × P → `+κ,γ(X × Y) with
respect to ξ, where the right-hand side of (3.20) is given by

(3.22) (T 1
κ (µ1, ν1; ξ, p))(k) :=
Φ(k, κ) +

k−1∑
n=κ

Φ(k, n + 1)
∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ, p), p)

(
µ1

ν1

)
(n)

−
∞∑

n=k

Ψ(k, n + 1)
∂G

∂(x, y)
(n, (µκ, νκ)(n; ξ, p), p)

(
µ1

ν1

)
(n)


for k ∈ Z+

κ . Here (µ1, ν1) is a mapping from Z+
κ to L(X ;X × Y) and in the

following we investigate this operator T 1
κ .

Step 3. For every γ ∈ [α + σ, β − σ] the operator T 1
κ : `1κ,γ ×X ×P → `1κ,γ is

well-defined and, for (µ1, ν1) ∈ `1κ,γ , ξ ∈ X , p ∈ P, satisfies the estimate

(3.23) ‖T 1
κ (µ1, ν1; ξ, p)‖+κ,γ ≤ K1 + L

∥∥∥∥(
µ1

ν1

) ∥∥∥∥+

κ,γ

.
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Thereto choose arbitrary sequences (µ1, ν1) ∈ `1κ,γ and ξ ∈ X , p ∈ P. Now using
(3.2), (3.4) it is

(3.24) ‖T 1
κ (µ1, ν1; ξ, p)(k)‖L(X ;X×Y)γ

κ−k

(3.22)

≤ max
{

K1

(
γ

α

)κ−k

+ K1|F |1γκ−k
k−1∑
n=κ

αk−n−1

∥∥∥∥(
µ1

ν1

)
(n)

∥∥∥∥,

K2|G|1γκ−k
∞∑

n=k

βk−n−1

∥∥∥∥(
µ1

ν1

)
(n)

∥∥∥∥}
(3.16)

≤ K1+max
{

K1|F |1
α

k−1∑
n=κ

(
α

γ

)k−n

,
K2|G|1

β

∞∑
n=k

(
β

γ

)k−n}∥∥∥∥(
µ1

ν1

) ∥∥∥∥+

κ,γ

≤ K1+max
{

K1|F |1
γ − α

,
K2|G|1
β − γ

}∥∥∥∥(
µ1

ν1

) ∥∥∥∥+

κ,γ

(3.14)

≤ K1 + L

∥∥∥∥(
µ1

ν1

) ∥∥∥∥+

κ,γ

for k ∈ Z+
κ , and passing over to the least upper bound over k ∈ Z+

κ implies our
claim T 1

κ (µ1, ν1; ξ, p) ∈ `1κ,γ , as well as the estimate (3.23).

Step 4. For every γ ∈ [α + σ, β − σ] the operator

T 1
κ ( · ; ξ, p): `1κ,γ → `1κ,γ

is a uniform contraction in ξ ∈ X , p ∈ P, moreover, the fixed point (µ1
κ, ν1

κ)(ξ, p)
in `1κ,γ does not depend on γ ∈ [α + σ, β − σ] and satisfies∥∥∥∥(

µ1
κ

ν1
κ

)
(ξ, p)

∥∥∥∥+

κ,γ

≤ K1

1− L
for ξ ∈ X , p ∈ P.

Let ξ ∈ X and p ∈ P be arbitrary. Completely analogous to the estimate
(3.24) we get

‖T 1
κ (µ1, ν1; ξ, p)− T 1

κ (µ1, ν1; ξ, p)‖+κ,γ

(3.14)

≤ L‖
(

µ1

ν1

)
−

(
µ1

ν1

)
‖+κ,γ

for (µ1, ν1), (µ1, ν1) ∈ `1κ,γ . Taking (3.10) into account, consequently Banach’s
fixed point theorem guarantees the unique existence of a fixed point (µ1

κ, ν1
κ)(ξ, p)

∈ `1κ,γ of T 1
κ ( · ; ξ, p): `1κ,γ → `1κ,γ . This fixed point is independent of the growth

constant γ ∈ [α + σ, β − σ] because with Lemma 2.2(b) and (c) we have the
inclusion `1κ,α+σ ⊆ `1κ,γ and every mapping T 1

κ ( · ; ξ, p): `1κ,γ → `1κ,γ has the same
fixed point as the restriction T 1

κ ( · ; ξ, p)
∣∣
`1κ,α+σ

. Finally the fixed point identity

(3.20) and (3.23) lead to the estimate (3.25).

Step 5. For every γ ∈ (α+σ, β−σ] and p ∈ P the mapping (µκ, νκ)( · , p):X →
`+κ,γ(X × Y) is differentiable with derivative

(3.26)
∂

∂ξ

(
µκ

νκ

)
=

(
µ1

κ

ν1
κ

)
:X × P → `1κ,γ .



122 Ch. Pötzsche — S. Siegmund

Let ξ ∈ X and p ∈ P be arbitrary. In relation (3.26), as well as in the subse-
quent considerations we are using the isomorphism between the spaces `1κ,γ and
L(X ; `+κ,γ(X × Y)) from Lemma 2.2(c) and identify them. To show the claim
above, we define the following four quotients

(3.27)
∆µ(n, h) :=

µκ(n; ξ + h, p)− µκ(n; ξ, p)− µ1
κ(n; ξ, p)h

‖h‖
,

∆ν(n, h) :=
νκ(n; ξ + h, p)− νκ(n; ξ, p)− ν1

κ(n; ξ, p)h
‖h‖

and

∆F (n, x, y, h1, h2)

:=
F (n, x + h1, y + h2, p)− F (n, x, y, p)− ∂F

∂(x,y) (n, x, y, p)
(

h1

h2

)
‖(h1, h2)‖

,

∆G(n, x, y, h1, h2)

:=
G(n, x + h1, y + h2, p)−G(n, x, y, p)− ∂G

∂(x,y) (n, x, y, p)
(

h1

h2

)
‖(h1, h2)‖

for integers n ∈ I and x ∈ X , h, h1 ∈ X \{0}, y ∈ Y, h2 ∈ Y \{0}. Thereby obvi-
ously the inclusion (∆µ,∆ν)( · , h) ∈ `+κ,γ(X ×Y) holds. To prove the differentia-
bility we have to show the limit relation limh→0(∆µ,∆ν)( · , h) = 0 in `+κ,γ(X×Y).
For this consider α + σ < γ, a growth rate δ ∈ (α + σ, γ) and from Lemma 3.3
we obtain

(3.28)
1
‖h‖

∥∥∥∥(
µκ

νκ

)
(n; ξ + h, p)−

(
µκ

νκ

)
(n; ξ, p)

∥∥∥∥ (3.6)

≤ K1
δ − α

δ − α−K1|F |1
δn−κ

for n ∈ Z+
κ . Moreover, using the fixed point equations (3.20) for µκ and (3.20)

for µ1
κ it results (cf. (3.9), (3.22))

‖∆µ(k, h)‖ =
1
‖h‖

∥∥∥∥ k−1∑
n=κ

Φ(k, n + 1)
[
F (n, (µκ, νκ)(n; ξ + h, p), p)

− F (n, (µκ, νκ)(n; ξ, p), p)

− ∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ, p), p)

(
µ1

κ

ν1
κ

)
(n; ξ, p)h

]∥∥∥∥
for k ∈ Z+

κ , where subtraction and addition of the expression

∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ, p), p)

[(
µκ

νκ

)
(n; ξ + h, p)−

(
µκ

νκ

)
(n; ξ, p)

]
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in the above brackets implies the estimate

‖∆µ(k, h)‖ ≤ 1
‖h‖

∥∥∥∥ k−1∑
n=κ

Φ(k, n + 1)
{

F (n, (µκ, νκ)(n; ξ + h, p), p)

− F (n, (µκ, νκ)(n; ξ, p), p)

− ∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ, p), p)

·
[(

µκ

νκ

)
(n; ξ + h, p)−

(
µκ

νκ

)
(n; ξ, p)

]}∥∥∥∥
+

1
‖h‖

∥∥∥∥ k−1∑
n=κ

Φ(k, n + 1)
∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ, p), p)

·
[(

µκ

νκ

)
(n; ξ + h, p)−

(
µκ

νκ

)
(n; ξ, p)−

(
µ1

κ

ν1
κ

)
(n; ξ, p)h

]∥∥∥∥
(3.4)

≤
k−1∑
n=κ

‖Φ(k, n + 1)‖

· ‖∆F (n, (µκ, νκ)(n; ξ, p), (µκ, νκ)(n; ξ + h, p)− (µκ, νκ)(n; ξ, p))‖

· 1
‖h‖

∥∥∥∥(
µκ

νκ

)
(n; ξ + h, p)−

(
µκ

νκ

)
(n; ξ, p)

∥∥∥∥
+ |F |1

k−1∑
n=κ

‖Φ(k, n + 1)‖
∥∥∥∥(

∆µ

∆ν

)
(n, h)

∥∥∥∥
(3.2)

≤ K1

k−1∑
n=κ

αk−n−1‖∆F (n, (µκ, νκ)(n; ξ, p), (µκ, νκ)(n; ξ + h, p)

− (µκ, νκ)(n; ξ, p))‖

· 1
‖h‖

∥∥∥∥(
µκ

νκ

)
(n; ξ + h, p)−

(
µκ

νκ

)
(n; ξ, p)

∥∥∥∥
+ K1|F |1

k−1∑
n=κ

αk−n−1

∥∥∥∥(
∆µ

∆ν

)
(n, h)

∥∥∥∥
for k ∈ Z+

κ and together with (3.28) we get

‖∆µ(k, h)‖ ≤ K1|F |1
k−1∑
n=κ

αk−n−1

∥∥∥∥(
∆µ

∆ν

)
(n, h)

∥∥∥∥ +
K2

1 (δ − α)
δ − α−K1|F |1

αk−1δ−κ

·
k−1∑
n=κ

(
δ

α

)n

‖∆F (n, (µκ, νκ)(n; ξ, p), (µκ, νκ)(n; ξ + h, p)− (µκ, νκ)(n; ξ, p))‖
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for k ∈ Z+
κ . Now we analogously derive a similar estimate for the norm of the

second component ‖∆ν(k, h)‖ and obtain

‖∆ν(k, h)‖ ≤ K2|G|1
∞∑

n=k

βk−n−1

∥∥∥∥(
∆µ

∆ν

)
(n, h)

∥∥∥∥ +
K1K2(δ − α)

δ − α−K1|F |1
βk−1δ−κ

·
∞∑

n=k

(
δ

β

)n

‖∆G(n, (µκ, νκ)(n; ξ, p), (µκ, νκ)(n; ξ + h, p)− (µκ, νκ)(n; ξ, p))‖

for k ∈ Z+
κ . Consequently for the norm ‖(∆µ,∆ν)(k, h)‖ one gets the inequality∥∥∥∥(
∆µ

∆ν

)
(k, h)

∥∥∥∥(2.1)
= max{‖∆µ(k, h)‖, ‖∆ν(k, h)‖} ≤ max{a + b, c + d}

for k ∈ Z+
κ with

a :=
K2

1 (δ − α)
δ − α−K1|F |1

αk−1δ−κ
k−1∑
n=κ

(
δ

α

)n

· ‖∆F (n, (µκ, νκ)(n; ξ, p), (µκ, νκ)(n; ξ + h, p)− (µκ, νκ)(n; ξ, p))‖,

b :=K1|F |1
k−1∑
n=κ

αk−n−1

∥∥∥∥(
∆µ

∆ν

)
(n, h)

∥∥∥∥,

c :=
K1K2(δ − α)

δ − α−K1|F |1
βk−1δ−κ

∞∑
n=k

(
δ

β

)n

· ‖∆G(n, (µκ, νκ)(n; ξ, p), (µκ, νκ)(n; ξ + h, p)− (µκ, νκ)(n; ξ, p))‖,

d :=K2|G|1
∞∑

n=k

βk−n−1

∥∥∥∥(
∆µ

∆ν

)
(n, h)

∥∥∥∥.

We are using the relation (3.16) again, and obtain the estimate∥∥∥∥(
∆µ

∆ν

)
(k, h)

∥∥∥∥γκ−k
(3.14)

≤ aγκ−k + cγκ−k + L

∥∥∥∥(
∆µ

∆ν

)
(h)

∥∥∥∥+

κ,γ

for k ∈ Z+
κ .

By passing over to the least upper bound for k ∈ Z+
κ we get (cf. (3.10))∥∥∥∥(

∆µ

∆ν

)
(h)

∥∥∥∥+

κ,γ

≤ K1 max{K1,K2}
1− L

δ − α

δ − α−K1|F |1

(
γ

δ

)κ

sup
k∈Z+

κ

V (k, h)

with

(3.29) V (k,h) :=
αk−1

γk

k−1∑
n=κ

(
δ

α

)n

· ‖∆F (n, (µκ, νκ)(n; ξ, p), (µκ, νκ)(n; ξ + h, p)− (µκ, νκ)(n; ξ, p))‖

+
βk−1

γk

∞∑
n=k

(
δ

β

)n

· ‖∆G(n, (µκ, νκ)(n; ξ, p), (µκ, νκ)(n; ξ + h, p)− (µκ, νκ)(n; ξ, p))‖
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for k ∈ Z+
κ . Thus to prove the above claim in the present Step 5, we only have

to show the limit relation

(3.30) lim
h→0

sup
k∈Z+

κ

V (k, h) = 0,

which will be done indirectly. Suppose (3.30) is not true. Then there ex-
ists an ε > 0 and a sequence (hi)i∈N in X with limi→∞ hi = 0 such that
supk∈Z+

κ
V (k, hi) > ε for i ∈ N. This implies the existence of a further sequence

(ki)i∈N in Z+
κ with

(3.31) V (ki, hi) > ε for i ∈ N.

Using the estimates ‖∆F (n, x, y, h1, h2)‖ ≤ 2|F |1 and ‖∆G(n, x, y, h1, h2)‖ ≤
2|G|1, which result from (3.4) in connection with [12, Corollary 4.3], it follows

V (k, h)
(3.29)

≤ 2|F |1
α

(
α

γ

)k k−1∑
n=κ

(
δ

α

)n

+
2|G|1

β

(
β

γ

)k ∞∑
n=k

(
δ

β

)n

≤
(

2|F |1
δ − α

+
2|G|1
β − δ

)(
δ

γ

)k

for k ∈ Z+
κ and the right-hand side of this estimate converges to 0 for k → ∞,

i.e. we have limk→∞ V (k, h) = 0 uniformly in h ∈ X . Because of (3.31) the
sequence (ki)i∈N has to be bounded in Z+

κ , i.e. there exists an integer K > κ

with ki ≤ K for any i ∈ N. Now we obtain

(3.32) V (ki,hi)
(3.29)

≤ ακ−1

γκ

K−1∑
n=κ

(
δ

α

)n

· ‖∆F (n, (µκ, νκ)(n; ξ, p), (µκ, νκ)(n; ξ + hi, p)− (µκ, νκ)(n; ξ, p))‖

+
βK−1

γK

∞∑
n=κ

(
δ

β

)n

· ‖∆G(n, (µκ, νκ)(n; ξ, p), (µκ, νκ)(n; ξ + hi, p)− (µκ, νκ)(n; ξ, p))‖

for i ∈ N and because of Step 1 we have

lim
i→∞

(
µκ

νκ

)
(n; ξ + hi, p) =

(
µκ

νκ

)
(n; ξ, p) for n ∈ Z+

κ , ξ ∈ X , p ∈ P,

as well as using the partial differentiability of F and G

lim
(h1,h2)→(0,0)

∥∥∥∥(
∆F

∆G

)
(n, x, y, h1, h2)

∥∥∥∥ = 0,

which leads to the limit relation

lim
i→∞

∥∥∥∥(
∆F

∆G

)
(n, (µκ, νκ)(n; ξ, p), (µκ, νκ)(n; ξ + hi, p)− (µκ, νκ)(n; ξ, p))

∥∥∥∥ = 0
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for n ∈ Z+
κ . Therefore the finite sum in (3.32) tends to 0 for i → ∞. Using

Lebesgue’s theorem, also the infinite sum in (3.32) converges to 0 for i →∞ and
we finally have limi→∞ V (ki, hi) = 0, which contradicts (3.31). Hence the claim
in Step 5 is true, where (3.26) follows by the uniqueness of Fréchet derivatives.

Step 6. For every γ ∈ (α+σ, β−σ] the mapping ∂(µκ, νκ)/∂ξ:X ×P → `1κ,γ

is continuous.
With a view to (3.26) it is sufficient to show the continuity of the mapping

(µ1
κ, ν1

κ):X ×P → `1κ,γ . To do this, we fix any ξ0 ∈ X , p0 ∈ P and choose ξ ∈ X ,
p ∈ P arbitrarily. Using the fixed point equation (3.20) for (µ1

κ, ν1
κ) we obtain

the estimate (cf. (3.22))∥∥∥∥(
µ1

κ

ν1
κ

)
(k; ξ, p)−

(
µ1

κ

ν1
κ

)
(k; ξ0, p0)

∥∥∥∥
(3.2)

≤ max
{

K1

k−1∑
n=κ

αk−n−1

∥∥∥∥ ∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ, p), p)

(
µ1

κ

ν1
κ

)
(n; ξ, p)

− ∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ0, p0), p0)

(
µ1

κ

ν1
κ

)
(n; ξ0, p0)

∥∥∥∥,

K2

∞∑
n=k

βk−n−1

∥∥∥∥ ∂G

∂(x, y)
(n, (µκ, νκ)(n; ξ, p), p)

(
µ1

κ

ν1
κ

)
(n; ξ, p)

− ∂G

∂(x, y)
(n, (µκ, νκ)(n; ξ0, p0), p0)

(
µ1

κ

ν1
κ

)
(n; ξ0, p0)

∥∥∥∥}
for k ∈ Z+

κ , where subtraction and addition of the expressions

∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ, p), p)

(
µ1

κ

ν1
κ

)
(n; ξ0, p0),

∂G

∂(x, y)
(n, (µκ, νκ)(n; ξ, p), p)

(
µ1

κ

ν1
κ

)
(n; ξ0, p0),

respectively, in the corresponding norms and the use of (3.4) leads to∥∥∥∥(
µ1

κ

ν1
κ

)
(k; ξ, p)−

(
µ1

κ

ν1
κ

)
(k; ξ0, p0)

∥∥∥∥ ≤ max{a + b, c + d}

for k ∈ Z+
κ , with the abbreviations

a :=K1

k−1∑
n=κ

αk−n−1‖F̂ (n, ξ, p)‖
∥∥∥∥(

µ1
κ

ν1
κ

)
(n; ξ0, p0)

∥∥∥∥,

b :=K1|F |1
k−1∑
n=κ

αk−n−1

∥∥∥∥(
µ1

κ

ν1
κ

)
(n; ξ, p)−

(
µ1

κ

ν1
κ

)
(n; ξ0, p0)

∥∥∥∥,

c :=K2

∞∑
n=k

βk−n−1‖Ĝ(n, ξ, p)‖
∥∥∥∥(

µ1
κ

ν1
κ

)
(n; ξ0, p0)

∥∥∥∥,
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d :=K2|G|1
∞∑

n=k

βk−n−1

∥∥∥∥(
µ1

κ

ν1
κ

)
(n; ξ, p)−

(
µ1

κ

ν1
κ

)
(n; ξ0, p0)

∥∥∥∥
and

(3.33)

F̂ (n, ξ, p) :=
∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ, p), p)

− ∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ0, p0), p0),

Ĝ(n, ξ, p) :=
∂G

∂(x, y)
(n, (µκ, νκ)(n; ξ, p), p)

− ∂G

∂(x, y)
(n, (µκ, νκ)(n; ξ0, p0), p0).

With the aid of the relation (3.16) one obtains

(3.34)
∥∥∥∥(

µ1
κ

ν1
κ

)
(k; ξ, p)−

(
µ1

κ

ν1
κ

)
(k; ξ0, p0)

∥∥∥∥γκ−k

(3.14)

≤ aγκ−k + cγκ−k + L

∥∥∥∥(
µ1

κ

ν1
κ

)
(ξ, p)−

(
µ1

κ

ν1
κ

)
(ξ0, p0)

∥∥∥∥+

κ,γ

for k ∈ Z+
κ . We define γ1 := α + σ to get (µ1

κ, ν1
κ)(ξ0, p0) ∈ `1κ,γ1

. In the sums
a and c we can estimate the mapping (µ1

κ, ν1
κ)(ξ0, p0) using its γ+

1 -norm, which
yields

a ≤K1γ
−κ
1 αk−1

∥∥∥∥(
µ1

κ

ν1
κ

)
(ξ0, p0)

∥∥∥∥+

κ,γ1

k−1∑
n=κ

(
γ1

α

)n

‖F̂ (n, ξ, p)‖ for k ∈ Z+
κ ,

c ≤K2γ
−κ
1 βk−1

∥∥∥∥(
µ1

κ

ν1
κ

)
(ξ0, p0)

∥∥∥∥+

κ,γ1

∞∑
n=k

(
γ1

β

)n

‖Ĝ(n, ξ, p)‖ for k ∈ Z+
κ .

Now we substitute these expressions into (3.34) and pass over to the supremum
over k ∈ Z+

κ to derive∥∥∥∥(
µ1

κ

ν1
κ

)
(ξ, p)−

(
µ1

κ

ν1
κ

)
(ξ0, p0)

∥∥∥∥+

κ,γ

(3.14)

≤ max{K1,K2}
1− L

∥∥∥∥(
µ1

κ

ν1
κ

)
(ξ0, p0)

∥∥∥∥+

κ,γ1

(
γ

γ1

)κ

sup
k∈Z+

κ

W (k, ξ, p)

with

(3.35) W (k, ξ, p) :=
1
α

(
α

γ

)k k−1∑
n=κ

(
γ1

α

)n

‖F̂ (n, ξ, p)‖

+
1
β

(
β

γ

)k ∞∑
n=k

(
γ1

β

)n

‖Ĝ(n, ξ, p)‖.
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Therefore it is sufficient to prove the following limit relation

(3.36) lim
(ξ,p)→(ξ0,p0)

sup
k∈Z+

κ

W (k, ξ, p) = 0

to show the claim in the present Step 6. We proceed indirectly and assume
the equation (3.36) does not hold. Then there exists an ε > 0 and a sequence
((ξi, pi))i∈N in X × P with limi→∞(ξi, pi) = (ξ0, p0) and

(3.37) sup
k∈Z+

κ

W (k, ξi, pi) > ε for i ∈ N,

which moreover leads to the existence of a sequence (ki)i∈N in Z+
κ such that

(3.38) W (ki, ξi, pi) > ε for i ∈ N.

Apart from this, we get (cf. (3.4), (3.33))

W (k, ξ, p)
(3.35)

≤ 2|F |1
α

(
α

γ

)k k−1∑
n=κ

(
γ1

α

)n

+
2|G|1

β

(
β

γ

)k ∞∑
n=k

(
γ1

β

)n

≤
(

2|F |1
γ1 − α

+
2|G|1
β − γ1

)(
γ1

γ

)k

for k ∈ Z+
κ , and since γ1/γ < 1, the right-hand side of this estimate converges

to 0 for k →∞ which yields limk→∞W (k, ξ, p) = 0 uniformly in (ξ, p) ∈ X ×P.
Because of (3.38) the sequence (ki)i∈N in Z+

κ has to be bounded above, i.e. there
exists an integer K > κ with ki ≤ K for all i ∈ N and this is used to obtain

W (ki, ξi, pi) ≤
1
α

(
α

γ

)κ K−1∑
n=κ

(
γ1

α

)n

‖F̂ (n, ξ, p)‖(3.39)

+
1
β

(
β

γ

)K ∞∑
n=κ

(
γ1

β

)n

‖Ĝ(n, ξ, p)‖.

The continuity of (µκ, νκ)(n, · ) from Step 1 yields limi→∞(µκ, νκ)(n; ξi, pi) =
(µκ, νκ)(n; ξ0, p0) for n ∈ Z+

κ and therefore the finite sum in (3.39) tends to
0 for i → ∞ by (3.33) and the continuity of ∂F/∂(x, y). By the continuity of
∂G/∂(x, y) the infinite sum in (3.39) does the same and we can apply Lebesgue’s
Theorem, which finally implies limi→∞W (ki, ξi, pi) = 0. Of course this contra-
dicts (3.38) and consequently we have shown the above claim in Step 6.

Step 7. We have the identity s(κ, ξ, p) = νκ(ξ, p)(κ) for κ ∈ I, ξ ∈ X ,
p ∈ P and by well-known properties of the evaluation map (see [2, Lemma 3.4])
it follows that the mapping s: I ×X ×P → Y is continuously differentiable with
respect to its second variable.

(b) Since part (b) of the theorem can be proved along the same lines as part
(a) we present only a rough sketch of the proof. Analogously to Lemma 3.4, for
initial values η ∈ Y and parameters p ∈ P, the γ−-quasibounded solutions of the
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system (3.1) may be characterized as the fixed points of a mapping T κ: `−κ,γ(X ×
Y)× Y × P → `−κ,γ(X × Y),

(3.40) (T κ(µ, ν; η, p))(k) :=


k−1∑

n=−∞
Φ(k, n + 1)F (n, (µ, ν)(n), p)

Ψ(k, κ)η −
κ−1∑
n=k

Ψ(k, n + 1)G(n, (µ, ν)(n), p)


for k ∈ Z−κ . Here the variation of constant formula in backward time and [1,
Lemma 3.2(a)] are needed. Now T κ can be treated just as Tκ in (a). In order to
prove the counterpart of Lemma 3.3 the two results [1, Lemmas 3.3, 3.4(a)] have
to be replaced by [1, Lemmas 3.2(a), 3.5]. It follows from the assumption (3.5)
that also T κ is a contraction on the space `−κ,γ(X × Y) and if (µκ, νκ)(η, p) ∈
`−κ,γ(X×Y) denotes its unique fixed point, we define the function r: I×Y×P → X
by r(κ, η, p) :=

(
µκ(η, p)

)
(κ). The claimed properties of r can be proved along

the lines of part (a).
(c) The proof of part (c) can be done just as in [1, Theorem 4.1(c)] and hence

the proof of Theorem 3.5 is complete. �

4. Higher order smoothness of invariant fiber bundles

In [2] a higher order smoothness result for the fiber bundles S or R in a nearly
hyperbolic situation is proved, i.e. if the growth rates α, β and the real σmax

from Hypothesis 3.1 satisfy α + σmax ≤ 1 or 1 ≤ β− σmax, respectively. Now we
weaken this assumption and replace it by the so-called gap-condition. However,
in contrast to [2], we cannot use the uniform contraction principle here.

Theorem 4.1 (Cm-smoothness of invariant fiber bundles). We assume Hy-
pothesis 3.1. Then the statements of Theorem 3.5 hold and moreover, the map-
pings s and r satisfy the following statements:

(a) Under the gap-condition

(4.1) αms < β

for some integer ms ∈ {1, . . . , m} and if

σmax = min
{

β − α

2
, α

(
ms

√
α + β

α + αms

)
− 1

}
,

the mapping s: I × X × P → Y is ms-times continuously differentiable
in the second argument with globally bounded derivatives∥∥∥∥∂ns

∂ξn
(κ, ξ, p)

∥∥∥∥
Ln(X ;Y)

≤ Cn for n ∈ {1, . . . , ms}, (κ, ξ, p) ∈ I ×X × P,

where in particular C1 := σK1/(σ −max{K1|F |1,K2|G|1}),
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(b) in case I = Z, under the gap-condition α < βmr for some integer mr ∈
{1, . . . , m} and if σmax = min{(β−α)/2, β(1− mr

√
(α + β)/(β + βmr ))},

the mapping r: I × Y × P → X is mr-times continuously differentiable
in the second argument with globally bounded derivatives∥∥∥∥∂nr

∂ηn
(κ, η, p)

∥∥∥∥
Ln(Y;X )

≤ Cn for n ∈ {1, . . . , mr}, (κ, η, p) ∈ I × Y × P,

where in particular C1 := σK2/(σ −max{K1|F |1,K2|G|1}),
(c) the global bounds C2, . . . , Cm ≥ 0 can be determined recursively using

the formula

(4.2) Cn := max
{

K1

n∑
j=2

|F |j
∑

(N1,... ,Nj)∈P <
j (n)

j∏
i=1

C#Ni
,

K2

n∑
j=2

|G|j
∑

(N1,... ,Nj)∈P <
j (n)

j∏
i=1

C#Ni

}/
(σ −max{K1,K2}max{|F |1, |G|1})

for n ∈ {2, . . . , m}.

The following example shows that the gap-condition (4.2) is sharp, i.e. the
invariant fiber bundle S from Theorem 3.5(a) is not Cm in general, even if the
non-linearities F and G are C∞-functions.

Example 4.2. The two-dimensional autonomous difference equation

(4.3)

{
x′ = ex,

y′ = emy + emxmΘρ(x2 + y2),

satisfies Hypothesis 3.1 with α = e, β = em and K1 = K2 = 1, where Θρ: [0,∞)
→ [0, 1] is a C∞-cut-off-function with Θρ(t) = 1 for t ∈ [0, ρ] and Θρ(t) = 0
for t ∈ [2ρ,∞). Here we choose the real constant ρ > 0 small enough such that
condition (3.5) is satisfied with

σmax = min
{

β − α

2
, α

(
m−1

√
α + β

α + αm−1
− 1

)}
.

Now for every c ∈ R the sets

Sc := {(ξ, η) ∈ Bρ(0, 0) \ {(0, 0)} : η = (ξm/2) ln ξ2 + cξm} ∪ {(0, 0)}

contain the origin and are positively invariant with respect to (4.3), i.e. Z × Sc

is an invariant fiber bundle. Additionally, each point (ξ, η) ∈ Bρ(0, 0), ξ 6=
0, is contained in exactly one of the sets Sc, namely for c = η/ξm − ln ξ2/2.
Hence the restriction of the pseudo-stable fiber bundle S from Theorem 4.1 to
Z×Bρ(0, 0) has the form Z× Sc for some c ∈ R. On the other hand, each Sc is
a graph of a Cm−1-function sc(ξ) = η, but sc fails to be m-times continuously



Cm-Smoothness of Invariant Fiber Bundles 131

differentiable. Note that in the present example the gap-condition α < βms is
only fulfilled for ms ∈ {1, . . . , m − 1}. A similar example demonstrating this
smoothness deficiency for the pseudo-unstable fiber bundle R can be found in
[2, Example 4.13].

Remark 4.3. Hypothesis 3.1(b) on the non-linearities can be relaxed in the
way that the partial derivatives of F and G of order 2 to up to m may be allowed
to grow exponentially in k. More precisely, if for each integer n ∈ {2, . . . ,m} we
assume that for k ∈ I, x ∈ X , y ∈ Y and p ∈ P the estimates∥∥∥∥ ∂nF

∂(x, y)n
(k, x, y, p)

∥∥∥∥
Ln(X×Y;X )

< Mγ|k|n ,

∥∥∥∥ ∂nG

∂(x, y)n
(k, x, y, p)

∥∥∥∥
Ln(X×Y;Y)

< Mγ|k|n

hold with positive constants M,γ2, . . . , γn, then Theorem 4.1 is true provided
a stronger gap-condition holds which becomes more and more restrictive as the
growth rates γ2, . . . , γn become larger. This can be seen along the lines of the
following proof of Theorem 4.1. One has to balance the growth rates of the
evolution operators Φ(k, l) and Ψ(k, l) with the growth rates γ2, . . . , γn of the
non-linearities.

Proof of Theorem 4.1. (a) Since the proof is quite involved we subdi-
vide it into six steps and use the conventions and notation from the proof of
Theorem 3.5. We choose κ ∈ I.

Step 1. Let γ ∈ [α + σ, β − σ] and ξ ∈ X , p ∈ P be arbitrary. By formal
differentiation of the fixed point equation (3.20) with respect to ξ ∈ X using
the higher order chain rule from Theorem 2.1, we obtain another fixed point
equation

(4.4)
(

µl
κ

νl
κ

)
(ξ, p) = T l

κ((µl
κ, νl

κ)(ξ, p); ξ, p)

for the formal partial derivative (µl
κ, νl

κ) of

(µκ, νκ):X × P → `+κ,γ(X × Y)

of order l ∈ {2, . . . , ms}, where the right-hand side of (4.4) is given by

(4.5) (T l
κ(µl, νl; ξ, p)

)
(k)

:=


k−1∑
n=κ

Φ(k, n + 1)
[

∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ, p), p)

(
µl

νl

)
(n) + Rl

1(n, ξ, p)
]

−
∞∑

n=k

Ψ(k, n + 1)
[

∂G

∂(x, y)
(n, (µκ, νκ)(n; ξ, p), p)

(
µl

νl

)
(n) + Rl

2(n, ξ, p)
]


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for k ∈ Z+
κ . Here (µl, νl) is a mapping from Z+

κ to Ll(X ;X ×Y). The remainder
Rl = (Rl

1, R
l
2) has the following two representations as a partially unfolded

derivative tree

(4.6) Rl(n, ξ, p)

(2.2)
=

l−1∑
j=1

(
l − 1

j

)
∂j

∂ξj

[
∂(F,G)
∂(x, y)

(n, (µκ, νκ)(n; ξ, p), p)
](

µl−j
κ

νl−j
κ

)
(n; ξ, p),

which is appropriate for the induction in the subsequent Step 4, and as a totally
unfolded derivative tree

(4.7) Rl(n, ξ, p)
(2.3)
=

l∑
j=2

∑
(N1,... ,Nj)∈P <

j (l)

∂j(F,G)
∂(x, y)j

(n, (µκ, νκ)(n; ξ, p), p)

·
(

µ#N1
κ

ν#N1
κ

)
(n; ξ, p) . . .

(
µ

#Nj
κ

ν
#Nj
κ

)
(n; ξ, p),

which enables us to obtain explicit global bounds for the higher order derivatives
in Step 2. For our forthcoming considerations it is crucial that Rl does not
depend on (µl

κ, νl
κ). In the following steps we will solve the fixed point equation

(4.4) for the operator T l
κ . As a preparation we define for every l ∈ {1, . . . , ms}

the abbreviations

γl := max{α + σ, (α + σ)l} =

{
α + σ if α + σ < 1,

(α + σ)l if α + σ ≥ 1.

Because of the gap-condition (4.2) and with our choice of σmax, it is easy to see
that one has the inclusion γ1, . . . , γms

∈ [α + σ, β − σ), which in case α + σ < 1
follows from σ < (β − α)/2 and otherwise essentially results from (α + σ)ms <

β − σ, which in turn is implied by

(α + σ)ms + α + σ =αms

(
1 +

σ

α

)ms

+ α

(
1 +

σ

α

)
≤αms

(
1 +

σ

α

)ms

+ α

(
1 +

σ

α

)ms

< α + β

if σ < α( ms
√

(α + β)/(α + αms)− 1).
Now we formulate for m ∈ {1, . . . , ms} the induction hypotheses

A(m): For any l ∈ {1, . . . , m} and γ ∈ [γl, β−σ) the operator T l
κ : `l

κ,γ×X×P →
`l
κ,γ satisfies:

(a) It is well-defined,
(b) T l

τ ( · ; ξ, p) is a uniform contraction in ξ ∈ X , p ∈ P,
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(c) the unique fixed point (µl
κ, νl

κ)( · ; ξ, p) = (µl
κ, νl

κ)(ξ, p) of T l
κ( · ; ξ, p)

is globally bounded in the γ+
l -norm∥∥∥∥(

µl
κ

νl
κ

)
(n; ξ, p)

∥∥∥∥ ≤ Clγ
n−κ
l for n ∈ Z+

κ , ξ ∈ X , p ∈ P

with the constants Cl ≥ 0 given in (4.2),
(d) if γl < γ then (µl−1

κ , νl−1
κ ):X × P → `l

κ,γ is continuously partially
differentiable with respect to ξ ∈ X with derivative

∂

∂ξ

(
µl−1

κ

νl−1
κ

)
=

(
µl

κ

νl
κ

)
:X × P → `l

κ,γ .

For m = 1 the proof of Theorem 3.5 implies the induction hypothesis A(1)
with C1 = K1/(1− L) (cf. (3.25)).

Now we assume A(m− 1) for an m ∈ {2, . . . ,ms} and we will prove A(m) in
the following five steps.

Step 2. For every γ ∈ [γm, β − σ) the operator T m
κ : `m

κ,γ × X × P → `m
κ,γ is

well-defined and satisfies the estimate

(4.8) ‖T m
κ (µm, νm; ξ, p)‖+κ,γ ≤ L

∥∥∥∥(
µm

νm

) ∥∥∥∥+

κ,γ

+ max
{

K1

σ

m∑
j=2

|F |j
∑

(N1,... ,Nj)∈P <
j (m)

j∏
i=1

C#Ni
,

K2

σ

m∑
j=2

|G|j
∑

(N1,... ,Nj)∈P <
j (m)

j∏
i=1

C#Ni

}

for (µm, νm) ∈ `m
κ,γ , ξ ∈ X , p ∈ P, i.e. A(m)(a) holds.

Let l ∈ {2, . . . , m}, ξ ∈ X , p ∈ P be arbitrary and choose γ ∈ [γl, β − σ).
Using the estimate γ#N1 · sγ#Nj

≤ γl for any ordered partition (N1, . . . , Nj) ∈
P<

j (l) of length j ∈ {2, . . . , l}, from (3.2), (3.4) and A(m− 1)(c) we obtain the
inequality

(4.9) ‖Rl(k,ξ, p)‖
(4.7)

≤ max
{

K1

k−1∑
n=κ

αk−n−1
l∑

j=2

|F |j
∑

(N1,... ,Nj)∈P <
j (l)

j∏
i=1

C#Ni
γn−κ
#Ni

,

K2

∞∑
n=k

βk−n−1
l∑

j=2

|G|j
∑

(N1,... ,Nj)∈P <
j (l)

j∏
i=1

C#Ni
γn−κ
#Ni

}

≤ max
{

K1

k−1∑
n=κ

αk−n−1γn−κ
l

l∑
j=2

|F |j
∑

(N1,... ,Nj)∈P <
j (l)

j∏
i=1

C#Ni ,



134 Ch. Pötzsche — S. Siegmund

K2

∞∑
n=k

βk−n−1γn−κ
l

l∑
j=2

|G|j
∑

(N1,... ,Nj)∈P <
j (l)

j∏
i=1

C#Ni

}

≤ max
{

K1

γl − α

l∑
j=2

|F |j
∑

(N1,... ,Nj)∈P <
j (l)

j∏
i=1

C#Ni ,

K2

β − γl

l∑
j=2

|G|j
∑

(N1,... ,Nj)∈P <
j (l)

j∏
i=1

C#Ni

}
γk−κ

for k ∈ Z+
κ . Now let γ ∈ [γm, β−σ) be arbitrary but fixed, and (µm, νm) ∈ `m

κ,γ .
With the aid of the above estimate (4.9) we obtain

(4.10) ‖T m
κ (µm,νm; ξ, p)(k)‖γκ−k

(4.5)

≤ max
{

K1|F |1
k−1∑
n=κ

αk−n−1γn−κ

∥∥∥∥(
µm

νm

) ∥∥∥∥+

κ,γ

+
K1

γm − α

m∑
j=2

|F |j
∑

(N1,... ,Nj)∈P <
j (m)

j∏
i=1

C#Ni
γk−κ,

K2|G|1
∞∑

n=k

βk−n−1γn−κ

∥∥∥∥(
µm

νm

) ∥∥∥∥+

κ,γ

+
K2

β − γm

m∑
j=2

|G|j
∑

(N1,... ,Nj)∈P <
j (m)

j∏
i=1

C#Niγ
k−κ

}
γκ−k

≤ max
{

K1|F |1
γ − α

∥∥∥∥(
µm

νm

) ∥∥∥∥+

κ,γ

+
K1

γm − α

m∑
j=2

|F |j
∑

(N1,... ,Nj)∈P <
j (m)

j∏
i=1

C#Ni
,

K2|G|1
β − γ

∥∥∥∥(
µm

νm

) ∥∥∥∥+

κ,γ

+
K2

β − γm

m∑
j=2

|G|j
∑

(N1,... ,Nj)∈P <
j (m)

j∏
i=1

C#Ni

}
(3.14)

≤ L

∥∥∥∥(
µm

νm

) ∥∥∥∥+

κ,γ

+ max
{

K1

γm − α

m∑
j=2

|F |j
∑

(N1,... ,Nj)∈P <
j (m)

j∏
i=1

C#Ni ,
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K2

β − γm

m∑
j=2

|G|j
∑

(N1,... ,Nj)∈P <
j (m)

j∏
i=1

C#Ni

}

for k ∈ Z+
κ , and passing over to the least upper bound over k ∈ Z+

κ implies our
claim T m

κ (µm, νm; ξ, p) ∈ `m
κ,γ . In particular the estimate (4.8) is a consequence

of (4.10) and the choice of γm ∈ [α + σ, β − σ).

Step 3. For every γ ∈ [γm, β − σ) the operator T m
κ ( · ; ξ, p): `m

κ,γ → `m
κ,γ is

a uniform contraction in ξ ∈ X , p∈P. Moreover, the fixed point (µm
κ , νm

κ )(ξ, p)∈
`m
κ,γ does not depend on γ ∈ [γm, β − σ) and satisfies

(4.11)
∥∥∥∥(

µm
κ

νm
κ

)
(ξ, p)

∥∥∥∥+

κ,γ

≤ Cm for ξ ∈ X , p ∈ P,

i.e. A(m)(b) and (c) holds.
Choose γ ∈ [γm, β − σ) arbitrarily but fixed, and let (µm, νm), (µm, νm) ∈

`m
κ,γ , ξ ∈ X , p ∈ P. Keeping in mind that the remainder Rm does not depend on

(µm, νm) or (µm, νm), respectively, from (3.2) and (3.4) we obtain the Lipschitz
estimate

‖T m
κ (µm, νm; ξ, p)(k)− T m

κ (µm, νm; ξ, p)(k)‖γκ−k

(4.5)

≤ max
{

K1|F |1
k−1∑
n=κ

αk−n−1

∥∥∥∥(
µm

νm

)
(n)−

(
µm

νm

)
(n)

∥∥∥∥,

K2|G|1
∞∑

n=k

βk−n−1

∥∥∥∥(
µm

νm

)
(n)−

(
µm

νm

)
(n)

∥∥∥∥}
γκ−k

≤ max
{

K1|F |1
k−1∑
n=κ

αk−n−1γn−κ,K2|G|1
∞∑

n=k

βk−n−1γn−κ

}

· γκ−k

∥∥∥∥(
µm

νm

)
−

(
µm

νm

) ∥∥∥∥+

κ,γ

≤max
{

K1|F |1
γ − α

,
K2|G|1
β − γ

}∥∥∥∥(
µm

νm

)
−

(
µm

νm

) ∥∥∥∥+

κ,γ

(3.14)

≤ L

∥∥∥∥(
µm

νm

)
−

(
µm

νm

) ∥∥∥∥+

κ,γ

for k ∈ Z+
κ , and passing over to the least upper bound over k ∈ Z+

κ together
with (3.10) implies our claim. Therefore Banach’s fixed point theorem guaran-
tees the unique existence of a fixed point (µm

κ , νm
κ )(ξ, p) ∈ `m

κ,γ of the mapping
T m

κ ( · ; ξ, p): `m
κ,γ → `m

κ,γ . It can be seen along the same lines as in Step 4 in the
proof of Theorem 3.5 that (µm

κ , νm
κ )(ξ, p) does not depend on γ ∈ [γm, β − σ).

The fixed point identity (4.4) for (µm
κ , νm

κ )(ξ, p) together with (4.8) and (3.10)
finally implies (4.11).
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Step 4. For every γ ∈ (γm, β − σ) and p ∈ P the mapping

(µm−1
κ , νm−1

κ )( · , p):X → `m
κ,γ

is differentiable with derivative

(4.12)
∂

∂ξ

(
µm−1

κ

νm−1
κ

)
=

(
µm

κ

νm
κ

)
: X × P → `m

κ,γ .

Let γ ∈ (γm, β−σ) and p ∈ P be fixed. First we show that (µm−1
κ , νm−1

κ )( · , p)
is differentiable and then we prove that the derivative is given by

(µm
κ , νm

κ )( · , p):X → L(X ; `m−1
κ,γ ) ∼= `m

κ,γ

(cf. Lemma 2.2(c)). Thereto choose ξ ∈ X arbitrarily, but fixed. From now on
for the rest of the proof of the present Step 4 we suppress the p-dependence of
the mappings under consideration; nevertheless p ∈ P is arbitrary. Using the
fixed point equation (4.4) for (µm−1

κ , νm−1
κ ) we get for h ∈ X the identity(

µm−1
κ

νm−1
κ

)
(k; ξ + h)−

(
µm−1

κ

νm−1
κ

)
(k; ξ)

(4.5)
=



k−1∑
n=κ

Φ(k, n + 1)
[

∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ + h))

(
µm−1

κ

νm−1
κ

)
(n; ξ + h)

+Rm−1
1 (n, ξ + h)

]

−
∞∑

n=k

Ψ(k, n + 1)
[

∂G

∂(x, y)
(n, (µκ, νκ)(n; ξ + h))

(
µm−1

κ

νm−1
κ

)
(n; ξ + h)

+Rm−1
2 (n, ξ + h)

]



−



k−1∑
n=κ

Φ(k, n + 1)
[

∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ))

(
µm−1

κ

νm−1
κ

)
(n; ξ)

+Rm−1
1 (n, ξ)

]

−
∞∑

n=k

Ψ(k, n + 1)
[

∂G

∂(x, y)
(n, (µκ, νκ)(n; ξ))

(
µm−1

κ

νm−1
κ

)
(n; ξ)

+Rm−1
2 (n, ξ)

]


for k ∈ Z+

κ .



Cm-Smoothness of Invariant Fiber Bundles 137

This leads to

(4.13)
(

µm−1
κ

νm−1
κ

)
(k; ξ + h)−

(
µm−1

κ

νm−1
κ

)
(k; ξ)

−



k−1∑
n=κ

Φ(k, n + 1)
∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ + h))

·
[(

µm−1
κ

νm−1
κ

)
(n; ξ + h)−

(
µm−1

κ

νm−1
κ

)
(n; ξ)

]

−
∞∑

n=k

Ψ(k, n + 1)
∂G

∂(x, y)
(n, (µκ, νκ)(n; ξ + h))

·
[(

µm−1
κ

νm−1
κ

)
(n; ξ + h)−

(
µm−1

κ

νm−1
κ

)
(n; ξ)

]



=



k−1∑
n=κ

Φ(k, n + 1)
[

∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ + h))

− ∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ))

](
µm−1

κ

νm−1
κ

)
(n; ξ + h)

−
∞∑

n=k

Ψ(k, n + 1)
[

∂G

∂(x, y)
(n, (µκ, νκ)(n; ξ + h))

− ∂G

∂(x, y)
(n, (µκ, νκ)(n; ξ))

](
µm−1

κ

νm−1
κ

)
(n; ξ + h)



+


k−1∑
n=κ

Φ(k, n + 1)[Rm−1
1 (n, ξ + h)−Rm−1

1 (n, ξ)]

−
∞∑

n=k

Ψ(k, n + 1)[Rm−1
2 (n, ξ + h)−Rm−1

2 (n, ξ)]


for k ∈ Z+

κ . With sequences (µm−1, νm−1) ∈ `m−1
κ,γ and h ∈ X we define the

operators K ∈ L(`m−1
κ,γ ), E ∈ L(X ; `m−1

κ,γ ), J :X → `m−1
κ,γ as follows

(
K

(
µm−1

νm−1

) )
(k)

:=


k−1∑
n=κ

Φ(k, n + 1)
∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ))

(
µm−1

νm−1

)
(n)

−
∞∑

n=k

Ψ(k, n + 1)
∂G

∂(x, y)
(n, (µκ, νκ)(n; ξ))

(
µm−1

νm−1

)
(n)

 ,
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(Eh)(k) :=


k−1∑
n=κ

Φ(k, n + 1)Rm
1 (n, ξ)h

−
∞∑

n=k

Ψ(k, n + 1)Rm
2 (n, ξ)h


and

(4.14) (J (h))(k)

:=



k−1∑
n=κ

Φ(k, n + 1)
{[

∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ + h))

− ∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ))

]
·
(

µm−1
κ

νm−1
κ

)
(n; ξ + h) + Rm−1

1 (n, ξ + h)−Rm−1
1 (n, ξ)−Rm

1 (n, ξ)h
}

−
∞∑

n=k

Ψ(k, n + 1)
{[

∂G

∂(x, y)
(n, (µκ, νκ)(n; ξ + h))

− ∂G

∂(x, y)
(n, (µκ, νκ)(n; ξ))

]
·
(

µm−1
κ

νm−1
κ

)
(n; ξ + h) + Rm−1

2 (n, ξ + h)−Rm−1
2 (n, ξ)−Rm

2 (n, ξ)h
}


for k ∈ Z+

κ . In the subsequent lines we will show that K, E and J are well-
defined. Using (3.2) and (3.4) it is easy to see that K: `m−1

κ,γ → `m−1
κ,γ is linear

and satisfies the estimate∥∥∥∥K(
µm−1

νm−1

) ∥∥∥∥+

κ,γ

≤ max
{

K1|F |1
γ − α

,
K2|G|1
β − γ

}∥∥∥∥(
µm−1

νm−1

) ∥∥∥∥+

κ,γ

(3.14)

≤ L

∥∥∥∥(
µm−1

νm−1

) ∥∥∥∥+

κ,γ

,

which in turn gives us

(4.15) ‖K‖L(`m−1
κ,γ )

(3.10)
< 1.

Keeping in mind that Eh = T m
κ (0; ξ, p)h (cf. (4.5)), our Step 2 yields the inclusion

Eh ∈ `m−1
κ,γ , while E is obviously linear and continuous, hence E ∈ L(X ; `m−1

κ,γ ).
Arguments similar to those in Step 2, together with (4.9), lead to J (h) ∈ `m−1

κ,γ

for any h ∈ X . Because of (4.13) we obtain[(
µm−1

κ

νm−1
κ

)
(ξ + h)−

(
µm−1

κ

νm−1
κ

)
(ξ)

]
−K

[(
µm−1

κ

νm−1
κ

)
(ξ + h)−

(
µm−1

κ

νm−1
κ

)
(ξ)

]
= Eh + J (h)

for h ∈ X . Using the Neumann series (cf. [12, Theorem 2.1, p. 74]) and the
estimate (4.15), the linear mapping I

`m−1
κ,γ

− K ∈ L(`m−1
κ,γ ) is invertible and this



Cm-Smoothness of Invariant Fiber Bundles 139

implies(
µm−1

κ

νm−1
κ

)
(ξ + h)−

(
µm−1

κ

νm−1
κ

)
(ξ) = [I

`m−1
κ,γ

−K]−1[Eh + J (h)] for h ∈ X .

Consequently it remains to show limh→0 J (h)/‖h‖ = 0 in `m−1
κ,γ , because then

one gets

lim
h→0

1
‖h‖

∥∥∥∥(
µm−1

κ

νm−1
κ

)
(ξ + h)−

(
µm−1

κ

νm−1
κ

)
(ξ)− [I

`m−1
κ,γ

−K]−1Eh

∥∥∥∥+

κ,γ

= 0,

i.e. the claim of the present Step 4 follows.
Nevertheless the proof of limh→0 ‖J (h)‖+κ,γ/‖h‖ = 0 needs a certain technical

effort. Thereto we use the fact that due to the induction hypothesis A(m−1)(d)
the remainder

Rm−1(n, ξ)
(4.6)
=

m−2∑
j=1

(
m− 2

j

)
∂j

∂ξj

[
∂(F,G)
∂(x, y)

(n, (µκ, νκ)(n; ξ))
](

µm−1−j
κ

νm−1−j
κ

)
(n; ξ)

is partially differentiable with respect to ξ ∈ X , where the derivative is given by

∂Rm−1

∂ξ
(n, ξ)

(4.6)
= Rm(n, ξ)

− ∂2(F,G)
∂(x, y)2

(n, (µκ, νκ)(n; ξ))
(

µ1
κ

ν1
κ

)
(n; ξ)

(
µm−1

κ

νm−1
κ

)
(n; ξ).

Using the abbreviation

∆Rm−1(n, ξ, h) :=
1
‖h‖

{
Rm−1(n, ξ + h)−Rm−1(n, ξ)

−
[
Rm(n, ξ)− ∂2(F,G)

∂(x, y)2
(n, (µκ, νκ)(n; ξ))

(
µ1

κ

ν1
κ

)
(n; ξ)

(
µm−1

κ

νm−1
κ

)
(n; ξ)

]
h

}
we obtain the limit relation

lim
h→0

∆Rm−1(n, ξ, h) = 0 for n ∈ Z+
κ .

Now we prove estimates for the components J1 and J2 of J = (J1,J2)
separately. For k ∈ Z+

κ we get

(J1(h))(k)
(4.14)
=

k−1∑
n=κ

Φ(k, n + 1)
{[

∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ + h))

− ∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ))

](
µm−1

κ

νm−1
κ

)
(n; ξ + h)

− ∂2F

∂(x, y)2
(n, (µκ, νκ)(n; ξ))

(
µ1

κ

ν1
κ

)
(n; ξ)

·
(

µm−1
κ

νm−1
κ

)
(n; ξ)h + ∆Rm−1

1 (n, ξ, h)‖h‖
}

,
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where subtraction and addition of the expression

∂2F

∂(x, y)2
(n, (µκ, νκ)(n; ξ))

·
[(

µκ

νκ

)
(n; ξ + h)−

(
µκ

νκ

)
(n; ξ)−

(
µ1

κ

ν1
κ

)
(n; ξ)h

](
µm−1

κ

νm−1
κ

)
(n; ξ + h)

leads to

(J1(h))(k)

=
k−1∑
n=κ

Φ(k, n + 1)
{[

∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ + h))

− ∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ))− ∂2F

∂(x, y)2
(n, (µκ, νκ)(n; ξ))

·
( (

µκ

νκ

)
(n; ξ + h)−

(
µκ

νκ

)
(n; ξ)

)](
µm−1

κ

νm−1
κ

)
(n; ξ + h)

+
∂2F

∂(x, y)2
(n, (µκ, νκ)(n; ξ))

·
[(

µκ

νκ

)
(n; ξ + h)−

(
µκ

νκ

)
(n; ξ)−

(
µ1

κ

ν1
κ

)
(n; ξ)h

](
µm−1

κ

νm−1
κ

)
(n; ξ + h)

+
∂2F

∂(x, y)2
(n, (µκ, νκ)(n; ξ))

(
µ1

κ

ν1
κ

)
(n; ξ)

·
[(

µm−1
κ

νm−1
κ

)
(n; ξ + h)−

(
µm−1

κ

νm−1
κ

)
(n; ξ)

]
h + ∆Rm−1

1 (n, ξ, h)‖h‖
}

for k ∈ Z+
κ . Using the quotient

∆
∂F

∂(x, y)
(n, x, y, h1, h2) :=

1
‖(h1, h2)‖

(
∂F

∂(x, y)
(n, x + h1, y + h2)

− ∂F

∂(x, y)
(n, x, y)− ∂2F

∂(x, y)2
(n, x, y)

(
h1

h2

) )
for n ∈ I and x ∈ X , y ∈ Y, h1 ∈ X \ {0} and h2 ∈ Y \ {0}, we obtain the
estimate

‖(J1(h))(k)‖ ≤
k−1∑
n=κ

‖Φ(k, n + 1)‖

·
[∥∥∥∥∆

∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ), (µκ, νκ)(n; ξ + h)− (µκ, νκ)(n; ξ))

∥∥∥∥
·
∥∥∥∥(

µκ

νκ

)
(n; ξ + h)−

(
µκ

νκ

)
(n; ξ)

∥∥∥∥∥∥∥∥(
µm−1

κ

νm−1
κ

)
(n; ξ + h)

∥∥∥∥
+

∥∥∥∥ ∂2F

∂(x, y)2
(n, (µκ, νκ)(n; ξ))

∥∥∥∥
·
∥∥∥∥(

µκ

νκ

)
(n; ξ + h)−

(
µκ

νκ

)
(n; ξ)−

(
µ1

κ

ν1
κ

)
(n; ξ)h

∥∥∥∥∥∥∥∥(
µm−1

κ

νm−1
κ

)
(n; ξ + h)

∥∥∥∥
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+
∥∥∥∥ ∂2F

∂(x, y)2
(n, (µκ, νκ)(n; ξ))

∥∥∥∥∥∥∥∥(
µ1

κ

ν1
κ

)
(n; ξ)

∥∥∥∥
·
∥∥∥∥[(

µm−1
κ

νm−1
κ

)
(n; ξ + h)−

(
µm−1

κ

νm−1
κ

)
(n; ξ)

]
h

∥∥∥∥ + ‖∆Rm−1
1 ‖(n; ξ, h)‖h‖

]
for k ∈ Z+

κ . With Hypothesis 3.1(b) (cf. (3.2), (3.4)), the abbreviations (3.27)
and the induction hypothesis A(m− 1)(c) we therefore get

‖(J1(h))(k)‖ ≤K1

k−1∑
n=κ

αk−n−1

[∥∥∥∥∆
∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ), (µκ, νκ)(n; ξ + h)

− (µκ, νκ)(n; ξ))
∥∥∥∥ 1
‖h‖

·
∥∥∥∥(

µκ

νκ

)
(n; ξ + h)−

(
µκ

νκ

)
(n; ξ)

∥∥∥∥Cm−1γ
n−κ
m−1

+ |F |2
∥∥∥∥(

∆µκ

∆νκ

)
(n, h)

∥∥∥∥Cm−1γ
n−κ
m−1

+ |F |2C1γ
n−κ
1

∥∥∥∥(
µm−1

κ

νm−1
κ

)
(n; ξ + h)−

(
µm−1

κ

νm−1
κ

)
(n; ξ)

∥∥∥∥
+ ‖∆Rm−1

1 (n, ξ, h)‖
]
‖h‖

for k ∈ Z+
κ . Rewriting this estimate and using Lemma 3.3 we obtain

‖J1(h)‖+κ,γ

‖h‖
(3.6)

≤ K2
1Cm−1

αγκ
m−1

γ − α

γ − α−K1|F |1
sup

k∈Z+
κ

V1(k, h)

+
K1|F |2Cm−1

α

(
γ

γm−1

)κ

sup
k∈Z+

κ

V2(k, h)

+
K1|F |2C1

α

(
γ

γ1

)κ

sup
k∈Z+

κ

V3(k, h) +
K1

α
γκ sup

k∈Z+
κ

V4(k, h)

with

V1(k, h) :=
(

α

γ

)k k−1∑
n=κ

(
γγm−1

α

)n

·
∥∥∥∥∆

∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ), (µκ, νκ)(n; ξ + h)− (µκ, νκ)(n; ξ))

∥∥∥∥,

V2(k, h) :=
(

α

γ

)k k−1∑
n=κ

(
γm−1

α

)n∥∥∥∥(
∆µ

∆ν

)
(n, h)

∥∥∥∥,

V3(k, h) :=
(

α

γ

)k k−1∑
n=κ

(
γ1

α

)n∥∥∥∥(
µm−1

κ

νm−1
κ

)
(n; ξ + h)−

(
µm−1

κ

νm−1
κ

)
(n; ξ)

∥∥∥∥,

V4(k, h) :=
(

α

γ

)k k−1∑
n=κ

α−n‖∆Rm−1
1 (n, ξ, h)‖.
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Similarly to Step 4 in the proof of Theorem 3.5 we get

lim
h→0

sup
k∈Z+

κ

Vi(k, h) = 0 for i ∈ {1, . . . , 4},

proving that

lim
h→0

‖J1(h)‖+κ,γ

‖h‖
= 0.

Completely analogous one shows

lim
h→0

‖J2(h)‖+κ,γ

‖h‖
= 0

and therefore we have verified the differentiability of the mapping

(µm−1
κ , νm−1

κ )( · , p):X → `m−1
κ,γ

for any p ∈ P. Finally we derive for any parameter p ∈ P that the derivative

∂

∂ξ

(
µm−1

κ

νm−1
κ

)
( · , p):X → L(X ; `m−1

κ,γ ) ∼= `m
κ,γ

is the fixed point mapping

(µm
κ , νm

κ )( · , p):X → `m
κ,γ

of T m
κ ( · ; · , p). From the fixed point equation (4.4) for (µm−1

κ , νm−1
κ ) we obtain

by partial differentiation with respect to ξ ∈ X the identity

∂

∂ξ

(
µm−1

κ

νm−1
κ

)
(k; ξ, p)

(4.5)
=


k−1∑
n=κ

Φ(k, n + 1)
∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ, p), p)

∂

∂ξ

(
µm−1

κ

νm−1
κ

)
(n; ξ, p)

−
∞∑

n=k

Φ(k, n + 1)
∂G

∂(x, y)
(n, (µκ, νκ)(n; ξ, p), p)

∂

∂ξ

(
µm−1

κ

νm−1
κ

)
(n; ξ, p)



+


k−1∑
n=κ

Φ(k, n + 1)Rm
1 (n, ξ, p)

−
∞∑

n=k

Ψ(k, n + 1)Rm
2 (n, ξ, p)


for k ∈ Z+

κ . Hence the derivative ∂(µm−1
κ , νm−1

κ )(ξ, p)/∂ξ ∈ L(X ; `m−1
κ,γ ) ∼= `m

κ,γ

(cf. Lemma 2.2(c)) is a fixed point of T m
κ ( · ; ξ, p), which in turn is unique by

Step 3, and consequently (4.12) holds.

Step 5. For every γ ∈ (γm, β − σ) the mapping

∂m(µκ, νκ)
∂ξm

:X × P → `m
κ,γ

is continuous, i.e. A(m)(d) holds.
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Because of (4.12) it suffices to prove the continuity of the mapping

(µm
κ , νm

κ ):X × P → `m
κ,γ

and this is analogous to Step 1 in the proof of Theorem 3.5 by adding and
subtracting the expressions

∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ, p), p)

(
µm

κ

νm
κ

)
(n; ξ0, p0),

∂G

∂(x, y)
(n, (µκ, νκ)(n; ξ, p), p)

(
µm

κ

νm
κ

)
(n; ξ0, p0),

in the corresponding estimates. Thus we have verified A(m).

Step 6. In the preceding five steps we have shown that (µκ, νκ):X × P →
`+κ,γ(X × P) is ms-times continuously partially differentiable with respect to its
first argument. With the identity s(κ, ξ, p) = νκ(ξ, p)(κ) the claim follows from
properties of the evaluation map (see [2, Lemma 3.4]) and the global bound for
the derivatives can be obtained using the fact

(4.16)
∥∥∥∥∂ns

∂ξn
(κ, ξ, p)

∥∥∥∥ =
∥∥∥∥∂nνκ

∂ξn
(ξ, p)(κ)

∥∥∥∥ ≤ ‖νn
κ (ξ, p)‖+κ,γ

(4.11)

≤ Cn

for ξ ∈ X , p ∈ P, and n ∈ {1, . . . , ms}. Hereby the expression for C1 is
a consequence of (3.25).

(b) The smoothness proof of the mapping r: I × Y × P → X is dual to the
above considerations for s. A formal differentiation of the identity (3.40) with
respect to η ∈ Y gives us a fixed point equation

(µl
κ, νl

κ)(η, p) = T l

κ((µl
κ, νl

κ)(η, p); η, p)

with the right-hand side

(4.17) (T l

κ(µl, νl; η, p))(k)

:=


k−1∑

n=−∞
Φ(k, n + 1)

[
∂F

∂(x, y)
(n, (µκ, νκ)(n; η, p), p)

(
µl

νl

)
(n) + R

l

1(n, η, p)
]

−
κ−1∑
n=k

Ψ(k, n + 1)
[

∂G

∂(x, y)
(n, (µκ, νκ)(n; η, p), p)

(
µl

νl

)
(n) + R

l

2(n, η, p)
]


for k ∈ Z−κ and parameters p ∈ P, where the remainder R

l
= (R

l

1, R
l

2) allows
representations analogous to (4.6) and (4.7). We omit the further details.

(c) The recursion for the global bounds Cn ≥ 0 of ‖∂ns(κ, ξ, p)/∂ξn‖ for
n ∈ {2, . . . , m}, in (4.2) is an obvious consequence of the estimate (4.10) from
Step 2 of part (a) in the present proof. A dual argument shows that the solution
of the fixed point equation for (4.17) is globally bounded by Cn as well, and an
estimate analogous to (4.16) gives us the global bounds for the partial derivatives
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of r. Hence we have shown the assertion (c) and the proof of Theorem 4.1 is
finished. �
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