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GLOBAL SPECIAL REGULAR SOLUTIONS
TO THE NAVIER–STOKES EQUATIONS

IN A CYLINDRICAL DOMAIN
WITHOUT THE AXIS OF SYMMETRY

Wojciech M. Zajączkowski

Abstract. Global existence of regular solutions to the Navier–Stokes

equations in a bounded cylindrical domain without the axis of symme-
try and with boundary slip conditions is proved. We showed the existence

of solutions without restrictions on the magnitude of the initial velocity

assuming only that the L2-norms of the angular derivative of the cylindri-
cal components of the initial velocity and the external force are sufficiently

small. To prove global existence some decay estimates on the external force

are imposed.

1. Introduction

We consider a motion of a viscous incompressible fluid described by the
Navier–Stokes equations in a bounded cylinder without the axis of symmetry
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under ideal boundary slip conditions (see [4]):

(1.1)

v,t + v · ∇v − divT(v, p) = f in ΩT = Ω× (0, T ),
div v = 0 in ΩT ,

v · n = 0 on ST = S × (0, T ),
n · T(v, p) · τα = 0, α = 1, 2, on ST ,

v|t=0 = v(0) in Ω,

where v = v(x, t) = (v1(x, t), v2(x, t), v3(x, t)) ∈ R3 is the velocity vector, p =
p(x, t) ∈ R the pressure, f = f(x, t) = (f1(x, t), f2(x, t), f3(x, t)) ∈ R3 the
external force field, n the unit outward vector normal to S = ∂Ω, τα, α = 1, 2,
are tangent vectors to S.
By T(v, p) we denote the stress tensor of the form

T(v, p) = νD(v)− pI,

where ν is the constant viscosity coefficient, D(v) = {vi,xj + vj,xi}i,j=1,2,3 the
dilatation tensor and I the unit matrix.
To describe domain Ω and the considered motion we introduce the cylindrical

coordinates r, ϕ, z by the relations x1 = r cosϕ, x2 = r sinϕ, x3 = z, where x1,
x2, x3 are the Cartesian coordinates.
We assume that Ω = {x ∈ R3 : 0 < R1 < r < R2, −a < z < a, ϕ ∈ [0, 2π]}.

Then S = S1 ∪ S2, where S1 = {x ∈ R3 : r is either R1 or R2, −a < z < a, ϕ ∈
[0, 2π]} and S2 = {x ∈ R3 : z is either −a or a, R1 < r < R2 and ϕ ∈ [0, 2π]}.
Let u be any vector. We introduce the cylindrical coordinates of u in the

following way: ur = u · er, uϕ = u · eϕ, uz = u · ez where er = (cosϕ, sinϕ, 0),
eϕ = (− sinϕ, cosϕ, 0), ez = (0, 0, 1) and dot denotes the scalar product in R3.
The above implies that Ω is a cylinder without the axis of symmetry. We

cutted of the axis of symmetry to simplify considerations. Our aim is to prove
global existence of solutions which are close to the axially symmetric solutions
(see the definition below). For this purpose we simplify considerations as much
as possible. Otherwise we should use weighted Sobolev spaces and repeat some
considerations from [4]. This needs a lot of additional considerations connected
with techniques of weighted spaces.

Definition 1.1. By an axially symmetric solution to (1.1) we mean such
solution that the cylindrical components of v, f , v(0) and p do not depend on ϕ.

Following [4] we distinguish the quantities:

h = hrer + hϕeϕ + hzez, hr = vr,ϕ, hϕ = vϕ,ϕ, hz = vz,ϕ,

q = p,ϕ, w = vϕ, α = rot v, χ = αϕ.
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To show global existence we need some additional problems which help us to
obtain an global estimate. First we have the problem for h and q

(1.2)

h,t − divD(h) +∇q = −v · ∇h− h · ∇v + g in ΩT ,
divh = 0 in Ωt,

h · n = 0 on ST ,

n · D(h) · τα = 0, α = 1, 2, on ST ,

h|t=0 = h(0) in Ω,

where g = fr,ϕer + fϕ,ϕeϕ + fz,ϕez.
The cylindrical components of vorticity have the form

αr =
1
r
(hz − rw,z), αϕ = vr,z − vz,r ≡ χ, αz =

1
r
[(rw),r − hr].

Next we get the following problem for χ

(1.3)

χ,t + v · ∇χ + (vr,r + vz,z)χ− ν∆χ+
νχ

r2

=
2ν
r2

(
− hϕ,z +

1
r
hz,ϕ

)
− 1
r

(
w,zhr − w,rhz +

w

r
hz

)
+
2
r
ww,z + Fϕ in ΩT ,

χ = 0 on ST ,

χ|t=0 = χ(0) in Ω,

where F = rot f . Moreover, we have also the problem for w

(1.4)

w,t + v · ∇w +
vr
r
w − ν∆w + ν w

r2
=
1
r
q +
2ν
r2
hr + fϕ in ΩT ,

w,r|r=Ri =
1
Ri
w i = 1, 2, on ST1 ,

w,z = 0 on ST2 ,

w|t=0 = w(0) in Ω.

Finally we need the following elliptic problem for v′ = (vr, vz)

vr,z − vz,r = χ in Ω,

vr,r + vz,z = −
1
r
(hϕ + vr) in Ω,

vr|S1 = 0, vz|S2 = 0.

The aim of this paper is to prove existence of global regular solutions to
problem (1.1). Since we are looking for global regular solutions to (1.1) with
large velocity we however need some smallness assumptions. In this paper we
assume that h(0) and g are sufficiently small in corresponding norms.
The paper is divided into the following steps.
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In Section 3 there are found estimates necessary for Section 4, which base
on the estimate for a weak solution (see Lemma 3.1). Therefore we examine
regularity of weak solutions. In Section 4 we prove existence and uniqueness
of local solutions with large existence time. The proof follows from the Leray–
Schauder fixed point theorem and utilizes some ideas from [5]. The results are
formulated in Theorems 1 and 2, respectively. In Section 5 we prove global
existence by prolonging the local solution step by step. The result is presented
in Theorem 3. To prove global existence we needed some decay estimates for the
external force.
We have to underline that global existence is possible thanks to the energy

estimate for χ (see Lemma 3.2), where the idea of the proof is taken from [2], [3]
and assumptions on smallness of h(0) and g which imply estimate (4.7) (see
Lemma 4.2).
In this paper the motion with large angular component of velocity is con-

sidered. This fact implies serious difficulties to get the crucial estimate for χ in
a neighbourhood of the axis of symmetry. We must underline that in a neighbour-
hood of the axis of symmetry the axially symmetric solution (see Definition 1.1)
behaves as 3-dimensional (see [6]), so we are not able to obtain any global in
time estimate for large vϕ. This implies that methods from [4] must be utilized
(see also [6]). This is the main reason why in this paper a cylinder without the
axis of symmetry is considered.
Now we formulate the main results of this paper. Let us introduce the quan-

tities

F (T ) = ‖g‖L2(ΩT ) + ‖fϕ‖L4/3(0,T ;L4(Ω)) + ‖Fϕ‖L2(ΩT ) + ‖f‖L5/2(ΩT ),
F0 = ‖h(0)‖L2(Ω) + ‖w(0)‖H1(Ω) + ‖χ(0)‖L2(Ω) + ‖v(0)‖W 6/55/2 (Ω),

γ(T ) = ‖h‖
W
2+β,1+β/2
δ (ΩT ) + ‖q‖Gβ,β/2δ (ΩT ),

k(T ) = ‖g‖L2(ΩT ) + ‖h(0)‖L2(Ω),

where notation is introduced in Section 2.

Theorem 1. Assume that v is a weak solution to problem (1.1). Assume
that v(0) ∈ W

6/5
5/2 (Ω), h(0) ∈ W

2+β−2/δ
δ (Ω), w(0) ∈ H1(Ω), χ(0) ∈ L2(Ω),

f ∈ L5/2(ΩT ), g ∈ W
β,β/2
δ (ΩT ), fϕ ∈ L4(0, T ;L4/3(Ω)), Fϕ ∈ L2(ΩT ), β < 1,

2/δ < β + 1/2, 5/δ < 3 + β, δ ∈ (1, 2). Assume that A > 0 is such that

G(T, 0, F (T ), F0)k(T ) + c(‖g‖Wβ,β/2δ (ΩT ) + ‖h(0)‖W 2+β−2/δδ (Ω)) < A,

where G is a nonlinear positive increasing function of its arguments determined
by (4.9). Assume that k(T ) is so small that

(1.5) G(T,A, F (T ), F0)k(T ) + c(‖g‖Wβ,β/2δ (ΩT ) + ‖h(0)‖W 2+β−2/δδ (Ω)) ≤ A.
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Then there exists a solution to problem (1.2) such that h ∈ W
2+β,1+β/2
δ (ΩT ),

q ∈ Gβ,β/2δ (ΩT ) (defined in (4.5)) and γ(T ) ≤ A.

Hence the weak solution to problem (1.1) is such that v ∈ W 2,15/2(Ω
T ), ∇p ∈

L5/2(ΩT ) and

(1.6) ‖v‖W 2,15/2(ΩT ) + ‖∇p‖L5/2(ΩT ) ≤ ϕ(A,F (T ), F0, T ),

where ϕ is an increasing positive function of its arguments. Moreover (1.5)
implies that T and k(T ) are inversely proportional.

Theorem 2. Let solutions of (1.1) be such that v ∈ L1(0, T ;W 1∞(Ω)). Then
they are unique.

Theorem 3. Let the assumptions of Theorem 1 be satisfied. Let v(0) ∈
W
4/3
3 (Ω). Let the decay estimates (5.1), (5.2) hold. Assume that T , the time of
local existence, is sufficiently large. Assume that f(0) ∈ L3(Ω), g(0) ∈ H1(Ω),
g,t(0) ∈ L2(Ω), Fϕ(0) ∈ L2(Ω), ‖g‖Lδ(Ω;Wβ/2δ (0,∞)) <∞. Assume that

‖h(0)‖1,Ω + |g(0)|2,Ω

is sufficiently small. Then the local solution determined by Theorem 1 can be
prolonged infinitely.

Hence there exists a global solution to problem (1.1).

2. Notation and auxiliary results

To simplify considerations we introduce

|u|p,Q = ‖u‖Lp(Q), Q ∈ {Ω, S,ΩT , ST }, p ∈ [1,∞],
‖u‖s,Q = ‖u‖Hs(Q), Q ∈ {Ω, S}, 0 ≤ s ∈ R,

‖u‖s,Q = ‖u‖W s,s/22 (Q), Q ∈ {ΩT , ST }, 0 ≤ s ∈ R,

|u|p,q,QT = ‖u‖Lq(0,T ;Lp(Q)), Q ∈ {Ω, S}, 1 ≤ p, q ≤ ∞,

|u|1,0,Ω = (‖u‖21,Ω + |u,t|22,Ω)1/2.

To consider spaces with fractional derivatives it is convenient to introduce
the notation

〈〈u〉〉α,p,Ω =
(∫
Ω

∫
Ω

|u(x)− u(x′)|p

|x− x′|3+αp
dx dx′

)1/p
,

〈〈u〉〉α,p,ΩT ,x =
(∫ T
0
〈〈u〉〉pα,p,Ωdt

)1/p
,

〈〈u〉〉α,p,(0,T ) =
(∫ T
0

∫ T
0

|u(t)− u(t′)|p

|t− t′|1+αp
dt dt′
)1/p

,
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〈〈u〉〉α,p,ΩT ,t =
(∫
Ω
〈〈u〉〉pα,p,(0,T ) dx

)1/p
,

where α ∈ (0, 1), p ∈ (1,∞), Ω ⊂ R3. Moreover,

‖u‖
W
α,α/2
p (ΩT ) = 〈〈u〉〉α,p,ΩT ,x + 〈〈u〉〉α/2,p,ΩT ,t + |u|p,ΩT .

The space W 2k+α,k+α/2p (ΩT ), k ∈ N, α ∈ (0, 1) has the norm

‖u‖
W
2k+α,k+α/2
p (ΩT )

=
∑

β+2b≤2k

‖Dβx∂btu‖Lp(ΩT ) + ‖∂
2k
x u‖Wα,α/2p (ΩT ) + ‖∂

k
t u‖Wα,α/2p (ΩT ).

By c we denote a generic constant which changes its magnitude from formula to
formula. By c(σ), ck(σ), k ∈ N, ϕ(σ), we understand generic functions which
are always positive and increasing.
From [1] we recall the result

Lemma 2.1. Assume l, k, j ∈ N, α, β ∈ (0, 1), p, q1, q2 ∈ (1,∞), Ω ⊂ R3.
Then we have

∇kW l+α,l/2+α/2p (ΩT ) ⊂ Lq2(0, T ;Lq1(Ω))

if 5/p− 3/q1 − 2/q2 + k ≤ l + α. Moreover, for u ∈ W l+α,l/2+α/2p (ΩT ) we have
the interpolation inequality

|∇ku|q1,q2,ΩT ≤ ε
1−κ‖u‖l+α,p,ΩT + cε−κ|u|p,ΩT ,

where

κ =
5/p− 3/q1 − 2/q2 + k

l + α
< 1.

The following imbedding holds

∇kW l+α,l/2+α/2p (ΩT ) ⊂W j+β,j/2+β/2q (ΩT )

if 5/p− 5/q + k + j + β ≤ l + α.
Let u ∈W l+α,l/2+α/2p (ΩT ). Then the interpolation inequality is valid

‖∇ku‖j+β,q,ΩT ≤ ε1−κ1‖u‖l+α,p,ΩT + cε−κ1 |u|p,ΩT ,

where

κ1 =
5/p− 5/q + k + j + β

l + α
< 1.

Lemma 2.2. Assume that

f ∈W β+ε/δ,β/2+ε/(2δ)δ1
(ΩT ) ∩ Lδ′2(Ω

T ), g ∈W β+ε/δ,β/2+ε/2δδ2
(ΩT ) ∩ Lδ′1(Ω

T ),

where β ∈ (0, 1), δ ∈ (1,∞), ε-arbitrary small positive number, 1/δ1 + 1/δ2 =
1/δ, 1/δ′1 + 1/δ

′
2 = 1/δ. Then

(2.1) ‖fg‖β,δ,ΩT ≤ c(‖f‖β+ε/δ,δ1,ΩT |g|δ2,Ωt + ‖g‖β+ε/δ,δ′1,ΩT |f |δ′2,ΩT ).
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Proof. To prove the lemma it is enough to examine the highest seminorms.
First we consider

〈〈fg〉〉β,δ,ΩT ,x =
(∫ T
0

∫
Ω

∫
Ω

|f(x, t)g(x, t)− f(x′, t)g(x′, t)|δ

|x− x|3+βδ
dx dx′ dt

)1/δ
≤
(∫ T
0

∫
Ω

∫
Ω

|f(x, t)− f(x′, t)|δλ1
|x− x′|3µ1λ1+δβλ1

dx dx′ dt

)1/(δλ1)
·
(∫ T
0

∫
Ω

∫
Ω

|g(x, t)|δλ2
|x− x′|3µ2λ2

dx dx′ dt

)1/(δλ2)
+
(∫ T
0

∫
Ω

∫
Ω

|g(x, t)− g(x′, t)|δλ′1
|x− x′|3µ′1λ′1+δβλ′1

dx dx′ dt

)1/(δλ′1)
·
(∫ T
0

∫
Ω

∫
Ω

|f(x′, t)|δλ′2
|x− x′|3µ′2λ′2

dx dx′ dt

)1/(δλ′2)
≡ I,

where 1/λ1 + 1/λ2 = 1, 1/λ′1 + 1/λ
′
2 = 1, µ1 + µ2 = 1, µ

′
1 + µ

′
2 = 1, and λi, λ

′
i,

µi, µ′i, i = 1, 2, are positive.
Asumming that µ2λ2 < 1, µ′2λ

′
2 < 1 there exists ε > 0 such that µ2 = 1/λ2−

ε/3, µ′2 = 1/λ
′
2 − ε/3, so 3µ1λ1 + δβλ1 = 3 + δλ1(β + ε/δ) and 3µ′1λ′1 + δβλ′1 =

3 + δλ′1(β + ε/δ) and

I ≤ 〈〈f〉〉β+ε/δ,δλ1,ΩT ,x|g|δλ2,ΩT + 〈〈g〉〉β+ε/δ,δλ′1,ΩT ,x|f |δ,λ′2,ΩT .

Next we examine

〈〈fg〉〉β/2,δ,ΩT ,t =
(∫
Ω

∫ T
0

∫ T
0

|f(x, t)g(x, t)− f(x, t′)g(x, t′)|δ

|t− t′|1+βδ/2
dx dt dt′

)1/δ
≤
(∫
Ω

∫ T
0

∫ T
0

|f(x, t)− f(x, t′)|δλ1
|t− t′|µ1λ1+βδλ1/2

dx dt dt′
)1/(δλ1)

·
(∫
Ω

∫ T
0

∫ T
0

|g(x, t)|δλ2
|t− t′|µ2λ2

dx dt dt′
)1/(δλ2)

+
(∫
Ω

∫ T
0

∫ T
0

|g(x, t)− g(x, t′)|δλ′1
|t− t′|µ′1λ′1+βδλ′1/2

dx dt dt′
)1/(δλ′1)

·
(∫
Ω

∫ T
0

∫ T
0

|f(x, t′)|δλ′2
|t− t′|µ′2λ′2

dx dt dt′
)1/(δλ′2)

≡ J,

where µi, µ′i, λi, λ
′
i for i = 1, 2, satisfy the same restrictions as before.

Now we take ε > 0 such that µ2 = 1/λ1 − ε/2, µ′2 = 1/λ′2 − ε/2 are positive.
Then

µ1λ1 +
β

2
δλ1 = 1 + δλ1

(
β

2
+

ε

2δ

)
and µ′1λ

′
1 +

β

2
δλ′1 = 1 + δλ

′
1

(
β

2
+

ε

2δ

)
and

J ≤ 〈〈f〉〉β/2+ε/(2δ),δλ1,ΩT ,t|g|δλ2,ΩT + 〈〈g〉〉β/2+ε/(2δ),δλ′1,ΩT ,t|f |δλ′2,ΩT .
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Adding the estimate for |fg|δ,ΩT and putting δi = δλi, δ′i = δλ′i, i = 1, 2, we
obtain (2.1). �

3. A priori estimates

We prove the existence of local solutions by the Leray–Schauder fixed point
theorem. For this purpose we need some a priori estimates. From [5] we have

Lemma 3.1. Assume that v(0) ∈ L2(Ω), f ∈ L2,1(ΩT ) ∩ L2(ΩT ), T < ∞.
Then there exist constants

d1(T ) =
∫ T
0
|f(t)|2,Ω dt+ |v(0)|2,Ω,

d22(T ) =
∫ T
0
|f(t)|22,Ω dt+

∫ T
0
|d1(t)|2 dt

≤ 2(1 + T )(|f |22,ΩT + |v(0)|
2
2,Ω) ≡ d

2
2(T ),

such that, for t ≤ T ,

|v(t)|2,Ω ≤ d1(T ),(3.1)

|v(t)|22,Ω + ν
∫ t
0
‖v(t′)‖21,Ω dt′ ≤ d22(T ).(3.2)

Next we obtain an estimate for χ.

Lemma 3.2. Let the assumptions of Lemma 3.1 hold. Let

(3.3) c1|hϕ|3/2,Ω ≤
1
4
ν,

where c1 is the constant from the imbedding H1(Ω) ⊂ L6(Ω). Let Fϕ ∈ L2(ΩT ),
χ(0) ∈ L2(Ω) and

(3.4) ∇h ∈ L2(0, T ;L6/5(Ω)), h ∈ L∞(0, T ;L3(Ω)), w ∈ L4(ΩT ).

Let us introduce the quantity

(3.5) A21(T ) =
∫ T
0
|∇h(t)|26/5,Ω dt+ d

2
2(T ) sup

t∈(0,T )
|h(t)|23,Ω +

∫ T
0
|w(t)|44,Ω dt.

Then solutions of problem (1.3) satisfy the inequality

(3.6)
∣∣∣∣χ(t)r

∣∣∣∣2
2,Ω
+
ν

4

∫ t
0

∥∥∥∥χ(t′)r
∥∥∥∥2
1,Ω

dt′ ≤ c(A21(t) + |Fϕ|22,Ωt) +
∣∣∣∣χ(0)r

∣∣∣∣2
2,Ω
.
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Proof. Multiplying (1.3)1 by χ/r2 and integrating the result over Ω yield

(3.7)
1
2
d

dt

∣∣∣∣χr
∣∣∣∣2
2,Ω
+ ν
∣∣∣∣∇χr
∣∣∣∣2
2,Ω
=
∫
Ω

hϕ
r

χ2

r2
dx

+ 2ν
∫
Ω

1
r2

(
− hϕ,z +

1
r
hz,ϕ

)
χ

r2
dx−

∫
Ω

1
r

(
w,zhr − w,rhz +

w

r
hz

)
χ

r2
dx

+ 2
∫
Ω

1
r
ww,z

χ

r2
dx+

∫
Ω
Fϕ

χ

r2
dx.

The first term on the r.h.s. we estimate by

|hϕ|3/2,Ω
∣∣∣∣χr
∣∣∣∣2
6,Ω
≤ c1|hϕ|3/2,Ω

∣∣∣∣∇χr
∣∣∣∣2
2,Ω
,

and the second by

c

∫
Ω
|∇h|
∣∣∣∣χr
∣∣∣∣ dx ≤ ε1∣∣∣∣χr

∣∣∣∣2
6,Ω
+ c
(
1
ε1

)
|∇h|26/5,Ω,

where ε1 ∈ (0, 1)
In view of the Hölder and Young invequalities the third term on the r.h.s. of

(3.7) is bounded by

ε2

∣∣∣∣χr
∣∣∣∣2
6,Ω
+ c
(
1
ε2

)
‖w‖21,Ω|h|23,Ω.

Finally the fourth term on the r.h.s. of (3.7) we examine in the way∫
Ω

1
r
(w2),z

χ

r2
dx = −

∫
Ω

1
r2
w2
(
χ

r

)
,z

dx ≡ I,

so

|I| ≤ ε3
∫
Ω

(
χ

r

)2
,z

dx+ c
(
1
ε3

)∫
Ω
w4 dx.

In view of the above considerations and assuming that ε1, ε2, ε3 are sufficiently
small (3.7) implies

(3.8)
1
2
d

dt

∣∣∣∣χr
∣∣∣∣2
2,Ω
+
3
4
ν

∣∣∣∣∇χr
∣∣∣∣2
2,Ω

≤ c
(
|hϕ|3/2,Ω

∣∣∣∣∇χr
∣∣∣∣2
2,Ω
+ |∇h|26/5,Ω + ‖w‖

2
1,Ω|h|23,Ω + |w|44,Ω + |Fϕ|22,Ω

)
.

Integrating (3.8) with respect to time, using (3.3) and the Poincare inequality
we obtain (3.6). This concludes the proof. �

To find estimates for (3.4)1 we need
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Lemma 3.3. Let the assumptions of Lemma 3.1 hold and let h ∈ L∞(0, T ;
L3(Ω)), g ∈ L2(ΩT ), h(0) ∈ L2(Ω). Then

(3.9) |h(t)|22,Ω + ν
∫ t
0
‖h(t′)‖21,Ω dt′ ≤ cd

2
2 sup
t′∈(0,t)

|h(t′)|23,Ω + c|g|22,Ωt + |h(0)|22,Ω,

where t ∈ (0, T ].

Proof. Multiplying (1.2)1 by h, integrating the result over Ω and using the
boundary conditions we obtain

(3.10)
1
2
d

dt
|h|22,Ω + ν‖h‖21,Ω

≤ ε1|h|26,Ω + c
(
1
ε1

)
|∇v|22,Ω|h|23,Ω + ε2|h|22,Ω + c

(
1
ε2

)
|g|22,Ω,

where ε1, ε2 ∈ (0, 1) and

(3.11)
∫
Ω
hr dx =

∫
Ω
hϕ dx =

∫
Ω
hz dx = 0.

Choosing ε1 and ε2 sufficiently small and integrating (3.10) with respect to time
we obtain (3.9). �

We also need

Lemma 3.4. Let h(0) ∈ L2(Ω), g ∈ L2(ΩT ), ∇v ∈ L2(0, T ;L3(Ω)). Then,
for t ∈ (0, T ],

(3.12) |h(t)|22,Ω ≤ e
c|∇v|23,2,Ωt [|g|22,Ωt + e−νt|h(0)|22,Ω],

and

(3.13) |h|22,Ωt ≤ c(|∇v|23,2,Ωt exp(c|∇v|23,2,Ωt) + 1)(|g|22,Ωt + |h(0)|22,Ω).

Proof. Multiplying (1.2)1 by h, integrating the result over Ω and using the
boundary conditions we obtain

(3.14)
1
2
d

dt
|h|22,Ω + ν‖h‖21,Ω ≤ c|∇v|23,Ω|h|22,Ω + c|g|22,Ω.

Continuing, we have

(3.15)
d

dt
(|h|22,Ωeνt−c

R t
0 |∇v(t

′)|23,Ω dt
′
) ≤ c|g|22,Ωeνt−c

R t
0 |∇v(t

′)|23,Ω dt
′
.

Integrating (3.15) with respect to time we arrive to (3.12). Integrating (3.14)
with respect to time and using (3.12) yield (3.13). �

To estimate |w|4,ΩT which appears in A1 (see (3.5)) we need
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Lemma 3.5. Let the assumptions of Lemma 3.1 hold. Let q, h, fϕ ∈ L4(0, T ;
L4/3(Ω)), w(0) ∈ L4(Ω). Then, for t ∈ (0, T ],

(3.16) |w(t)|4,Ω +
(∫ t
0
‖w2(t′)‖21,Ω dt′

)1/2
≤ c(d1 + |q|4/3,4,Ωt + |h|4/3,4,Ωt + |fϕ|4/3,4,Ωt + |w(0)|4,Ω).

Proof. Multiplying (1.4)1 by w|w|2, integrating over Ω and using the boun-
dary conditions we obtain

(3.17)
1
4
d

dt
|w|44,Ω + ν

∫
Ω
∇w∇(w|w|2) dx+ ν

∫
Ω

w4

r2
dx+

∫
Ω

vr
r
|w|4 dx

=
1
R1

∫
S1

|w(R1)|4 dS1−
1
R2

∫
S1

|w(R2)|4 dS1+
∫
Ω

(
q

r
+
2ν
r2
hr+fϕ

)
w|w|2 dx.

The second term on the l.h.s. equals to

3
4
ν

∫
Ω
|∇|w|2|2 dx,

the last term on the l.h.s. we estimate by∫
Ω
|vr||w|4 dx ≤ |vr|2,Ω|w|48,Ω ≤ ε1|∇|w|2|22,Ω + c

(
1
ε1
, d1

)
|w2|21,Ω,

where (3.2)1 was used. The boundary terms on the r.h.s. are bounded by

c|w2|22,S1 ≤ ε2|∇w
2|22,Ω + c

(
1
ε2

)
|w2|21,Ω,

and finally the last term on the r.h.s. by

ε3|w|412,Ω + c
(
1
ε3

)
(|q|44/3,Ω + |h|

4
4/3,Ω + |fϕ|

4
4/3,Ω).

Using the above estimates in (3.17), assuming that ε1, ε2, ε3 are sufficiently
small and integrating with respect to time we arrive to (3.16). �

In view of (3.9) and (3.16) inequality (3.6) takes, for t ≤ T , the form

(3.18)
∣∣∣∣χ(t)r

∣∣∣∣
2,Ω
+
(∫ t
0

∥∥∥∥χ(t′)r
∥∥∥∥2
1,Ω

dt′
)1/2

≤ c
(
d2(t)|h|3,∞,Ωt + |h|24/3,4,Ωt + |q|

2
4/3,4,Ωt + |g|2,Ωt + |fϕ|

2
4/3,4,Ωt

+ |Fϕ|2,Ωt + d21 + |h(0)|2,Ω + |w(0)|24,Ω +
∣∣∣∣χ(0)r

∣∣∣∣
2,Ω

)
.
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Now we obtain further estimates for v. Let Ω′ be a domain obtained by
intersection of Ω with the plane passing through the axis of symmetry determined
by relation ϕ = const. Then we consider the problem

(3.19)

vr,z − vz,r = χ in Ω′ × (0, 2π),

vr,r + vz,z = −
1
r
(hϕ + vr) in Ω′ × (0, 2π),

vr|S′1 = 0, vz|S′2 = 0,

where S′1, S
′
2 are intersections of S1, S2 with the same plane, respectively.

To solve (3.19) we introduce new functions ur = rvr, uz = rvz, so problem
(3.19) takes the form

(3.20)

ur,z − uz,r = χ− vz in Ω′ × (0, 2π),
ur,r + uz,z = −hϕ in Ω′ × (0, 2π),

ur|S′1 = 0, uz|S′2 = 0.

Introducing potentials σ and ψ such that

(3.21)
(
ur
uz

)
=
(
σ,r + ψ,z
σ,z − ψ,r

)
,

problem (3.20) assumes the form

(3.22)

∆′ψ = χ− vz in Ω′ × (0, 2π),
∆′σ = −hϕ in Ω′ × (0, 2π),

n · ∇′σ + τ · ∇′ψ = 0 on S′ × (0, 2π),

where ∆′, ∇′ are operators with derivatives with respect to r and z only. More-
over, n is the unit normal outward vector to S′ and τ is tangent to S′. The
vectors belong to the plane determined by Ω′.

Choosing ψ = 0 on S′ we obtain the following problems

(3.23)
∆′ψ = χ− vz in Ω′ × (0, 2π),
ψ = 0 on S′ × (0, 2π),

and

(3.24)
∆′σ = −hϕ in Ω′ × (0, 2π),

n · ∇′σ = 0 on S′ × (0, 2π).

The compatibility condition for problem (3.24) holds,

(3.25)
∫
Ω′×(0,2π)

hϕr dr dz dϕ = 0,

because hϕ = vϕ,ϕ.
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Lemma 3.6. Assume that h ∈ L3,∞(ΩT ) ∩ L4/3,4(ΩT ), q ∈ L4/3,4(ΩT ), g ∈
L2(ΩT ), fϕ ∈ L4/3,4(ΩT ), Fϕ ∈ L2(ΩT ), h(0), χ(0) ∈ L2(Ω), w(0) ∈ L4(Ω),
d1 <∞, d2 <∞. Let v′ = (vr, vz). Then, for t ≤ T ,

(3.26) sup
t′≤t
‖v′(t′)‖1,Ω + ‖v′‖L10/3(0,t;W 110/3(Ω)) +

(∫ t
0
‖v′(t′)‖22,Ω dt′

)1/2
≤ c
(
d2|h|3,∞,Ωt + |h|24/3,4,Ωt + |q|

2
4/3,4,Ωt + |g|2,Ωt

+ |fϕ|24/3,4,Ωt + |Fϕ|2,Ωt + |h(0)|2,Ω

+
∣∣∣∣χ(0)r

∣∣∣∣
2,Ω
+ |w(0)|24,Ω + d21 + d2(t)

)
.

Proof. For solutions of problems (3.23) and (3.24) we have

(3.27) sup
t

∫ 2π
0
(‖∇′ψ‖2H1(Ω′) + ‖∇

′σ‖2H1(Ω′)) dϕ

+
∫ t
0
dt′
∫ 2π
0
(‖∇∇′ψ‖2H1(Ω′) + ‖∇∇

′σ‖2H1(Ω′)) dϕ

≤ c
[
sup
t
(|χ|22,Ω + |v|22,Ω + |h|22,Ω)

+
∫ t
0
(‖χ(t′)‖21,Ω + ‖v(t′)‖21,Ω + ‖h(t′)‖21,Ω) dt′

]
≡ J,

where Hk(Ω′) contains only derivatives with respect to r and z, ∇′ = (∂r, ∂z).
In view of (3.21) and the definition of ur and uz, (3.27) implies

(3.28) sup
t

∫ 2π
0
‖v′‖2H1(Ω′)dϕ+

∫ t
0
dt′
∫ 2π
0
‖∇v′(t′)‖2H1(Ω′) dϕ ≤ cJ,

where v′ = (vr, vz). Utilizing

|∇v′,ϕ|2,Ω ≤ c(|∇h|2,Ω + ‖v′‖1,Ω), |v′,ϕ|2,Ω ≤ c(|h|2,Ω + |v′|2,Ω),

(3.28) yields

sup
t
‖v′‖2H1(Ω) +

∫ t
0
‖v′(t′)‖2H2(Ω) dt

′ ≤ cJ.

Then in view of Lemmas 3.1–3.3 we obtain (3.26). �

To simplify considerations we introduce the notation

(3.29)

X1(T ) = |h|4/3,4,ΩT + |q|4/3,4,ΩT ,
d3(T ) = |g|2,ΩT + |fϕ|4/3,4,ΩT + |Fϕ|2,ΩT ,

b1 = |h(0)|2,Ω + |w(0)|4,Ω +
∣∣∣∣χ(0)r

∣∣∣∣
2,Ω
.

Next we obtain an additional estimate for w.
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Lemma 3.7. Let the assumptions of Lemma 3.6 hold. Let

(3.30)

X2(T ) = |h|5/3,ΩT + |q|5/3,ΩT <∞,
d4(T ) = |fϕ|5/3,ΩT <∞,

b2 = ‖w(0)‖4/5,5/3,Ω <∞.

Then, for t ≤ T , we have

‖w‖2,5/3,Ωt ≤ c(d2(t) +X1(t) + d3(t) + d1)[d2(t)|h|3,∞,Ωt(3.31)

+X1(t) +X21 (t) + d3(t) + d
2
3(t) + b1 + b

2
1]

+ ct3/5d1 + c(X2(t) + d4(t) + b2) ≡ cJ1.

Proof. For solutions of problem (1.4) we have

‖w‖2,σ,Ωt ≤ c(|v′ · ∇w|σ,Ωt + |whϕ|σ,Ωt + |vrw|σ,Ωt(3.32)

+ |w|σ,Ωt + |q|σ,Ωt + |h|σ,Ωt + |fϕ|σ,Ωt

+ ‖w‖1−1/σ,σ,St1 + ‖w(0)‖2−2/σ,σ,Ω),

where σ ≤ 2 and will be chosen later. To estimate the first term on the r.h.s. of
(3.32) we recall that (3.26) implies that ∇v′ ∈ Lr,q(Ω× (0, t)) with 3/r + 2/q =
3/2. Hence v′ ∈ Lq(0, t;Lσ(Ω)), where σ = 3r/(3− r), so r = 3σ/(3 + σ).
Choosing q = σ we obtain 3/(3σ/(3 + σ)) + 2/σ = 3/2, so σ = 10.
Hence by the Hölder inequality the first term on the r.h.s. of (3.32) we esti-

mate by

|v′|λ1σ,Ωt |∇w|λ2σ,Ωt ≡ I1,

where 1/λ1 + 1/λ2 = 1, λ1σ ≤ 10, λ2σ ≤ 2, so σ ≤ 5/3. Then in view of (3.2)2
and (3.26),

I1 ≤ cd2(t)[X1(t) +X21 (t) + d2(t)|h|3,∞,Ωt + d3(t) + d23(t) + b1 + b21 + d21 + d2].

To estimate the second term on the r.h.s. of (3.32) we recall that (3.9) implies

(3.33) |h|10/3,Ωt ≤ c(d2(t)|h|3,∞,Ωt + d3(t) + b1)

and (3.16) gives

(3.34) |w|20/3,Ωt ≤ c(X1(t) + d3(t) + b1).

Hence by the Hölder inequality the second term on the r.h.s. of (3.32) is bounded
by

|w|σλ1,Ωt |h|σλ2,Ωt ≡ I2,

where 1/λ1 + 1/λ2 = 1, σλ1 ≤ 20/3, σλ2 ≤ 10/3, so σ ≤ 20/9, and

I2 ≤ c(X1(t) + d3(t) + b1)(d2(t)|h|3,∞,Ωt + d3(t) + b1).
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Applying the Hölder inequality to the third term on the r.h.s. of (3.32) we bound
it by

|vr|λ1σ,Ωt |w|λ2σ,Ωt ≡ I3,
where 1/λ1 + 1/λ2 = 1. Assuming that λ1σ ≤ 10, λ2σ ≤ 20/3 we have that
σ ≤ 4 and

I3 ≤ c[X1(t)+X21 (t)+d2(t)|h|3,∞,Ωt +d3(t)+d23(t)+ b1+ b21][X1(t)+d3(t)+ b1].

The fourth term from the r.h.s. of (3.32) we estimate by t1/σd1. The bound-
ary term is restricted by

ε‖w‖2,σ,Ωt + c
(
1
ε

)
t1/σd1.

In view of the above considerations we choose σ = 5/3 and (3.31) follows. �

Looking for the proof of Lemma 3.7 we see that the power of integrability
5/3 in (3.31) is determined by the first term on the r.h.s. of (3.32). The other
terms are less restrictive. To increase the power we use the estimate.

|∇w|5/3,Ωt ≤ c‖w‖2,5/3,Ωt ≤ cJ1(3.35)

≤ c(d31 + d
3
2 + d

3
3 +X

3
1 + b

3
1 + d

2
2|h|23,∞,Ωt + 1)

+ ct3/5d1 + c(X2 + d4 + b2),

where the Young inequality was utilized to get the last inequality.
Let us introduce

(3.36)

X3(t) = |h|2,Ωt + |q|2,Ωt ,
d5(t) = |fϕ|2,Ωt ,
b3 = ‖w(0)‖1,Ω,
Y1 = d1 + d2 + d3 + b1 +X1 + d2|h|3,∞,Ωt .

Then in view of (3.35) we have

Lemma 3.8. Let the assumptions of Lemma 3.7 hold. Let X3(t), d5(t), b3
be bounded for t ≤ T . Then

(3.37) ‖w‖2,ΩT ≤ c(Y 51 +1)+cTd
5/3
1 +c(X

2
2+d

2
4+b

2
2)+cT

1/2d1+c(X3+d5+b3).

Proof. It is enough to examine the first term on the r.h.s. of (3.32). We
estimate it now by

|v′|λ1σ,Ωt |∇w|λ2σ,Ωt ≡ I1,
where 1/λ1 + 1/λ2 = 1, λ1σ ≤ 10, λ2σ ≤ 5/2, so σ ≤ 2. Hence

I1 ≤ c[X1 +X21 + d2|h|3,∞,Ωt + d3 + d23 + b1 + b21]J1
≤ c(Y 21 + 1)(Y 31 + 1 + t3/5d1 +X2 + d4 + b2)

≤ c[Y 51 + td
5/3
1 + (X2 + d4 + b2)

5/3 + 1].
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The other terms are estimated in the same way as in the proof of Lemma 3.7.�

To simplify notation we introduce

(3.38)

X(T ) = d2|h|3,∞,ΩT +X1 +X2 +X3,
d(T ) = d1 + d2 + d3 + d4 + d5,

b = b1 + b2 + b3.

In view of Lemmas 3.6 and 3.8 we have

(3.39) |v|10,ΩT + |∇v|10/3,ΩT ≤ c(1 +X5 + d5 + b5 + Td21).

Therefore we can prove

Lemma 3.9. Assume that h ∈ L∞(0, T ;L3(Ω)), q ∈ L4(0, T ;L4/3(Ω)) ∩
L2(ΩT ), f ∈ Lσ(ΩT ), fϕ ∈ L4(0, T ;L4/3(Ω)), g ∈ L2(ΩT ), v(0) ∈ W

2−2/σ
σ (Ω),

h(0) ∈ L2(Ω), w(0) ∈ H1(Ω), σ ≤ 5/2. Then, for σ ≤ 5/2,

(3.40) ‖v‖2,σ,ΩT ≤ c(1 +X5 + d5 + b5 + Td21)2 + c(|f |σ,Ωt + ‖v(0)‖2−2/σ,σ,Ω).

Proof. For solutions of problem (1.1) we have

‖v‖2,σ,Ωt ≤ c(|v · ∇v|σ,Ωt + |f |σ,Ωt + ‖v(0)‖2−2/σ,σ,Ω),

where |v ·∇v|σ,Ωt≤|v|σλ1,Ωt |∇v|σλ2,Ωt , 1/λ1+1/λ2=1. Assuming that σλ1=10,
σλ2 = 10/3 and using (3.39) we obtain (3.40). �

Next we show

Lemma 3.10. Let the assumptions of Lemma 3.9 hold. Let v ∈ W 2,15/2(Ω
T ),

g ∈W β,β/2δ (ΩT ), h(0) ∈W 2+β−2/δδ (Ω). Then solutions of (1.2) satisfy

(3.41) ‖h‖2+β,δ,ΩT + ‖∇q‖β,δ,ΩT
≤ ϕ(‖v‖2,5/2,ΩT )|h|2,ΩT + c(‖g‖β,δ,ΩT + ‖h(0)‖2+β−2/δ,δ,Ω),

where

ϕ(a) =
4∑
i=1

a1/(1−κ1),

and

κ1 =
(
5
d1
+ β +

ε

δ
+ 1
)
1
2 + β

, κ2 =
(
5
d2
+ 1
)
1
2 + β

,

κ3 =
(
5
d3
+ β +

ε

δ

)
1
2 + β

, κ4 =
(
5
d4

)
1
2 + β

,
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κi < 1, i = 1, . . . , 4, d1 > 5, β < 5/d2 < 1+β, 1 < d3 < 2, 1+β < 5/d4 < 2+β.

Proof. For solutions of problem (1.2) we have

(3.42) ‖h‖2+β,δ,ΩT + ‖∇q‖β,δ,ΩT ≤ c(‖v · ∇h‖β,δ,ΩT + ‖h · ∇v‖β,δ,ΩT
+ ‖g‖β,δ,ΩT + ‖h(0)‖2+β−2/δ,δ,Ω).

Utilizing Lemma 2.2 to the first term on the r.h.s. of (3.42) we obtain

‖v · ∇h‖β,δ,ΩT ≤ c(‖v‖β+ε/δ,δ1,ΩT |∇h|δ2,ΩT + ‖∇h‖β+ε/δ,δ′1,ΩT |v|δ′2,ΩT ),

where 1/δ1 + 1/δ2 = 1/δ, 1/δ′1 + 1/δ
′
2 = 1/δ and ε > 0 is any small number.

Since v ∈W 2,15/2(Ω
T ) we apply the imbeddings

W 2,15/2(Ω
T ) ⊂W β+ε/δ,β/2+ε/(2δ)δ1

(ΩT ) and W 2,15/2(Ω
T ) ⊂ Lδ′2(Ω

T ),

which hold for β < 5/δ1 and any δ′2 > δ.
In virtue of the above considerations we obtain

(3.43) ‖v · ∇h‖β,δ,ΩT ≤ c(|∇h|δ2,ΩT + ‖∇h‖β+ε/δ,δ′1,ΩT )‖v‖2,5/2,ΩT .

Using the interpolation inequalities

(3.44)
‖∇h‖β+ε/δ,δ′1,ΩT ≤ ε

1−κ1
1 ‖h‖2+β,δ,ΩT + cε−κ1

1 |h|2,ΩT ,

‖∇h‖δ2,ΩT ≤ ε
1−κ2
2 ‖h‖2+β,δ,ΩT + cε−κ2

2 |h|2,ΩT ,

where εi ∈ (0, 1), i = 1, 2,

κ1 =
(
5
δ
− 5
δ′1
+ β +

ε

δ
+ 1
)
1
2 + β

< 1 and κ2 =
(
5
δ
− 5
δ2
+ 1
)
1
2 + β

< 1,

inequality (3.43) assumes the form

(3.45) ‖v · ∇h‖β,δ,ΩT ≤ ε1‖h‖2+β,δ,ΩT

+ c
(
ε
−κ1/(1−κ1)
1 ‖v‖1/(1−κ1)

2,5/2,ΩT + ε
−κ2/(1−κ2)
1 ‖v‖1/(1−κ2)

2,5/2,ΩT
)
|h|2,ΩT ,

which holds for β < 5/δ1 < 1 + β, δ′2 > 5.
Exploiting Lemma 2.2 the second term on the r.h.s. of (3.42) we estimate in

the way

‖h · ∇v‖β,δ,ΩT ≤ c(‖h‖β+ε/δ,δ1,ΩT |∇v|δ2,ΩT + |h|δ′1,ΩT ‖∇v‖β+ε/δ,δ′2,ΩT ),

where 1/δ1 + 1/δ2 = 1/δ and 1/δ′1 + 1/δ
′
2 = 1/δ.

To estimate the r.h.s. we use the imbeddings

∇W 2,15/2(Ω
T ) ⊂ Lδ2(Ω

T ) with δ ≤ 5,

∇W 2,15/2(Ω
T ) ⊂W β+ε/δ,β/2+ε/(2δ)δ′2

(ΩT ) with δ′2 < 5/(1 + β).

In view of the above considerations we have

(3.46) ‖h · ∇v‖β,δ,ΩT ≤ c(|h|δ′1,ΩT + ‖h‖β+ε/δ,δ1,ΩT )‖v‖2,5/2,ΩT .



86 W. M. Zajączkowski

Employing the interpolation inequalities

(3.47)
‖h‖β+ εδ ,δ1,ΩT ≤ ε

1−κ3
3 ‖h‖2+β,δ,ΩT + ε−κ3

3 |h|2,ΩT ,

|h|δ′1,ΩT ≤ ε
1−κ4
4 ‖h‖2+β,δ,ΩT + cε−κ4

4 |h|2,ΩT ,

where εi ∈ (0, 1), i = 3, 4 κ3 = (5/δ − 5/δ1 + β + ε/δ)/(2 + β) < 1, and
κ4 = (5/δ − 5/δ′1)/(2 + β) < 1, inequality (3.46) takes the form

(3.48) ‖h · ∇v‖β,δ,ΩT ≤ ε2‖h‖2+β,δ,ΩT

+ c(ε−κ3/(1−κ3)
2 ‖v‖1/(1−κ3)

2,5/2,ΩT + ε
−κ4/(1−κ4)
2 ‖v‖1/(1−κ4)

2,5/2,ΩT )|h|2,ΩT .

Summarizing, the inequlity holds for 1 ≤ 5/δ2 < 2, 1 + β < 5/δ′2 < 2 + β.
Utilizing (3.45) and (3.48) in (3.42), assuming that ε1, ε2 are sufficiently

small and defining d1 = δ′2, d2 = δ1, d3 = δ2, d4 = δ
′
2 we obtain (3.41). �

4. Local existence and uniqueness

The aim of this paper is to prove existence of more regular solutions than
weak solutions described by Lemma 3.1. In other words we increase regularity
of the weak solutions. We shall do it by assuming some additional regularity
properties on initial data and the external force. The regularity properties will be
expressed in the form that the quantities h(0) and g will be small in some norms.
Therefore we shall concentrate our considerations on examining the existence and
uniqueness of solutions to problem (1.2), where velocity v is treated as prescribed.
However if v would have the properties of weak solutions we would be able to
prove nothing. Therefore to obtain higher regularity of v we use problems (1.3),
(1.4), (3.19) and (1.1) by assuming that h and q in these problems are treated
as given and are appropriately regular. To precise the statement let us assume
that h̃ and q̃ in (1.3), (1.4), (3.19) are given and v is the weak solution described
by Lemma 3.1. We assume also that h̃ and q̃ are solutions of (1.2) with v = v.

Let us introduce the space

V 12 (Ω
T ) =

{
u : sup
t≤T
|u(t)|2,Ω +

(∫ T
0
|∇u(t′)|22,Ω dt′

)1/2
<∞
}
.

Then Lemma 3.3 determines the transformation

V 12 (Ω
T )× L∞(0, T ;L3(Ω)) 3 (v, h̃)→ Φ1(v, h̃) = h̃ ∈ V 12 (ΩT ),

which describes some increasing of regularity of h̃. Next Lemmas 3.3, 3.4 and 3.5
imply

V 12 (Ω
T )× L∞(0, T ;L3(Ω))× L4/3,4(ΩT ) 3 (v, h̃, q̃)→ Φ2(v, h̃, q̃) = χ ∈ V 12 (ΩT ).
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Continuing Lemma 3.6 implies the transformation

V 12 (Ω
T )× V 12 (ΩT )× V 12 (ΩT ) 3 (v, h̃, χ)→ Φ3(v, h̃, χ) = v′

= (vr, vz) ∈ L∞(0, T ;H1(Ω)) ∩ L10/3(0, T ;W 110/3(Ω)) ∩ L2(0, T ;H
2(Ω)).

Hence
v′ = Φ3(v,Φ1(v, h̃),Φ2(v, h̃, q̃)) ≡ Φ4(v, h̃, q̃).

By imbeddings it follows that v′ ∈ L10(ΩT ), ∇v′ ∈ L10/3(ΩT ). Finally Lemma
3.8 implies that w = Φ5(v, h̃, q̃) ∈W 2,12 (ΩT ) for

(4.1) v ∈ V 12 (ΩT ), h̃ ∈ L∞(0, T ;L3(Ω)), q̃ ∈ L4/3,4(ΩT ) ∩ L2(ΩT ).

Summarizing we have

(4.2) v = Φ6(v, h̃, q̃) ∈ L10(ΩT ), ∇v = ∇Φ6(v, h̃, q̃) ∈ L10/3(ΩT ),

under the assumption that v, h̃, q̃ satisfy (4.1).
In view of (4.2) Lemma 3.9 implies that v = v(v, h̃, q̃) ∈ W 2,15/2(Ω

T ) if (4.1)
holds. Therefore to prove the existence of solutions to problem (1.1) with more
regular initial data and external forces we are looking for existence of solutions to
problem (1.2), where v = v(h, q) is a given function. Since we are going to apply
the Leray–Schauder fixed point theorem we examine the following transformation

(4.3)

h,t − divD(h) +∇q = −λ[v(h̃, q̃) · ∇h̃+ h̃ · ∇v(h̃, q̃)] + g,
divh = 0,

h · n = 0,
n · D(h) · τα = 0, α = 1, 2,

h|t=0 = h(0),

where parameter λ ∈ [0, 1], h̃, q̃ are treated as given functions and v depends
also on a given weak solution v what is described in (4.2). Hence (4.3) implies
the transformation

(4.4) (h, q) = Φ(h̃, q̃, λ).

The main problem of this section is to find a fixed point of transformation
(4.4) for λ = 1 and also its estimate. Hence to examine problem (4.3) we
introduce the space

M(ΩT ) = {(h, q) : h ∈ L∞(0, T ;L3(Ω)) ∩W β+ε/δ,β/2+ε/(2δ)d′3
(ΩT ) ∩ Ld′4(Ω

T ),

∇h ∈W β+ε/δ,β/2+ε/(2δ)d′1
(ΩT ) ∩ Ld′2(Ω

T ), q ∈ L4(0, T ;L4/3(Ω)) ∩ L2(ΩT )},

where d′i are determined by the relations 1/di + 1/d
′
i = 1/δ, i = 1, . . . , 4, di are

introduced by Lemma 3.10, ε is arbitrary small positive number and β, δ will be
determined later.
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In view of estimates (3.43) and (3.46) we have that problem (4.3) for λ ∈ (0, 1]
implies the transformation

(4.5) Φ:M(ΩT )× (0, 1]→W
2+β,1+β/2
δ (ΩT )×Gβ,β/2δ (ΩT ),

where

G
β,β/2
δ (ΩT ) =

{
q : ∇q ∈W β,β/2δ (ΩT ),

∫
Ω
q dx = 0

}
.

Lemma 4.1. Assume that β ∈ (0, 1), 2/δ < β + 1/2, 5/δ < 3 + β, δ > 1.
Assume 1/5 > 1/δ − 1/d′1, β < 5(1/δ − 1/d′2) < 1 + β, 1/2 < 1/δ − 1/d′3 < 1,
1 + β < 5(1/δ − 1/d′4) < 2 + β. Then the imbedding

(4.6) W
2+β,1+β/2
δ (ΩT )×Gβ,β/2δ (ΩT ) ⊂M(ΩT )

is compact.

Proof. The proof is done step by step.
The imbedding W 2+β,1+β/2δ (ΩT ) ⊂ L∞(0, T ;L3(Ω)) is compact if 5/δ <

3 + β.
Imbeddings of other spaces defined h in M(ΩT ) into W 2+β,1+β/2δ (ΩT ) are

compact in view of the interpolation inequalities (3.44) and (3.47).
Since ∇q ∈W β,β/2δ (ΩT ) we have that ∇q ∈ Lr,s(ΩT ) with 5/δ−3/r′−2/s <

β, r′ = max{r, δ} and imbedding W β,β/2δ (ΩT ) ⊂ Lr,s(ΩT ) is compact.
Since

∫
Ω q dx = 0 we obtain that q ∈ L3r/(3−r),s(Ω

T ). Taking 3r/(3− r) ≥
4/3, s = 4, we get r = 1 and 2/δ < β + 1/2. Putting 3r/(3− r) = 2, s = 2, we
get r = 6/5 and 2/δ < β + 1. Hence the lemma is proved. �

For a fixed point of (4.4) we get

Lemma 4.2. Assume that v(0) ∈ W 6/55/2 (Ω), h(0) ∈ W
2+β−2/δ
δ (Ω), w(0) ∈

H1(Ω), χ(0) ∈ L2(Ω), f ∈ L5/2(ΩT ), g ∈ W
β,β/2
δ (ΩT ), fϕ ∈ L4(0, T ;L4/3(Ω)),

Fϕ ∈ L2(ΩT ), β ∈ (0, 1), 2/δ < β + 1/2, 5/δ < 3 + β, δ > 1. Assume that
|g|2,ΩT + |h(0)|2,Ω is sufficiently small. Then for a fixed point of transformation
(4.4), (4.5) there exists a constant A sufficiently large (see (4.10)) such that for
sufficiently small |g|2,ΩT + |h(0)|2,Ω the estimate holds

(4.7) ‖h‖2+β,δ,ΩT + ‖∇q‖β,δ,ΩT ≤ A.

Moreover, (4.11) implies that T and |g|2,ΩT +|h(0)|2,Ω are inversely proportional.

Proof. From (3.41) and (3.13) we have

(4.8) ‖h‖2+β,δ,ΩT + ‖∇q‖β,δ,ΩT
≤ ϕ(‖v‖2,5/2,ΩT )[|∇v|3,2,ΩT exp(c|∇v|23,2,ΩT ) + 1]

· (|g|2,ΩT + |h(0)|2,Ω) + c(‖g‖β,δ,ΩT + ‖h(0)‖2+β−2/δ,δ,Ω),
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where

ϕ(‖v‖2,5/2,ΩT ) =
4∑
i=1

‖v‖ai2,5/2,ΩT ,

ai = 1/(1− κi), κi ∈ (0, 1), i = 1, . . . , 4, are defined in Lemma 3.10. Next we
recall

‖v‖2,5/2,ΩT ≤ c(1 +X10 + d10 + b10 + T 2d41) + c(|f |5/2,ΩT + ‖v(0)‖6/5,5/2,Ω),
X = |h|4/3,4,ΩT + |h|5/3,ΩT + |h|2,ΩT + |q|4/3,4,ΩT

+ |q|5/3,ΩT + |q|2,ΩT + d2|h|3∞,ΩT ,
d = d1 + (1 + T )d2 + |g|2,ΩT + |fϕ|4/3,4,ΩT
+ |Fϕ|2,ΩT + |fϕ|5/3,ΩT + |fϕ|2,ΩT ,

b = |h(0)|2,Ω + |w(0)|4,Ω + |χ(0)|2,Ω + ‖w(0)‖1,Ω.

We use the interpolation inequality

|h|3,∞,ΩT ≤ ε1−κ0
1 ‖h‖2+β,δ,ΩT + cε−κ0

1 |h|2,ΩT ,

where κ0 = (5/δ − 1)/(2 + β). From (3.39) we have that

|∇v|3,2,ΩT ≤ cT 1/5(1 +X5 + d5 + b5 + Td21).

Let us introduce the quantities

γ = ‖h‖2+β,δ,ΩT + ‖∇q‖β,δ,ΩT ,
F = |g|2,ΩT + |fϕ|4/3,4,ΩT + |Fϕ|2,ΩT + |f |5/2,ΩT ,
F0 = |h(0)|2,Ω + ‖w(0)‖1,Ω + |χ(0)|2,Ω + ‖v(0)‖6/5,5/2,Ω.

Then (4.8) implies

(4.9) γ ≤ G(T, γ, F, F0)(|g|2,ΩT + |h(0)|2,Ω) + c(‖g‖β,δ,ΩT + ‖h(0)‖2+β−2/δ,δ,Ω),

where G is an increasing positive function of its arguments.
We recall that G is a combination of power and exponential functions. Let

T be a given number. Let A be a number such that

(4.10) G(T, 0, F, F0)(|g|2,ΩT + |h(0)|2,Ω)
+ c(‖g‖β,δ,ΩT + ‖h(0)‖2+β−2/δ,δ,Ω) ≤ A/2.

Then assuming that γ ≤ A we obtain from (4.9) for sufficiently small |g|2,ΩT +
|h(0)|2,Ω the inequality

(4.11) G(T,A, F, F0)(|g|2,ΩT +|h(0)|2,Ω)+c(‖g‖β,δ,ΩT +‖h(0)‖2+β−2/δ,δ,Ω) ≤ A.

Hence (4.7) holds. From (4.11) it follows that for a given A an increasing of T
implies decreasing of |g|2,ΩT + |h(0)|2,Ω. �



90 W. M. Zajączkowski

Remark 4.3. To satisfy (3.3) we recall that (3.12) takes the form

|h(t)|2,Ω ≤ G2(T, γ, F1, F0)[|g|2,ΩT + |h(0)|2,Ω].

Hence (3.13) implies the restriction

c1G3(T,A, F1, F0)[|g|2,ΩT + |h(0)|2,Ω] ≤ ν/4.

G2 and G3 are increasing positive functions. Next we need

Lemma 4.4. Let the assumptions of Lemma 4.2 hold. Then the transforma-
tion (4.4) is uniformly continuous with respect to its arguments.

Proof. The uniform continuity with respect to λ is evident. Let λ ∈ [0, 1].
To show uniform continuity with respect to (h, q) we introduce the sets of func-
tions (hi, qi), (h̃i, q̃i), i = 1, 2, which are connected by transformation (4.4)

(hi, qi) = Φ(h̃i, q̃i, λ), i = 1, 2.

Let us introduce

H = h1 − h2, Q = q1 − q2, H̃ = h̃1 − h̃2, Q̃ = q̃1 − q̃2,
h1(0) = h2(0), h̃1(0) = h̃2(0).

Then problem (4.3) implies

(4.12)

H,t − divD(H) +∇Q = − λ[Ṽ · ∇h̃1 + ṽ2 · ∇H̃
+ H̃ · ∇ṽ1 + h̃2 · ∇Ṽ ] ≡ K,

divH =0,

H · n =0,
n · D(H) · τα =0, α = 1, 2,

H|t=0 =0,

where vi = v(hi, qi), ṽi = v(h̃i, q̃i), i = 1, 2, Ṽ = ṽ1 − ṽ2, V = v1 − v2. We
examine problem (4.12) assuming that (h̃i, q̃i) ∈W 2+β,1+β/2δ (ΩT )×Gβ,β/2δ (ΩT ),
i = 1, 2. Hence from (4.12) we have

(4.13) ‖H‖2+β,δ,ΩT + ‖∇Q‖β,δ,ΩT ≤ c‖K‖β,δ,ΩT

≤ c(‖Ṽ · ∇h̃1‖β,δ,ΩT + ‖ṽ2 · ∇H̃‖β,δ,ΩT

+ ‖H̃ · ∇ṽ1‖β,δ,ΩT + ‖h̃2 · ∇Ṽ ‖β,δ,ΩT ) ≡ c
4∑
i=1

Ki.

In view of Lemma 2.1 and (4.7) we get

K1 +K4 ≤ ϕ(A)‖Ṽ ‖2,5/2,ΩT and K2 +K3 ≤ ϕ(A)‖H̃‖2+β,δ,ΩT ,
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where ϕ is an increasing positive function. Hence, (4.13) implies

(4.14) ‖H‖2+β,δ,ΩT + ‖∇Q‖β,δ,ΩT ≤ ϕ(A)(‖Ṽ ‖2,5/2,ΩT + ‖H̃‖2+β,δ,ΩT ).

Now we estimate the norm with Ṽ in the r.h.s. of (4.14). In problems (1.3)
and (1.4) v is treated as a weak solution which is given and that it does not
depend on h and q. Similarly w in the second term on the r.h.s. of (1.3) is
treated as the weak solution. However, the third term on the r.h.s. of (1.3) must
be treated as a solution of (1.4) because it can not be bounded in terms of the
energy estimate. Let χ̃i = χ(h̃i), w̃i = w(h̃i, q̃i), i = 1, 2. Let

K̃ = χ̃1 − χ̃2, W̃ = w̃1 − w̃2.

Then problems (1.3) and (1.4) imply

(4.15)

K̃,t + v · ∇K̃ + (vr,r + vz,z)K̃ − ν∆K̃ =
2ν
r2

(
− H̃ϕ,z +

1
r
H̃z,ϕ

)
−1
r

(
w,zH̃r − w,rH̃z +

w

r
H̃z

)
+
1
r
[(w1)2,z − (w2)2,z],

K̃|ST =0,
K̃|t=0 =0,

and

(4.16)

W̃,t + v · ∇W̃ +
vr
r
W̃ − ν∆W̃ + ν W̃

r2
=
1
r
Q̃+
2ν
r2
H̃r,

W̃,r|r=Ri =
1
Ri
W̃ , i = 1, 2, on ST1 ,

W̃,z|ST2 = 0

W̃ |t=0 = 0.

Multiplying (4.15)1 by K̃/r2, integrating over Ωt and using (3.3) give

(4.17)
∣∣∣∣K̃r
∣∣∣∣2
2,Ω
+
∫ t
0

∥∥∥∥K̃r
∥∥∥∥2
1,Ω

dt′

≤ c
∫ t
0
|∇H̃|26/5,Ω dt

′ + d22(T )|H̃|23,∞,Ωt + ϕ(A)
∫ t
0
|W̃ (t′)|24,Ω dt′.

To estimate the last term on the r.h.s. of (4.17) we multiply (4.16)1 by W̃ and
integrate the result over Ω. Hence we get

(4.18)
d

dt
|W̃ |22,Ω + ‖W̃‖21,Ω ≤ c|vr|22,Ω|W̃ |22,Ω + c(|Q̃|22,Ω + |H̃|22,Ω).

Integrating (4.18) with respect to time and utilizing (3.2) yield

(4.19) |W̃ |22,Ω +
∫ t
0
‖W̃ (t′)‖21,Ω dt′ ≤ c(A, d2)(|H̃|22,Ωt + |Q̃|22,Ωt).
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Exploiting (4.19) in (4.17) implies

∣∣∣∣K̃r
∣∣∣∣2
2,Ω
+
∫ t
0

∥∥∥∥K̃r
∥∥∥∥2
1,Ω

dt′ ≤ ϕ(A, d2)(|∇H̃|26/5,2,Ωt+ |H̃|
2
3,∞,Ωt+ |H̃|22,Ωt+ |Q̃|22,Ωt).

Now we consider problem (3.19) where v on the r.h.s. of (3.19)2 is treated as the
weak solution. Therefore (3.19) implies

(4.20) Ṽr,z − Ṽz,r = K̃, Ṽr,r + Ṽz,z = −
1
r
H̃ϕ, Ṽr|S1 = 0, Ṽz|S2 = 0.

For solutions of (4.20) we have

sup
t
‖Ṽ ‖1,Ω + ‖Ṽ ‖L10/3(0,T ;W 110/3(Ω)) + ‖Ṽ ‖L2(0,T ;H2(Ω))

≤ c(|K̃|2,∞,ΩT + |H̃|2,∞,ΩT + ‖K̃‖L2(0,T ;H1(Ω)) + ‖H̃‖L2(0,T ;H1(Ω))
≤ c(|H̃|3,∞,ΩT + ‖H̃‖L2(0,T ;H1(Ω)) + |Q̃|2,ΩT ) ≡ A1.

For solutions of (4.16) we have

|W̃ |4,Ω +
(∫ t
0
(|W̃ (t′)|44,Ω + |∇W̃ 2(t′)|22,Ω) dt′

)1/4
≤ c(A, d2)(|Q̃|4/3,4,Ωt + |H̃|4/3,4,Ωt + |Q̃|2,Ωt + |H̃|2,Ωt) ≡ A2,

where∫
Ωt
|vr| |W̃ |4 dx dt′ ≤ ε1

∫ t
0
|∇W̃ 2|22,Ω dt′ + c

(
1
ε1
, |vr|2,∞,Ωt

)
|W̃ |42,Ωt

and the last term we estimate in view of (4.19).

In virtue of the above considerations we have

|Ṽ |10,ΩT ≤ cA1, |W̃ |20/3,ΩT ≤ cA2.

Now we consider problem (1.4) with coefficients ṽ = v(h̃, q̃). Hence we obtain

w̃,t − ν∆w̃ = −ṽ · ∇w̃ −
ṽr
r
w̃ − ν w̃

r2
+
1
r
q̃ +
2ν
r2
h̃r + fϕ,

w̃,r|r=Ri =
1
Ri
w̃,

w̃,z|S2 = 0,
w̃|t=0 = w(0).
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Let W̃ = w(h̃1, q̃1)− w(h̃2, q̃2). Then

W̃,t − ν∆W̃ = − Ṽ · ∇w(h̃1, q̃1)− v(h̃2, q̃2) · ∇W̃ −
1
r
Ṽrw(h̃1, q̃1)

− 1
r
ṽr(h̃2, q̃2)W̃ −

ν

r2
W̃ +

1
r
Q̃+
2ν
r2
H̃r,

W̃,r|r=Ri =
1
Ri
W̃ , i = 1, 2, on ST1 ,

W̃,z =0 on ST2 ,

W̃ |t=0 =0.

Repeating proofs of Lemmas 3.7 and 3.8 we obtain

‖W̃‖2,Ωt ≤ ϕ(A)(A1 +A2).

Let us consider problem (1.1) with the nonlinear term equal to v(h̃, q̃) ·∇v(h̃, q̃).
Denoting a solution of such problem by v(h̃, q̃) and introducing Ṽ = v(h̃1, q̃1)−
v(h̃2, q̃2) we see that

Ṽ,t − ν∆Ṽ +∇P̃ = − Ṽ · ∇v(h̃1, q̃1)− v(h̃2, q̃2) · ∇Ṽ ,
div Ṽ =0,

n · Ṽ =0,
n · D(Ṽ ) · τα =0, α = 1, 2,

Ṽ |t=0 =0,

where P̃ = p(h̃1, q̃1)− p(h̃2, q̃2). Repeating the proof of Lemma 3.9 we have

(4.21) ‖Ṽ ‖2,5/2,ΩT ≤ ϕ(A)(A1 +A2).

Utilizing (4.21) in (4.14) yields

‖H‖2+β,δ,ΩT + ‖∇Q‖β,δ,ΩT ≤ ϕ(A)(‖H̃‖2+β,δ,ΩT + ‖∇Q̃‖β,δ,ΩT ).

Hence continuity of Φ follows. �

Now we can prove the main result of this section

Proof of Theorem 1. By Lemma 3.1 we have the existence of weak so-
lutions v to problem (1.1) with corresponding estimates. By Lemmas 3.2–3.10
we construct the transformation v = v(h, q, v). Next by Lemmas 4.1–4.4 we
can apply the Leray–Schauder fixed point theorem to prove the existence of
a fixed point of transformation (4.4) so equivalently the existence of solutions to
problem (4.3) such that h ∈ W 2+β,1+β/2δ (ΩT ), q ∈ Gβ,β/2δ (ΩT ) with the corre-
sponding estimate. Then Lemma 3.9 implies that the weak solution is such that
v ∈W 2,15/2(Ω

T ), where the existence time T is determined by (4.11). From (4.11)
T is large for small |g|2,ΩT + |h(0)|2,Ω. �

Finally we prove uniqueness.
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Proof of Theorem 2. Assume that we have two solutions of problem (1.1),
vi, pi, i = 1, 2. Then V = v1 − v2, P = p1 − p2 are solutions to the problem

(4.22)

Vt + v2 · ∇V + V · ∇v1 − divT(V, P ) = 0,

divV = 0,

V · n = 0,
n · T(V, P ) · τα = 0, α = 1, 2,

V |t=0 = 0.

Multiplying (4.22)1 by V and integrating over Ω yield

1
2
d

dt
|V |22,Ω +

∫
Ω
V · ∇v1 · V dx+ EΩ(V ) = 0.

Hence

(4.23)
d

dt

[
|V |22,Ω exp

(∫ t
0
|∇v1(t′)|∞,Ω dt′

)]
+ EΩ(V ) exp

(∫ t
0
|∇v1(t′)|∞,Ω dt′

)
= 0.

Integrating (4.23) with respect to time implies uniqueness. �

5. Global existence

The aim of this section is to prove global existence of solutions to problem
(1.1) by prolonging the local solution from Section 4 step by step. For this
purpose we want to show that estimate (4.7) holds in any time interval [(k−1)T,
kT ], k ∈ N, utilizing that for k = 1 it is already proved.
For this purpose we have to satisfy (4.11) for all intervals [(k − 1)T, kT ],

k ∈ N, with the same T and A. Hence we must show that all quantities in (4.11)
do not increase with time.

First we introduce the decay estimates,

(5.1)

|f(t)|3,Ω ≤ |f(0)|3,Ωe−δ1t, |g(t)|2,Ω ≤ |g(0)|2,Ωe−δ2t,
|Fϕ(t)|2,Ω ≤ |Fϕ(0)|2,Ωe−δ3t, ‖g(t)‖β,δ,Ω ≤ ‖g(0)‖β,δ,Ωe−δ4t,
|g(t)|1,0,Ω ≤ |g(0)|1,0,Ωe−δ5t

where δi, i = 1, . . . , 5, are positive constants and

(5.2) ‖g‖
Lδ(Ω;W

β/2
δ (((k−1)T,kT )) ≤ a,

where a does not depend on k ∈ N. In view of (5.1) and (5.2) we know that F
does not increase with k.
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Now we want to show that the quantity

F ′0(k) = |h(kT )|1,0,Ω + ‖w(kT )‖1,Ω + |χ(kT )|2,Ω + ‖v(kT )‖6/5,5/2,Ω(5.3)

+ ‖h(kT )‖2+β−2/δ,δ,Ω + |w(kT )|24,Ω + |g(kT )|1,0,Ω

does not increase with k too. To show the statement we need a series of lemmas.

Lemma 5.1. Assume that δ2 > ν, v ∈ L2(0, T ;W 13 (Ω)), g(0), h(0) ∈ L2(Ω).
Then

(5.4) |h(t)|22,Ω ≤ e
−νt+c|∇v|23,2,Ωt

[
1

δ2 − ν
|g(0)|22,Ω + |h(0)|22,Ω

]
.

Proof. Utilizing (5.1)2 in (3.15) and integrating the result with respect to
time yield

(5.5) |h(t)|22,Ωeνt−c
R t
0 |∇v(t

′)|23,Ω dt
′
≤ c|g(0)|22,Ω

∫ t
0
e−(δ2−ν)t

′
dt′ + |h(0)|22,Ω.

Choosing δ2 > ν we obtain (5.4). �

Since for the local solution described by Theorem 1 we have |∇v|3,2,ΩT ≤
ϕ1(A), where ϕ1 is an increasing positive function and A is defined by (4.11),
the inequality (5.4) for T sufficiently large implies |h(T )|2,Ω ≤ |h(0)|2,Ω. Next
we have

Lemma 5.2. Assume that there exists a weak solution described by Lem-
ma 3.1. Assume that (5.1) holds, δ∗ = min{δ1, δ2, δ3} and ν > 4δ∗. Assume
that v ∈ L2(0, T ;W 13 (Ω)), g(0) ∈ L4(Ω), f(0) ∈ L5/2(Ω), Fϕ(0) ∈ L2(Ω) and
χ(0), h(0), w2(0) ∈ L2(Ω). Assume that (5.16) with γ1 sufficiently small holds.
Then

(5.6)
∣∣∣∣χ(t)r

∣∣∣∣2
2,Ω
+ |h(t)|22,Ω + |w2(t)|22,Ω ≤ c(d1)d21ec

R t
0 ‖v(t

′)‖21,3,Ω dt
′

+
c

ν/2− 2δ∗
ec

R t
0 ‖v(t

′)‖21,3,Ω dt
′−2δ∗t[ϕ(A)|g(0)|22,Ω

+ |g(0)|44,Ω + |f(0)|45/2,Ω + |Fϕ(0)|
2
2,Ω]

+ e−νt/2+c
R t
0 ‖v(t

′)‖21,3,Ω dt
′
(∣∣∣∣χ(0)r

∣∣∣∣2
2,Ω
+ |h(0)|22,Ω + |w(0)|44,Ω

)
.

Proof. In view of (3.3) inequality (3.8) takes the form

(5.7)
d

dt

∣∣∣∣χr
∣∣∣∣2
2,Ω
+
ν

2

∥∥∥∥χr
∥∥∥∥2
1,Ω
≤ c(|∇h|26/5,Ω + ‖w‖

2
1,3,Ω|h|22,Ω + |w|44,Ω + |Fϕ|22,Ω).

From (3.10) we have

(5.8)
d

dt
|h|22,Ω +

ν

2
‖h‖21,Ω ≤ c(|∇v|23,Ω|h|22,Ω + |g|22,Ω).
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Adding (5.7) and (5.8) appropriately implies

(5.9)
d

dt

(∣∣∣∣χr
∣∣∣∣2
2,Ω
+ |h|22,Ω

)
+
ν

2

(∥∥∥∥χr
∥∥∥∥2
1,Ω
+ ‖h‖21,Ω

)
≤ c(‖v‖21,3,Ω|h|22,Ω + |w|44,Ω + |Fϕ|22,Ω + |g|22,Ω).

From the proof of Lemma 3.5 we obtain

(5.10)
d

dt
|w|44,Ω +

ν

2
|∇|w|2|22,Ω ≤ c(d1)d21 + c(|q|44/3,Ω + |h|

4
4/3,Ω + |fϕ|

4
4/3,Ω).

To examine the norm |q|4/3,Ω we consider the following elliptic problem for q

(5.11)

∆q = −div (v · ∇h+ h · ∇v) + div g,
∂q

∂n

∣∣∣∣
S1

= g · n− n · (v · ∇h+ h · ∇v) + 2ν
R2

hϕ,ϕ,

∂q

∂n

∣∣∣∣
S2

= g · n− n · (v · ∇h+ h · ∇v).

To obtain an estimate for |q|2,Ω we introduce a function α such that

(5.12) ∆α = q,
∂α

∂n

∣∣∣∣
S

= 0,
∫
Ω
αdx = 0.

Multiplying (5.11)1 by α and integrating over Ω yield∫
Ω
∆qα dx = −

∫
Ω
div (v · ∇h+ h · ∇v)αdx+ 2ν

R2

∫
S1

hϕ,ϕαdS1 +
∫
Ω
div gα dx.

Integrating by parts and utilizing the boundary conditions (5.11)2,3 imply∫
Ω
∇q∇αdx = − 2ν

R2

∫
S1

hϕ,ϕαdS1 +
∫
Ω
g · ∇αdx.

Integrating by parts again and using (5.12) give

(5.13) |q|22,Ω =
2ν
R2

∫
S1

hϕα,ϕ dS1 +
∫
Ω
g · ∇αdx.

Since solutions of (5.12) satisfy ‖α‖2,Ω ≤ c|q|2,Ω, we obtain from (5.13) the
estimate

(5.14) |q|2,Ω ≤ c(|hϕ|2,S1 + |g|2,Ω).

Utilizing (5.14) in (5.10) and using that
∫
Ω w
2 dx ≤ d21 we obtain from (5.10) the

inequality

(5.15)
d

dt
|w2|22,Ω +

ν

2
‖w2‖21,Ω ≤ c(d1)d21 + c(‖h‖21,Ω + |g|22,Ω)2 + c|fϕ|44/3,Ω.

Assuming that

(5.16) sup
t
(‖h‖1,Ω + |g|2,Ω) ≤ γ1,
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where γ1 is sufficiently small we get from (5.9) and (5.15) the inequality

(5.17)
d

dt

(∣∣∣∣χr
∣∣∣∣2
2,Ω
+ |h|22,Ω + |w2|22,Ω

)
+
ν

2

(∥∥∥∥χr
∥∥∥∥2
1,Ω
+ ‖h‖21,Ω + ‖w2‖21,Ω

)
≤ c‖v‖21,3,Ω|h|22,Ω + c(d1)d21 + ϕ(A)|g|22,Ω + c(|g|42,Ω + |fϕ|44/3,Ω + |Fϕ|

2
2,Ω).

To simplify notation we introduce

η(t) =
∣∣∣∣χ(t)r

∣∣∣∣2
2,Ω
+ |h(t)|22,Ω + |w2(t)|22,Ω.

Then (5.17) takes the form

(5.18)
d

dt
η +

ν

2
η ≤ c‖v‖21,3,Ωη + c(d1)d21 + ϕ(A)|g|22,Ω

+ c(|g|42,Ω + |fϕ|44/3,Ω + |Fϕ|
2
2,Ω).

Continuing, (5.18) implies

(5.19)
d

dt
(ηeνt/2−c

R t
0 ‖v(t

′)‖21,3,Ω dt
′
) ≤ c(d1)d21eνt/2−c

R t
0 ‖v(t

′)‖21,3,Ω dt
′

+ c[ϕ(A)|g|22,Ω + |g|42,Ω + |fϕ|44/3,Ω + |Fϕ|
2
2,Ω]e

νt/2−c
R t
0 ‖v(t

′)‖21,3,Ω dt
′
.

Integrating (5.19) with respect to time and using (5.1) yield

(5.20) η(t) ≤ c(d1)d21ec
R t
0 ‖v(t

′)‖21,3,Ω dt
′

+
c

ν/2− 2δ∗
ec

R t
0 ‖v(t

′)‖21,3,Ω dt
′−2δ∗t[ϕ(A)|g(0)|22,Ω + |g(0)|44,Ω

+ |f(0)|45/2,Ω + |Fϕ(0)|
2
2,Ω] + e

−νt/2+c
R t
0 ‖v(t

′)‖21,3,Ω dt
′
η(0).

Finally (5.20) implies (5.6). �

To satisfy (5.16) we need

Lemma 5.3. Assume that v ∈ L2(0, T ;H2(Ω)), h(0) ∈ H1(Ω), g(0) ∈ L2(Ω).
Then

(5.21) ‖h(t)‖21,Ω ≤ ce−νt+
R t
0 ‖v(t

′)‖22,Ω dt
′
(‖h(0)‖21,Ω + |g(0)|22,Ω).

Proof. From [1, (6.3.56)] and for 2δ2 > ν we have

|D(h)(t)|22,Ω ≤ ce−νt+
R t
0 ‖v(t

′)‖22,Ω dt
′
(|g(0)|22,Ω + |D(h)(0)|22,Ω).

Emploing (5.4) and Lemma 4.2.5, Remark 4.2.6 from [1] we obtain (5.21). �

From (5.21) we obtain for a given local solution and T sufficiently large the
inequality

‖h(T )‖1,Ω ≤ ‖h(0)‖1,Ω.
Moreover, smallness of the r.h.s. of (5.21) implies that (5.16) might be satisfied.
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Lemma 5.4. Assume that h(0) ∈ H1(Ω), h,t(0) ∈ L2(Ω), g(0) ∈ L2(Ω),
g,t(0) ∈ L2(Ω). Assume that there exists a local solution to (1.1) such that
‖v‖2,3,ΩT ≤ B with T sufficiently large. Assume (5.1), (5.2). Assume that
0 < t1 < T . Then

(5.22) ‖h(T )‖2+β−2/δ,δ,Ω
≤ ϕ(B)e−νt1(|h(0)|1,0,Ω + |g(0)|1,0,Ω + ‖g(0)‖β,δ,Ω) + ca,

where ϕ is an increasing positive function.

Proof. Let ζ = ζ(t) be a smooth function such that ζ(t) = 1 for t ≥ t2,
ζ(t) = 0 for t ≤ t1, 0 < t1 < t2 < T . Let h̃ = hζ, q̃ = qζ, g̃ = gζ. Multiplying
(1.2) by ζ yields

(5.23)

h̃,t − divD(h̃, q̃) = −v · ∇h̃− h̃ · ∇v + g̃ + hζ̇,
div h̃ = 0,

h̃ · n = 0,
n · D(h̃) · τα = 0, α = 1, 2,

h̃|t=0 = 0,

where ζ̇ = ζ,t. For solutions of (5.23) we have

‖h̃‖2+β,δ,ΩT ≤ c(‖v · ∇h̃‖β,δ,ΩT + ‖h̃ · ∇v‖β,δ,ΩT + ‖g̃‖β,δ,ΩT + ‖hζ̇‖β,δ,ΩT ).

In view of (3.45) and (3.48) we obtain

(5.24) ‖h̃‖2+β,δ,ΩT ≤ ϕ(‖v‖2,5/2,ΩT )|h̃|2,ΩT + c‖g̃‖β,δ,ΩT + c‖hζ̇‖β,δ,ΩT .

Using that ‖v‖2,5/2,ΩT ≤ ϕ(A) (see Theorem 1) inequality (5.24) takes the form

(5.25) ‖h̃‖2+β,δ,ΩT ≤ ϕ(B)[|h̃|2,ΩT + ‖hζ̇‖Lδ(0,T ;Wβδ (Ω))
+ ‖hζ̇‖

Lδ(Ω;W
β/2
δ (0,T ))] + c‖g‖β,δ,ΩT .

The second term on the r.h.s. of (5.25) takes the form[ ∫ T
0
dt(|hζ̇|δδ,Ω + 〈〈hζ̇〉〉δβ,δ,x,Ω)

]1/δ
≤ c
[ ∫ t2
t1

dt(|h|δδ,Ω + 〈〈h〉〉δβ,δ,x,Ω)
]1/δ
≡ I1,

because ζ̇(t) 6= 0 for t ∈ (t1, t2). For δ ≤ 2 and β < 1 we have by imbedding
H1(Ω) ⊂W βδ (Ω) that

I1 ≤ c
(∫ t2
t1

‖h(t)‖δ1,Ω dt
)1/δ
≤ c(t2 − t1)1/δ sup

t∈(t1,t2)
‖h(t)‖1,Ω ≡ I2.

Utilizing (5.21) yields

I2 ≤ ϕ(B)e−νt1(‖h(0)‖1,Ω + |g(0)|2,Ω) ≡ I3.
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The third term on the r.h.s. of (5.25) we estimate by

c(t2 − t1)1/δ sup
t∈(t1,t2)

|h(t)|2,Ω +
(∫
Ω
dx〈〈h〉〉δβ/2,δ,t,(t1,t2)

)1/δ
≡ I4.

The first expression in I4 is estimated by I3 and the second by

c(t2 − t1)1/δ‖h‖L2(Ω;H1(t1,t2)) ≡ I5.

Continuing,

I5 ≤ ϕ(t2 − t1) sup
t
|h(t)|1,0,Ω ≡ I6.

To estimate the r.h.s. we use inequality (6.3.41) from [4],

(5.26) |h(t)|1,0,Ω ≤ e−νtϕ(B)
[
|h(0)|1,0,Ω +

(∫ t
0
|g(t′)|21,0,Ωeνt

′
dt′
)1/2]

.

Using that |h̃|2,ΩT ≤ cI3, and (5.26) to estimate I6, we obtain from (5.25) the
inequality

‖h̃‖2+β,δ,ΩT ≤ ϕ(B)e−νt1(|h(0)|1,0,Ω + |g(0)|1,0,Ω + ‖g(0)‖β,δ,Ω) + ca,

which implies (5.22). �

To prolong the local solution we need also.

Lemma 5.5. Assume that h,t(0), g,t(0), Fϕ(0), χ(0)∈L2(Ω), f(0)∈L5/2(Ω),
h(0), g(0), w(0) ∈ H1(Ω). Assume that there exists numbers t1, t2, δ∗ such that
0 < t1 < t2 < T , δ∗ = min{δ1, δ2, δ, ν/2}. Assume also that there exists a weak
solution described by Lemma 3.1. Assume that v ∈W 2,13 (ΩT ) and ‖v‖2,3,ΩT ≤ B.
Then

(5.27) ‖v(T )‖6/5,5/2,Ω ≤ ϕ(d1, d2, B)[e−δ∗t1(|h(0)|1,0,Ω + |χ(0)|2,Ω

+ |g(0)|1,0,Ω + |fϕ(0)|2,Ω + |Fϕ(0)|2,Ω) + 1]10 +
c

(t2 − t1)2/5
d2,

where ϕ is an increasing positive function.

Proof. Let ζ be the same as in Lemma 5.4. Let ṽ = vζ, p̃ = pζ, f̃ = fζ.
Multiplying (1.1) by ζ we obtain

ṽ,t + v · ∇ṽ − divT(ṽ, p̃) = f̃ + vζ̇,

div ṽ = 0,

ṽ · n|S = 0,
n · T(ṽ, p̃) · τα|S = 0, α = 1, 2,

ṽ|t=0 = 0,
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where ζ̇ = ζ,t. Repeating the proof of Lemma 3.9 applied to the above problem
we obtain

‖ṽ‖2,5/2,Ω×(t1,T ) ≤ c
[
d2|h|3,∞,Ω×(t1,T ) + |h|4/3,4,Ω×(t1,T ) + |q|4/3,4,Ω×(t1,T )

+ |h|5/3,Ω×(t1,T )+ |q|5/3,Ω×(t1,T )+ |h|2,Ω×(t1,T )+ |q|2,Ω×(t1,T )
+ d1 + d2 + |g|2,Ω×(t1,T ) + |fϕ|4/3,4,Ω×(t1,T ) + |Fϕ|2,Ω×(t1,T )
+ |fϕ|4/3,Ω×(t1,T ) + |fϕ|2,Ω×(t1,T )

+ |h(0)|2,Ω +
∣∣∣∣χ(0)r

∣∣∣∣
2,Ω
+ ‖w(0)‖1,Ω + 1

]10
+ c|f |5/2,Ω×(t1,T ) + c|ζ̇v|5/2,Ω×(t1,T ).

In view of the decay estimates (5.1), (5.21), (5.22) we obtain

(5.28) ‖ṽ‖2,5/2,Ω×(t1,T ) ≤ ϕ(d1, d2, B)[e
−δ∗t1(|h(0)|1,0,Ω + |χ(0)|2,Ω

+ |g(0)|1,0,Ω + |fϕ(0)|2,Ω + |Fϕ(0)|2,Ω) + 1]10 +
c

(t2 − t1)2/5
d2.

From (5.28) we get (5.27). �

Lemma 5.6. Let B be a positive constant. Assume that

‖v‖2,3,Ω×(kT,(k+1)T ) ≤ B, for k ∈ N.

Assume (5.1) and w(0), g(0), h(0) ∈ H1(Ω), h,t(0), g,t(0), fϕ(0) ∈ L2(Ω). As-
sume that T is sufficiently large (see (5.33), (5.37), (5.38)). Then

‖w(t)‖1,Ω ≤ c(|w(0)|2,Ω + |h(0)|1,0,Ω(5.29)

+ |g(0)|1,0,Ω) + c|fϕ(0)|2,Ω + e−t‖w(0)‖1,Ω.

Proof. By Lemma 6.3.4 from [4] have

(5.30) ‖w(t)‖21,Ω
≤ c exp(c‖v‖22,5/2,Ωt)(1 + ‖v‖

4
2,5/2,Ωt) sup

t′≤t
|w(t′)|22,Ω + c sup

t′≤t
|w(t′)|22,Ω

+
∫ t
0
(|q(t′)|22,Ω + |h(t′)|22,Ω|+ |fϕ(t′)|22,Ω) dt′ + e−t‖w(0)‖21,Ω.

To examine the r.h.s. of (5.30) we need the global estimate (see Lemma 6.3.5
from [4])

(5.31) |w(t)|2,Ω ≤
R2
R1
|w(0)|2,Ω + c

∫ t
0
(|q(t′)|2,Ω + |h(t′)|2,Ω + |fϕ(t′)|2,Ω) dt.

In view of (5.1) we obtain from (5.31) the estimate

(5.32) |w(t)|2,Ω ≤
R2
R1
|w(0)|2,Ω + c

∫ t
0
(|q(t′)|2,Ω + |h(t′)|2,Ω) dt′ + c|fϕ(0)|2,Ω,
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for t ∈ R+. Now we examine the integrals on the r.h.s. of (5.32). To estimate
the integral

I1(t) =
∫ t
0
|h(t′)|2,Ω dt′

we exploit (5.4) to calculate

|h(T )|22,Ω ≤ e−νT−cB
2
[|g(0)|22,Ω + |h(0)|22,Ω] ≤ e−νT/2[|g(0)|22,Ω + |h(0)|22,Ω]

where used that T is so large that

(5.33) e−νT/2+cB
2
≤ 1.

Next

|h(2T )|22,Ω ≤ e−νT+cB
2
[|g(T )|22,Ω + |h(T )|22,Ω]

≤ e−νT/2[e−δ2T |g(0)|22,Ω + e−νT/2(|g(0)|22,Ω + |h(0)|22,Ω)]

≤ e−νT [e−(δ2−ν/2)T |g(0)|22,Ω + |g(0)|22,Ω + |h(0)|22,Ω].

Continuing the considerations and using that δ2 > ν/2 we obtain

|h(kT )|22,Ω ≤ e−νkT/2[c|g(0)|22,Ω + |h(0)|22,Ω].

Now

I1((k + 1)T ) =
k∑
s=0

∫ (s+1)T
sT

|h(t)|2,Ω dt ≤
k∑
s=0

|h(sT )|T

≤T
k∑
s=0

e−νsT/4[c|g(0)|2,Ω + |h(0)|2,Ω] ≤ cT (|g(0)|2,Ω + |h(0)|2,Ω).

Finally we estimate the expression

J1 =
∫ t
0
|q(t′)|2,Ω dt′.

From (6.3.41) in [4] we have the inequality

(5.34) |h,t(t)|22,Ω + ‖h(t)‖21,Ω ≤ e−ν0t+cB
2
[
|h,t(0)|22,Ω + ‖h(0)‖21,Ω

+ c
∫ t
0
(|g,t(t′)|22,Ω + ‖g(t′)‖21,Ω)eν0t

′
dt′
]
,

where ν0 < ν, which holds for the local solution. In view of the decay estimate
(5.1) we have

|h,t(t)|22,Ω + ‖h(t)‖21,Ω ≤ e−ν0t+cB
2
[|h,t(0)|22,Ω + ‖h(0)‖21,Ω

+
1

δ5 − ν0
(|g,t(0)|22,Ω + ‖g(0)‖21,Ω)].
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From (6.3.45) in [4] we get

(5.35) |q(t)|22,Ω ≤ c(1 + sup
t
‖v(t)‖21,Ω)(|h,t(t)|22,Ω + ‖h(t)‖21,Ω) + c|g(t)|22,Ω.

Using that

sup
t′≤t
‖v(t′)‖1,Ω ≤ c(‖v‖2,Ωt + ‖v(0)‖1,Ω) ≤ c(B + ‖v(0)‖1,Ω), t ≤ T,

and in view of the above estimates the inequality (5.35) takes the form

(5.36) |q(t)|22,Ω ≤ ϕ(B)e−ν0t[|h,t(0)|22,Ω + ‖h(0)‖21,Ω + |g,t(0)|22,Ω + ‖g(0)‖21,Ω].

In virtue of (5.36) we have

|q(kT )|22,Ω ≤ϕ(B)|h(kT )|21,0,Ω + c|g(kT )|21,0,Ω
≤ϕ(B)e−ν0T [|h((k − 1)T )|21,0,Ω + |g((k − 1)T )|21,0,Ω]
+ ce−δ5T |g((k − 1)T )|22,Ω

≤ e−ν0T/2[|h((k − 1)T )|21,0,Ω + |g((k − 1)T )|21,0,Ω] ≡ I1,

where we used

(5.37) ϕ(B)e−ν0T/2 + ce−(δ5−ν0/2)T ≤ 1.

Continuing, we have

I1 ≤ e−ν0T/2
[
e−ν0T+cB

2
(
|h((k − 2)T )|21,0,Ω +

1
δ5 − ν0

|g((k − 2)T )|21,0,Ω
)

+ e−δ5T |g((k − 2)T )|21,0,Ω
]

≤ e−ν0T [|h((k − 2)T )|21,0,Ω + |g((k − 2)T )|21,0,Ω],

where we used

(5.38) e−ν0T/2+cB
2
≤ 1, 1

δ5 − ν0
e−ν0T/2+cB

2
+ e−(δ5−ν0/2)T ≤ 1.

Summarizing, for T sufficiently large we obtain

|q(kT )|22,Ω ≤ e−ν0kT/2[|h(0)|21,0,Ω + |g(0)|21,0,Ω].

Finally we calculate

J1 ≤
l−1∑
k=0

∫ (k+1)T
kT

|q(t)|2,Ω dt ≤ (|h(0)|21,0,Ω + |g(0)|21,0,Ω)1/2T
l−1∑
k=0

e−ν0kT/2

≤ (|h(0)|21,0,Ω + |g(0)|21,0,Ω)1/2
T

1− e−ν0T/2
.

In view of the above considerations (5.6) implies

(5.39) |w(t)|2,Ω ≤
R2
R1
|w(0)|2,Ω + Tϕ(B)(|h(0)|1,0,Ω + |g(0)|1,0,Ω) + c|fϕ(0)|2,Ω.
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Utilizing (5.39) in (5.31) and additionally using the considerations leading to
(5.39) yield (5.29). �

We prove global existence of solutions to problem (1.1) step by step. There-
fore we introduce the quantity

F (k) = |g|2,Ω×(kT,(k+1)T ) + |fϕ|4/3,4,Ω×(kT,(k+1)T )(5.40)

+ |Fϕ|2,Ω×(kT,(k+1)T ) + |f |5/3,Ω×(kT,(k+1)T ),

for k ∈ N. To prolong the local solution step by step we have to satisfy (4.11)
for any k,

(5.41) G(T,A, F (k), F ′0(k))(|g|2,Ω×(kT,(k+1)T ) + |h(kT )|2,Ω)
+ c(‖g‖β,δ,Ω×(kT,(k+1)T ) + ‖h(kT )‖2+β−2/δ,δ,Ω) ≤ A,

where k ∈ N, G does not depend explicitly on k, and F ′0(k) is defined by (5.3).
Our aim is to show that T and A do not depend on k. For this purpose we

have to prove that all quantities in (5.40) which depend explicitly on k do not
increase with k. Therefore we need some lemmas

Lemma 5.8. Assume that (5.1) holds. Then

(5.42) F (k) ≤ F (0), k ∈ N.

Proof. Let a1, . . . , a4 be positive constants. Let |f |3,ΩT ≤ a1, |g|2,ΩT ≤ a2,
|Fϕ|2,ΩT ≤ a3, ‖g‖Lδ(0,T ;Wβδ (Ω)) ≤ a4. Then (5.1) implies

|f |3,Ω×(kT,(k+1)T ) ≤ e−δ1kTa1, |g|2,Ω×(kT,(k+1)T ) ≤ e−δ2kTa2,
|Fϕ|2,Ω×(kT,(k+1)T ) ≤ e−δ3kTa3, ‖g‖Lδ(kT,(k+1)T ;Wβδ (Ω)) ≤ e

−δ4kTa4.

Since F (0) =
∑4
i=1 ai we see that (5.42) holds. This ends the proof. �

Next we have

Lemma 5.9. Let B, bi, i = 1, . . . , kj, j = 1, 2, . . . be given constants. Let
there exists a local solution to problem (1.1) such that v ∈W 2,13 (ΩT ) and

(5.43) ‖v‖2,3,ΩT ≤ B.

Let (5.1) hold and

(5.44)

|h(0)|2,Ω ≤ b1,
∣∣∣∣χ(0)r

∣∣∣∣
2,Ω
+ |h(0)|2,Ω + |w(0)|24,Ω ≤ b2,

|h(0)|1,0,Ω ≤ b3, ‖w(0)‖1,Ω ≤ b4,
‖w(0)‖6/5,5/2,Ω ≤ b5, ‖h(0)‖2+β−2/δ,δ,Ω ≤ b6.

Let

(5.45) |g(0)|1,0,Ω ≤ k1, |f(0)|3,Ω ≤ k2, |Fϕ(0)|2,Ω ≤ k3, ‖g(0)‖β,δ,Ω ≤ k4.
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Let T and t1 < T be so large that

(5.46)

e−νT+cB
2
[
1

δ2 − ν
k21 + b

2
1

]
≤ b21,

c(d1)d21e
cB2 + cecB

2−c1T [ϕ(A)k21 + k
4
1 + k

2
2 + k

2
3] + e

−νT/2+cB2b22 ≤ b22,

ce−νT+cB
2
(b23 + k

2
1) ≤ b23,

ϕ(d1, d2)[e−δ∗t1(b1 + b2 + b3 + k1 + k2 + k3) + 1]10 +
cd3

(t2 − t1)2/5
≤ b5,

ϕ(B)e−νt1(b3 + k1 + k4) + ca ≤ b6.

Then there exists a constant c1 > 1 such that

(5.47) F ′0(k) ≤ c1F ′0(0), k ∈ N.

Proof. In view of (5.43), (5.44)1, (5.45)1 it is clear that Lemma 5.1 implies

|h(T )|22,Ω ≤ e−νT+cB
2
[
1

δ2 − ν
k21 + b

2
1

]
.

By (5.46)1 we have that |h(T )|2,Ω ≤ |h(0)|2,Ω. By (5.43), (5.44)2, (5.45)2,3 we
see that (5.6) implies∣∣∣∣χ(T )r

∣∣∣∣2
2,Ω
+ |h(T )|22,Ω + |w(T )|24,Ω

≤ c(d1)d1ecB
2
+ cecB

2−c1T [ϕ(A)k21 + k
4
1 + k

2
2 + k

2
3] + e

−νT/2+cB2b22.

Hence (5.46)2 gives∣∣∣∣χ(T )r
∣∣∣∣2
2,Ω
+ |h(T )|22,Ω + |w(T )|44,Ω ≤

∣∣∣∣χ(0)r
∣∣∣∣2
2,Ω
+ |h(0)|22,Ω + |w(0)|44,Ω.

By (5.43), (5.44)3, (5.45)1 and (5.21) we have

‖h(T )‖21,Ω ≤ ce−νT+cB
2
(b23 + k

2
1).

Then (5.46)3 gives ‖h(T )‖1,Ω ≤ ‖h(0)‖1,Ω. By Lemma 5.4 we have

‖h(T )‖2+β−2/δ,δ,Ω ≤ ϕ(B)e−νt1(b3 + k1 + k4) + ca

To estimate the r.h.s. we use (5.46)5. Emploing (5.21), (5.44)1,2,3,4, (5.45) in
(5.27) yields

‖v(T )‖6/5,5/2,Ω ≤ ϕ(d1, d2, A)[e−δ∗t1(b1+b2+b3+k1+k2+k3)+1]10+
cd2

(t2 − t1)2/5
.

Then in view of (5.46)4 we have ‖v(T )‖6/5,5/2,Ω ≤ b5.
Finally in view of the above estimate and (5.29), (5.34) we obtain (5.47). �
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Remark 5.10. Up to now we have only proved that v ∈ W 2,15/2(Ω
T ) and

Theorem 1 yields the estimate (1.6). Then for solutions of problem (1.1) we
have the additional estimate

‖v‖2,3,ΩT ≤ c(‖v‖22,5/2,ΩT + |f |3,ΩT + ‖v(0)‖4/3,3,Ω).

Hence assuming that f ∈ L3(ΩT ) and v(0) ∈ W
4/3
3 (Ω) we have that v ∈

W 2,13 (Ω
T ) and the above construction (see Lemmas 5.1–5.9) is justified.

Proof of Theorem 3. Assume that (4.11) holds with c1F ′0(0) which re-
places F0(0) and appears in Lemma 5.9. Then in view of Lemmas 5.8 and 5.9
and Remark 5.10 we see that inequality (5.41) holds for any k. Then the results
of Section 4 can be prolonged step by step. �
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