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GLOBAL SPECIAL REGULAR SOLUTIONS
TO THE NAVIER-STOKES EQUATIONS
IN A CYLINDRICAL DOMAIN
WITHOUT THE AXIS OF SYMMETRY

WOoOJCIECH M. ZAJACZKOWSKI

ABSTRACT. Global existence of regular solutions to the Navier—Stokes
equations in a bounded cylindrical domain without the axis of symme-
try and with boundary slip conditions is proved. We showed the existence
of solutions without restrictions on the magnitude of the initial velocity
assuming only that the La-norms of the angular derivative of the cylindri-
cal components of the initial velocity and the external force are sufficiently
small. To prove global existence some decay estimates on the external force
are imposed.

1. Introduction

We consider a motion of a viscous incompressible fluid described by the
Navier-Stokes equations in a bounded cylinder without the axis of symmetry
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under ideal boundary slip conditions (see [4]):

vi+v-Vo—divT(v,p) = f in Q7 = Q x (0,7),
dive =0 in Q7
(1.1) v =0 on ST =8 x (0,T),
n-T(v,p) Ta =0, a=1,2, on ST,
V|t=o = v(0) in Q,

where v = v(z,t) = (vi(z,t),v2(z,t),v3(x,t)) € R3 is the velocity vector, p =
p(z,t) € R the pressure, f = f(x,t) = (fi(z,1), f2(z, 1), f3(x,t)) € R® the
external force field, 7 the unit outward vector normal to S = 0Q,7,, a = 1,2,
are tangent vectors to S.

By T(v,p) we denote the stress tensor of the form
T(v,p) = vD(v) — pI,

where v is the constant viscosity coefficient, D(v) = {viz; + V), }ij=1,2,3 the
dilatation tensor and I the unit matrix.

To describe domain 2 and the considered motion we introduce the cylindrical
coordinates 7, ¢, z by the relations 1 = rcos p, o = rsinp, 3 = 2z, where x1,
To, x3 are the Cartesian coordinates.

We assume that Q = {z e R3: 0 < Ry <r < Ry, —a< z<a, ¢ € [0,27]}.
Then S = S; U Sy, where S; = {x € R3 : r is either Ry or Ry, —a <2< a, ¢ €
[0,27]} and So = {x € R?: 2 is either —a or a, Ry <r < Ry and ¢ € [0,27]}.

Let w be any vector. We introduce the cylindrical coordinates of u in the
following way: w, = u-€,, u, = u - €,, U, = U - €, where €, = (cos,siny,0),
e, = (—singp, cosp,0), €, = (0,0,1) and dot denotes the scalar product in R3.

The above implies that 2 is a cylinder without the axis of symmetry. We
cutted of the axis of symmetry to simplify considerations. Our aim is to prove
global existence of solutions which are close to the axially symmetric solutions
(see the definition below). For this purpose we simplify considerations as much
as possible. Otherwise we should use weighted Sobolev spaces and repeat some
considerations from [4]. This needs a lot of additional considerations connected
with techniques of weighted spaces.

DEFINITION 1.1. By an azially symmetric solution to (1.1) we mean such
solution that the cylindrical components of v, f, v(0) and p do not depend on ¢.

Following [4] we distinguish the quantities:

h = hye, +hge, +h,e,, hy =vrp, hy =v44, h, =0,

q =D, W = Vy, a =rotv, X = Q.
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To show global existence we need some additional problems which help us to

obtain an global estimate. First we have the problem for h and ¢

hy—divD(h) +Vq =—v-Vh—h-Vu+g in Q7

divh =0 in O,
(1.2) h-m =0 on ST,
n-D(h) - To =0, a=1,2, on ST,
hli=o = R(0) in €2,

where g = fr o€, + fo,0€p + f2,0€x.
The cylindrical components of vorticity have the form

1 1
oy = ;(hz —TW), Qp=Up,— Uy =X, O, = ;[(rw) »— hy.

s

Next we get the following problem for x

14
Xt +v- VX + (UT,T + 'Uz,z)X - VAX + ?;(

2v 1 1 w
= ﬁ ( — hap,z + Thz,gp) - ; <w7zhr — w,f’hz —+ rhz>

(1.3) D)
+—ww , + F, in QT
r
x =0 on ST,
Xli=0 = x(0) in €2,

where F' = rot f. Moreover, we have also the problem for w

w,t+v.Vw+1;—rw7VAw+V%:%qui—;/hrJrfga in Q7
(1.4) Wlr=pg, = R%w i=1,2, on S¥,
w, =0 on SQT,
W= = w(0) in Q.

Finally we need the following elliptic problem for v' = (v, v,)
Urz —VUzpr =X in €,
1
Upp+ 0., =—=(hy+v,) inQ,
r

vr‘sl 20, UZ|52=0.

The aim of this paper is to prove existence of global regular solutions to

problem (1.1). Since we are looking for global regular solutions to (1.1) with

large velocity we however need some smallness assumptions. In this paper we

assume that h(0) and g are sufficiently small in corresponding norms.
The paper is divided into the following steps.
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In Section 3 there are found estimates necessary for Section 4, which base
on the estimate for a weak solution (see Lemma 3.1). Therefore we examine
regularity of weak solutions. In Section 4 we prove existence and uniqueness
of local solutions with large existence time. The proof follows from the Leray—
Schauder fixed point theorem and utilizes some ideas from [5]. The results are
formulated in Theorems 1 and 2, respectively. In Section 5 we prove global
existence by prolonging the local solution step by step. The result is presented
in Theorem 3. To prove global existence we needed some decay estimates for the
external force.

We have to underline that global existence is possible thanks to the energy
estimate for y (see Lemma 3.2), where the idea of the proof is taken from [2], [3]
and assumptions on smallness of h(0) and g which imply estimate (4.7) (see
Lemma 4.2).

In this paper the motion with large angular component of velocity is con-
sidered. This fact implies serious difficulties to get the crucial estimate for x in
a neighbourhood of the axis of symmetry. We must underline that in a neighbour-
hood of the axis of symmetry the axially symmetric solution (see Definition 1.1)
behaves as 3-dimensional (see [6]), so we are not able to obtain any global in
time estimate for large v,. This implies that methods from [4] must be utilized
(see also [6]). This is the main reason why in this paper a cylinder without the
axis of symmetry is considered.

Now we formulate the main results of this paper. Let us introduce the quan-
tities

F(T) =9llz,ry + ||f<P||L4/3(O,T;L4(Q)) + 1 FpllLo0ry + ||f||L5/2(QT),
Fo = [1M0)]| L) + [w(O) 1 0) + [X(0)[ L (0) + ||U(0)HW§//;(Q)7
Y(T) = ||h||W;+5>1+ﬁ/2(QT) + ||Q||G§,6/2(QT),
K(T) = 9llzoory + [170)][ o)
where notation is introduced in Section 2.

THEOREM 1. Assume that v is a weak solution to problem (1.1). Assume
that v(0) € Wy/5(Q), h(0) € WH"2(Q), w(0) € HY(Q), x(0) € La(%),
f € Lso(@"), g € Wi (@), fy € La(0.T: Lajs(Q)). Fy € La(QF), f < 1,

2/0 <p+1/2,5/6 <3408, 6€(1,2). Assume that A > 0 is such that
G(Ta()?F(T),FO)k(T) + C(HgHWf'ﬁ/2(QT) + Hh(O)HWI?JFﬁ*Z/“(Q)) < Aa

where G is a nonlinear positive increasing function of its arquments determined
by (4.9). Assume that k(T') is so small that

(1'5) G(T7 A, F(T),Fo)k}(T) + C(HgHWéGﬁ/Q(QT) + ||h(0)||W52+5*2/5(Q)) <A
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Then there exists a solution to problem (1.2) such that h € W52+'6’1+6/2(QT),
qe G?’ﬁm(QT) (defined in (4.5)) and v(T) < A.

Hence the weak solution to problem (1.1) is such that v € W;;(QT) Vp €
L5/2(QT) and
(1.6) HUng/é(m) + ||VP||L5/2(QT) < (A, F(T), Fo, T),

where ¢ is an increasing positive function of its arguments. Moreover (1.5)
implies that T and k(T) are inversely proportional.

THEOREM 2. Let solutions of (1.1) be such that v € L1(0,T; WL (Q)). Then
they are unique.

THEOREM 3. Let the assumptions of Theorem 1 be satisfied. Let v(0) €
Wg/g(Q). Let the decay estimates (5.1), (5.2) hold. Assume that T, the time of
local ezistence, is sufficiently large. Assume that f(0) € L3(2), g(0) € H(),

9.4(0) € La(2), F,(0) € La(92), < 00. Assume that

191 2 w72 0,00))
[R(0) 1,0 + g(0)]2,0

is sufficiently small. Then the local solution determined by Theorem 1 can be
prolonged infinitely.

Hence there exists a global solution to problem (1.1).

2. Notation and auxiliary results

To simplify considerations we introduce

lulp.o = llullL, @) Q€{0,5,07,87}, pel,o0,

lulls,o = llullas(q), Qe {05}, 0<seR,

lulls.o = llullyserz gy Qe{n? 8Ty, 0<seR,
ulpg.r = lullL,0.7:0,@Q) Qe{Q, S}, 1<p,q<oo,

lulro0 = (lullf @ + lulz ).

To consider spaces with fractional derivatives it is convenient to introduce

(oo = ([ [ MO 1)
(@apare = | <<u>>1’,,,,gdt)1/p7
(uhap,01) = (/ / |tt,|1+ap|p dtdt’)l/p,

the notation
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(@apars = ([ 1600 dx)l/p,

where a € (0,1), p € (1,00), 2 C R3. Moreover,
”uHW;J"/?(QT) = <<u>>oz,p,QT,m + <<u>>a/2,p,QT,t + |u|p,QT~

The space WaFTF+/2(QT) | € N, a € (0,1) has the norm

||UHW§k+a,k+u/2(QT)

= S DSkl ) + 102 ulye sy 10K o
B+2b<2k
By ¢ we denote a generic constant which changes its magnitude from formula to
formula. By c(0), ck(0), k € N, ¢(0), we understand generic functions which
are always positive and increasing.
From [1] we recall the result

LEMMA 2.1. Assume l,k,j € N, o, 8 € (0,1), p,q1,q2 € (1,00),  C R3.
Then we have
VAW Fel2Re2(QT) € Ly, (0,7 Ly, ()
if5/p—3/q1 —2/q2 + k <1+ a. Moreover, for u € Wé+a’l/2+a/2(QT) we have
the interpolation inequality

|V’“u|q1,q2_’QT < el

‘UHH»a,p,QT + CE_%|u|p,QT7

where

—3/q1 —2/q2 + k
Lo 0/p=3/a -2tk _

1.
I+«

The ’OllOlUZTLg zmbeddmg holds
k I+a,l/24a/2 T i+03,7/24+08/2 T

if5/p—=5/q+k+j+p<1+a.
Let u € W1€+a’l/2+a/2 (QT). Then the interpolation inequality is valid

IV ullj1p,g,0m < e lullisapor + e ulyor,

where . b
sy = AP =Blat k6
[+«

LEMMA 2.2. Assume that
f c W£+s/6,ﬂ/2+s/(25)(QT) A L&é (QT)7 ge W£+8/5’ﬁ/2+8/25(QT) n L&i (QT),

where B € (0,1), § € (1,00), e-arbitrary small positive number, 1/6; + 1/§y =
1/6,1/81 +1/8, =1/6. Then

(2.1) 1f9llg.s.0r < clllfllgress.si,0rlgls,.ar + 119l g1ess.80,.0rlflsy.ar)-
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Proor. To prove the lemma it is enough to examine the highest seminorms.
First we consider

t)g " gz, )|° 1/5
(fo)p5.0me = </ [ [ |xx{3<fﬁ5 (e’ )] dwdw,dt)
Y
|f(z,t) — f(2,t)|°M el dt 1/(521)
oJo |$—m’|3ﬂl/\1+6,@,\
A2 1/(8)2)
lg(z,1)] o da’ dt
Qlz— 33’|3M2/\
1 5A))
lg(z IR 1/(5),
(/ / / x _ .’L'I|3l"1)‘/1+5ﬁ)\/ dx dxl dt
t)[9r2 1/(5)\)
</ // L /|3| 5V dwdx’dt> =1,
r—x

where 1/A1 +1/Aa =1, 1/N] + 1/Ay =1, uy +pe = 1, pf + ph =1, and A, N},
Wi, ph, 1 = 1,2, are positive.

Asumming that psAs < 1, phA, < 1 there exists € > 0 such that ps = 1/Ao —
€/3, uh=1/Ny —€/3, 80 3u1 A1 + 88A = 3+ A1 (8 +¢/0) and 3uj A + 568N =
3+ A (B +¢/6) and

I < () presaon,aralglons.or + (9) s1eys, 5A,,QT L.QT -

Next we examine

<<fg>>6/2¢m t_(// / #,t)g |t_)t/|iff§5/t2/)g(x7t,)5dxdtdt’>1/6
(// / |ftx_i/|m/\l+ﬁ§/\)l|j:1 dxdtdt/>1/(5,\1)
(L L o)
! (821)
(LT 'gf’iiwfﬁi?f'fi i)
(L et an)™

where p;, 1}, A, A; for ¢ = 1,2, satisfy the same restrictions as before.
Now we take € > 0 such that po = 1/A\; —e/2, ph = 1/N, — /2 are positive.
Then

Wi + 55)\1 =1 +6)\1<ﬁ 26) and ,u1X + 6(5)\/ =1 +5)\' (6 2€6>

and

J <L) gr2ter28).6n .97 t19l5x0,07 + (9N 3242/ (25),6x .07 ¢ | Floxg o7
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Adding the estimate for |fg|sor and putting 6; = d\;, 8 = 0A}, i = 1,2, we
obtain (2.1). O

3. A priori estimates

We prove the existence of local solutions by the Leray—Schauder fixed point
theorem. For this purpose we need some a priori estimates. From [5] we have

LEMMA 3.1. Assume that v(0) € La(Q), f € La1(QT) N La(QT), T < o00.
Then there exist constants

T
a(T) = / FOlaadt + 0(0)]a0,

T T
BT = [ e+ [ jhoFa
—2
<201+ T)(|f50r +10(0)30) = da(T),
such that, fort < T,

(3.1) [v(t)|2,0 < di(T),

t
(3.2) ()R + v / ()12 o dt < d3(T).

Next we obtain an estimate for y.

LEMMA 3.2. Let the assumptions of Lemma 3.1 hold. Let
1
(3.3) c1lhplz/en < 17

where ¢y is the constant from the imbedding H*(Q) C Lg(Q2). Let F, € Ly(27),
x(0) € Ly(2) and

(3.4) Vh € Ly(0,T; Lgy5(Q2)), h € Loo(0,T5L5(R)), w € La(Q).

Let us introduce the quantity

T T
—2
(3:5) A?(T)=/ [VA()[5/5.0 dt + dy(T) sup Ih(t)|§7g+/ [w(t)], dt-
0 te(0,T) 0

Then solutions of problem (1.3) satisfy the inequality

2

+”/t
2,0 4 Jo

2 2

oo O )

r

x(0
dt' < c(AT(t) + |Ful3.0¢) + ‘i)

1,Q 2,0



NAVIER-STOKES EQUATIONS 7

PROOF. Multiplying (1.3); by x/r? and integrating the result over Q yield

The first term on the r.h.s. we estimate by

? X
V= )
T

2,0

< cilhglsszn
6,0

X
|hso|3/2,Q ;

and the second by

2

c/ |Vh|’x‘dx§€1 X
Q r r

1
+cl = )IVAZ): o,
()

where €1 € (0,1)
In view of the Hélder and Young invequalities the third term on the r.h.s. of
(3.7) is bounded by

x|? 1
= + c() [|lw]
T ls,0 €2

Finally the fourth term on the r.h.s. of (3.7) we examine in the way

Loy X L o ofX
- = = — — = =1
/Qr(w )’ZTQ dx /QT2w (T)’de ,
X ? 1 4
|| <es =) dr+c|— w” dx.
Q T 2 €3 Q

In view of the above considerations and assuming that 1, €9, €3 are sufficiently

€2 ?Q|h|§ﬂ

SO

small (3.7) implies
2 2

X

r

38 14

2 dt Ve

r

+ZV

o

2,0 2,0

2
vX
r

iQ + |F¢|§Q>

< c(|h¢|3/2,9 IR s g + Bl + o
Q

2,

Integrating (3.8) with respect to time, using (3.3) and the Poincare inequality
we obtain (3.6). This concludes the proof. O

To find estimates for (3.4); we need
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LEMMA 3.3. Let the assumptions of Lemma 3.1 hold and let h € Lo (0,T}
L3(2)), g € La(Q2T), h(0) € Ly(Q). Then

t
—2
(3.9) |h(t)]3.0 + V/ Ih(#)F o dt" < edy sup [h(t')]3q + clgl3 o + 1M(O0)]3 0.
0 t'€(0,t)
where t € (0,T7].
PROOF. Multiplying (1.2); by h, integrating the result over 2 and using the
boundary conditions we obtain

1d

(3.10) 5 lho +vllhle

1 1
<erlhlZo+ () Vo alhl o + caliBa + () 9.0,

where €1,¢e2 € (0,1) and

(3.11) /hrd:c:/h@d:c:/hzdxzo.
Q Q Q

Choosing ¢; and &5 sufficiently small and integrating (3.10) with respect to time
we obtain (3.9). 0

We also need

LEMMA 3.4. Let h(0) € La(2), g € L2(Q7), Vv € L2(0,T; L3(2)). Then,
fort e (0,7,

(3.12) h(8)[30 < eV 50t [|g[2 o + e R(0) 3.0,
and
(3.13) B30 < (VI3 500 exp(c| VO[3 5 o) + 1)(193.0 + [B(0)[3.0).

PROOF. Multiplying (1.2); by h, integrating the result over 2 and using the
boundary conditions we obtain

1d

.14 ——
(3.14) 57"

50+ VIhlTg < dVul3alhl3q+ cgl3a-
Continuing, we have

d |h|§ Qe"tfcfot |Vv(t’)|§,sz dt,) < c|g\§ Qel’tfcfot |Vv(t,)|§,sz dt'_

(3.15) =

Integrating (3.15) with respect to time we arrive to (3.12). Integrating (3.14)
with respect to time and using (3.12) yield (3.13). O

To estimate |w|y or which appears in A; (see (3.5)) we need
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LEMMA 3.5. Let the assumptions of Lemma 3.1 hold. Let q, h, f, € L4(0,T;
L4/3(2)), w(0) € Ly(2). Then, fort < (0,77,

/2

(3.16)  |w(t)|a0 + (/Ot Hw2(t')||%,g dt/>1

< c(dy +1qlay3,a,00 + |hlassaor + | folaysaae + [w(0)

1,0)-

PROOF. Multiplying (1.4); by w|w|?, integrating over € and using the boun-
dary conditions we obtain

1d, 4 9 w? Ur | 4
(3.17) Zj|w|4’9+y VuV(ww|)de +v | —dz+ [ —|w["dx
t Q Tl Tl

_ L 4 1 4 / q, 2 2
= . |w(Ry)|* dSy s /s, |w(R2)|* dS1 + A (T+r2hr+f¢>ww| dz.

The second term on the lL.h.s. equals to
3
fu/ |V |w|?? d,
4 Ja
the last term on the l.h.s. we estimate by
4 4 22 1 22
; [rljwl”de < forla.lwlsq < x| VIwfg +el o di Jlwie,
where (3.2); was used. The boundary terms on the r.h.s. are bounded by
212 22 1 212
clw?3 g, <2 Vwis o +c o |w?|T o,
and finally the last term on the r.h.s. by
4 1 4 4 4
eslwlis g +c o (lals/z.0 + 1hlis0+ [folisn)

Using the above estimates in (3.17), assuming that €1, 2, 3 are sufficiently
small and integrating with respect to time we arrive to (3.16). O

In view of (3.9) and (3.16) inequality (3.6) takes, for ¢ < T, the form

t 2 1/2
+ (/ dt'>
2.Q 0 1,0

< C(d2(t)|h|3,oo,ﬂf + |h|421/3,4,m + |q‘421/3,4,9t + |gl2,00 + |fgo‘421/3,4,9t

2,9)

x(t)

o [ )

r

x(0)
1P + &+ DO + (O + X
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Now we obtain further estimates for v. Let €’ be a domain obtained by
intersection of 2 with the plane passing through the axis of symmetry determined
by relation ¢ = const. Then we consider the problem

Uy —Vsp =X in Q' x (0, 2m),
1
(3.19) Vpr + 05, = ——(hp +v,)  inQ x(0,2m),
r
U'r“Si =0, 'Uz|Sé =0,
where S7, S} are intersections of Sy, Sz with the same plane, respectively.

To solve (3.19) we introduce new functions u, = rv,, u, = rv,, so problem
(3.19) takes the form
Upp — Uy =X — Uy in Q' x (0,2m),
(3.20) Upyp + Uy, = —hy in Q' x (0,2n),

ur'Si =0, uz‘Sé = 0.

Introducing potentials o and 1 such that

(3.21) (“T> - (U“ G )

Uz 02— w,r
problem (3.20) assumes the form

Ay =x—wv, inQ x(0,2n),
(3.22) Ao =—h, in Q' x (0,2n),

n-Vio+7 -V =0 on S’ x (0,27),

where A’, V' are operators with derivatives with respect to r and z only. More-
over, T is the unit normal outward vector to S’ and 7 is tangent to S’. The

vectors belong to the plane determined by §2'.
Choosing 1) = 0 on S’ we obtain the following problems

A =x—wv, inQ x(0,2n),

(3.23)

Y =0 on S’ x (0,27),
and
(3.24) A'c =—h, inQ x(0,2m),

n-Veo =0 on S’ x (0,27).

The compatibility condition for problem (3.24) holds,

(3.25) / herdrdzde =0,
Q'x(0,2m)

because hy, = vy,
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LEMMA 3.6. Assume that h € Lg oo(Q7) N Lyy34(Q7), q € Lyj34(Q7), g €
Ly(QT), fp € Lus3a(QF), Fy € La(Q7), 1(0),x(0) € L2(), w(0) € La(),
dy < 00, dy < . Let v' = (v,,v.). Then, fort <T,

t 1/2
3200 sup @)l + 101y o + ([ 10O adt)

< c(d2h|3,oo,at R g+ a0 + Lol
B ae + 1l + 1RO

T ’Xio) + |w(0)i,9+d%+d2(t>)-

2,0

PROOF. For solutions of problems (3.23) and (3.24) we have
2m
a2 sw [T+ 170l ) e
t 27
[t [ UVl + 19 0l de
0 0
<l supllvlE o + blEa + 1 o)

t
+/ (IX)E @ + o) o + IME)T o) dt'| = 7,
0

where H¥(€)') contains only derivatives with respect to r and z, V' = (9,,0.).
In view of (3.21) and the definition of u, and u., (3.27) implies

2 2
829 s [ Wlnadet [ [ IV o< e
where v = (v,, v,). Utilizing
VY l2.0 < e(|VRl2,0 + 1V]|1,0), W 12,0 < c(|hlz,0 + |[v']2,0),
(3.28) yields )
sap I oy + 190 ey < .
Then in view of Lemmas 3.1-3.3 we obtain (3.26). O

To simplify considerations we introduce the notation

X1(T) = |hlayz.a,0r + l4layz.a0r,
d3(T) = |glo,or + | folassaor + |Fyloor,

(3.29) 0

b = [h(O0)|a. + [w(0)] e + ]

2,0

Next we obtain an additional estimate for w.
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LEMMA 3.7. Let the assumptions of Lemma 3.6 hold. Let
Xo(T) = |h5/3,0r + lql5/3,07 < o0,
(3.30) dy(T) = |fsa|5/3,QT < 00,
by = [[w(0)l4/5,5/3.0 < 0.

Then, fort < T, we have

(3.31) |l

2,5/3,00 <c(da(t) + X1 (t) + ds(t) + dy)[da(t)|hls 0,0
+ X1 (t) + X7(t) + ds(t) + d3(t) + by + b7]
+ ct®0dy 4 (X5 (t) 4+ da(t) + ba) = ¢Jy.

PRroOF. For solutions of problem (1.4) we have

(3.32) w200t <c(|v" - Vs o + [whelear + |vrw]e o

+ |w|a,Q‘ + |Q|U,Q" + |h|a,Qt + ‘ftp|a,Qt

+ ||w||1—1/a',a,Sf + ||w(0)||2—2/0,a',§2)7
where o < 2 and will be chosen later. To estimate the first term on the r.h.s. of
(3.32) we recall that (3.26) implies that Vo' € L, ,(Q x (0,¢)) with 3/r +2/q =
3/2. Hence v/ € L4(0,t; Ly(2)), where 0 = 3r/(3—r), so r = 30/(3+ 0).
Choosing ¢ = ¢ we obtain 3/(30/(3+0)) +2/0 =3/2, so o = 10.

Hence by the Holder inequality the first term on the r.h.s. of (3.32) we esti-

mate by

|Ul|/\10,Qt|v'w|)\207Qt = Il;
where 1/A1 +1/A2 =1, Aio < 10, Aoo <2, 50 0 < 5/3. Then in view of (3.2),
and (3.26),

Iy < edy(8)[X1(t) + X1 (t) + da(t)|hls00,0r + d3(t) + d5(t) + by + b] + dF + da).
To estimate the second term on the r.h.s. of (3.32) we recall that (3.9) implies
(3.33) hhos3,00 < e(d2(t)|Pls,00,00 + ds(t) + 1)
and (3.16) gives
(3.34) wlao/z,00 < (X1 (t) +ds(t) + by).

Hence by the Holder inequality the second term on the r.h.s. of (3.32) is bounded
by

[0, 0t [Plor, 0t = Ta,
where 1/A1 +1/XA3 =1, oA <20/3, oAy <10/3, so o < 20/9, and

I, < C(Xl(t) =+ dg(t) + b1)(82(t)‘h|37oo’gt + dg(t) =+ b1)
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Applying the Holder inequality to the third term on the r.h.s. of (3.32) we bound
it by

[Vr|x 0.0t [ W] Aot = I3,

where 1/A; + 1/Ay = 1. Assuming that Ao < 10, Ago < 20/3 we have that
o <4 and

I3 < e[ X1(t) + X7 (t) + da(t)|h]3 00,00 + ds(t) + d5(t) + by + b3][X1 () + ds(t) + by ).

The fourth term from the r.h.s. of (3.32) we estimate by t'/?d;. The bound-
ary term is restricted by

1
ellwl2,o,0t + c(g)tl/adl.
In view of the above considerations we choose 0 = 5/3 and (3.31) follows. [

Looking for the proof of Lemma 3.7 we see that the power of integrability
5/3 in (3.31) is determined by the first term on the r.h.s. of (3.32). The other

terms are less restrictive. To increase the power we use the estimate.
(3.35) IVwls/s.00 <cllwllz53,00 < chi
-3 —2
<c(dd +dy + di + XT 03+ dy|hl3 o0 +1)
+ et35dy 4 (X + dy + by),

where the Young inequality was utilized to get the last inequality.
Let us introduce

X3(t) = |hl2,0t + |d|2,0t,
ds(t) = t
(3.36) 5(1) = |fol2.0
bs = [[w(0)]1,a,

Y1 =di +dy+ds + by + X1 + da|h|3 00,0t
Then in view of (3.35) we have

LEMMA 3.8. Let the assumptions of Lemma 3.7 hold. Let X3(t), ds(t), bs
be bounded fort < T. Then
(3.37) [Jwlloor < c(YP+1)+cTdy> +e(XF +d3+13)+cT" 2dy +(Xa+d5+bs).

PROOF. It is enough to examine the first term on the r.h.s. of (3.32). We
estimate it now by

V' | x 0.0t VWwlnso0r = 1,
where 1/A1 + 1/ =1, A\jo < 10, Ago < 5/2, s0 0 < 2. Hence
L < C[Xl =+ X12 =+ 32‘h|3’oo’gt +ds + d% +b; + b%]J1
<c(Y2H+1)(YE+1+35d) + Xo + dy + bo)

<[P+ tdyP 4 (Xy + dy + by)P3 4 1).
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The other terms are estimated in the same way as in the proof of Lemma 3.7.0]

To simplify notation we introduce

X(T) =da|h|3 00r + X1 + X2+ X3,
(3.38) d(T) = dy + do + ds + dy + ds,
b = by + by + b3.

In view of Lemmas 3.6 and 3.8 we have
(3.39) [vhogar + [Volosar <c(l+ X% +d° +6° + Td?).
Therefore we can prove

LEMMA 3.9. Assume that h € Loo(0,T;L3(R2)), ¢ € L4(0,T; Lys3(2)) N
Ly(Q7), f € Lo(QT), f € La(0,T; Lajs(Q), g € La(Q7), v(0) € Wo™/7(),
h(0) € La(Q2), w(0) € HY(Q), o < 5/2. Then, for o <5/2,

(340) [[vll2,p,0r < (1 + X" +d° +6° + Td})* + c(| flogr + [[0(0)|2-2/0,0.0)-
PRrROOF. For solutions of problem (1.1) we have

[vll2,0,00 < e(|v - Vlo,ar + | floor + [[0(0)l|2-2/0.0.2),

where |[v- V|, ot <|v]or,,0t|VV]ors,0t 1/A1+1/A2=1. Assuming that o\, =10,
o2 = 10/3 and using (3.39) we obtain (3.40). O

Next we show

LEMMA 3.10. Let the assumptions of Lemma 3.9 hold. Let v € W;;(QT),

g€ Wf’5/2(QT), h(0) € W52+B_2/5(Q). Then solutions of (1.2) satisfy

(3.41)  ||ll24 507 + IVdallss.0r
< e(lvll25/2.07)|h

207 + elllgllpsor + 11O)lz15-2/650);

where

and
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wi<l,i=1,...,4,dy >5,8<5/da <1+4p,1<d3 <2,1+08<5/dy <2+0.
PRroOF. For solutions of problem (1.2) we have

(342)  hllagss.0r + IVallgsar <c(llv-Vh|gsar + k- Vullgsar
+ llg|

go.0r + [110)]l248-2/55,0)
Utilizing Lemma 2.2 to the first term on the r.h.s. of (3.42) we obtain

v Vhlgsar < clvligtesssorVhils, or + IVhlgiess.5, 07 0l5.0r),
where 1/6; + 1/62 = 1/6, 1/81 +1/65 = 1/6 and € > 0 is any small number.
Since v € Wg/é (QT) we apply the imbeddings

WL (QT) C WOl QT and - WEL(OT) C Ly (Q7),

which hold for § < 5/6; and any 5 > 4.

In virtue of the above considerations we obtain

(3.43) v Vh|gsar < c(IVhls,or + VRl gyess.6.0r)llv

l2,5/2,.07-
Using the interpolation inequalities
VAl gyess.s;or < g1 |llayps.0r + B Rloar,
IVhls,0r <& |hllatpsar + 25 b2 qr,
where g; € (0,1),i=1,2,
s = (2;+6+§+1>2+1ﬁ<1 and s = (2;’2+1>2+15<1,

inequality (3.43) assumes the form

(3.44)

(3.45) ||v-Vhlgsar <e1llhllarpsor

—o1 /(1—3c 1/(1—3sc —r 1—sr 1/(1—>c
+e(er O ol e e T il o) Bl ar,

which holds for 8 < 5/6; <1+ 8, §, > 5.
Exploiting Lemma 2.2 the second term on the r.h.s. of (3.42) we estimate in

the way
[h-Volgsar < C(Hh||ﬂ+g/§7gl7QT|VU‘EQ,QT + |h|3/17QT||VU||5+5/573/279T)7
where 1/8; +1/d5 = 1/§ and 1/8; + 1/ = 1/4.

To estimate the r.h.s. we use the imbeddings

VIVZ,(Q7) C Lg, (QF) with & < 5,
VW2 (QT) C Wy He/PPHEIEN QT with 5 < 5/(1+ 8),
In view of the above considerations we have

(3.46) 1A Vollgsar < cllhlz, or + 10l g4e/55, 0m)lVll25/2.07
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Employing the interpolation inequalities

(3.47) 1hllpys 5, 0r < g5 || hllasp.5.0r + &5 hloar,
|hl5; qr < g llagps0r + 7 hla0r,

where ; € (0,1), i = 3,4 53 = (5/6 —5/61 + B +¢/8)/(2+ B) < 1, and
sy = (5/8 —5/07)/(2+ B) < 1, inequality (3.46) takes the form

(3.48) ||h-Vvligsar < e2llhllaypsar
— 1—>c 1/(1—>e —t5/(1—3e 1/(1—>e
t+e(ey O ol e 4 e Tl Sl ar
Summarizing, the inequlity holds for 1 < 5/, <2, 1+ 3 < 5/8, <2+ .
Utilizing (3.45) and (3.48) in (3.42), assuming that £, €2 are sufficiently
small and defining d; = 0}, dy = 01, d3 = d2, d4 = 55 we obtain (3.41). O

4. Local existence and uniqueness

The aim of this paper is to prove existence of more regular solutions than
weak solutions described by Lemma 3.1. In other words we increase regularity
of the weak solutions. We shall do it by assuming some additional regularity
properties on initial data and the external force. The regularity properties will be
expressed in the form that the quantities h(0) and g will be small in some norms.
Therefore we shall concentrate our considerations on examining the existence and
uniqueness of solutions to problem (1.2), where velocity v is treated as prescribed.
However if v would have the properties of weak solutions we would be able to
prove nothing. Therefore to obtain higher regularity of v we use problems (1.3),
(1.4), (3.19) and (1.1) by assuming that h and ¢ in these problems are treated
as given and are appropriately regular. To precise the statement let us assume
that h and § in (1.3), (1.4), (3.19) are given and ¥ is the weak solution described
by Lemma 3.1. We assume also that h and § are solutions of (1.2) with v = o.

Let us introduce the space

T 1/2
v = {wsspluin+ ([ Wue)odr) <ooh
0

t<T
Then Lemma 3.3 determines the transformation
V3 (QT) X Loo(0,T; Ls(2)) 5 (5, h) — ®1(7,h) = h € V1 (QT),

which describes some increasing of regularity of h. Next Lemmas 3.3,3.4and 3.5
imply

V2 (27) X Loo (0,73 L3(2)) X Lays4(Q7) 3 (5,h,G) — ®2(v,h,q) = x € V-(QF).
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Continuing Lemma 3.6 implies the transformation
V3 Q1) x V1 (QT) x R(Q) 3 (0, x) — @38, 7, x) = o/
= (vr,v2) € Loo (0, T3 H' () N Luoy3(0, T5 Wig 13(2)) N La(0, T3 H*(9)).
Hence
v = ®3(v, ®1(v, h), Pa(V, h, q)) = Pu(T, h, q).
By imbeddings it follows that v’ € L1o(Q7), Vo' € Llo/g(QT). Finally Lemma
3.8 implies that w = ®5(7, h,§) € W' (QT) for
(4.1) e VHOQT), he€ Loao(0,T;L3(Q)), §€ Lasa(Q7) N Ly(Q7).
Summarizing we have

(4.2)  v=®(T,h,q) € L1o(QT), Vo= V&(T,h,q) € Lig3(Q7),

under the assumption that E,E, q satisfy (4.1).

In view of (4.2) Lemma 3.9 implies that v = v(5,h,§) € W2, (QT) if (4.1)
holds. Therefore to prove the existence of solutions to problem (1.1) with more
regular initial data and external forces we are looking for existence of solutions to
problem (1.2), where v = v(h, g) is a given function. Since we are going to apply

the Leray—Schauder fixed point theorem we examine the following transformation

hy —divD(h) + Vg = —A(h, ) - Vh+ - Vo(h, )] + g,

divh =0,
(4.3) h-m =0,
n-Dh) -To =0, a=1,2,
hli=o = h(0),

where parameter A € [0, 1], E, q are treated as given functions and v depends
also on a given weak solution ¥ what is described in (4.2). Hence (4.3) implies
the transformation

(4.4) (h,q) = (h, T, \).

The main problem of this section is to find a fixed point of transformation
(4.4) for A = 1 and also its estimate. Hence to examine problem (4.3) we
introduce the space

M(QT) = {(h,q) : h € Lo (0,T; Lg () N W, /202H/EN (T A 1, (7),
e/6,8/2+</(26

Vh e Wy s/ 0OEIEQT) 0 Ly, (0T), q € La(0,T; Lays()) N La(27)},
where d are determined by the relations 1/d; + 1/d;, =1/§,i=1,...,4, d; are

introduced by Lemma 3.10, ¢ is arbitrary small positive number and 3, § will be
determined later.
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In view of estimates (3.43) and (3.46) we have that problem (4.3) for A € (0, 1]
implies the transformation

(4.5) o:M(QT) x (0,1] — WP QT) x 6P T,

where

G?’MQ(QT) = {q :Vq e Wéﬁ’ﬁ/Q(QT)7 /qux = O}.

LEMMA 4.1. Assume that g € (0,1), 2/6 < 84+1/2,5/§ <3+ 6, § > 1.
Assume 1/5 > 1/6 —1/d}, B <5(1/8 —1/dy) <1+ 8,1/2 <1/ —1/d, < 1,
1+ 8<5(1/6 —1/d)) <2+ 3. Then the imbedding

(4.6) W22 QT « GEP2(QT) c m(n”)
18 compact.

PRrROOF. The proof is done step by step.

The imbedding W52+’8’1+’6/2(QT) C L(0,T5L3(9)) is compact if 5/§ <
3+0.

Imbeddings of other spaces defined h in MM(QT) into W;JFB’HB/Q(QT) are
compact in view of the interpolation inequalities (3.44) and (3.47).

Since Vg € Wéﬂ’ﬁ/z(QT) we have that Vg € L, (Q7) with 5/6 —3/r' —2/s <
B, r' = max{r, 6} and imbedding Wf’ﬁ/z(QT) C L, s(Q7) is compact.

Since [, gdz = 0 we obtain that ¢ € L, /3. (7). Taking 3r/(3 —r) >
4/3, s =4, we get r =1 and 2/6 < B+ 1/2. Putting 3r/(3 —1) =2, s = 2, we
get r =6/5 and 2/0 < 4 1. Hence the lemma is proved. O

For a fixed point of (4.4) we get

LEMMA 4.2. Assume that v(0) € W56//25(Q), h(0) € W(?HFQ/&(Q), w(0) €
HY(), x(0) € Ly(Q), f € Ls2(Q7), g € WPP(QT), f, € La(0,T; Lyys()),
F, € Ly(Q7), B € (0,1), 2/6 < B+1/2,5/6 <3+ 3, § > 1. Assume that
l9]2.07 + |h(0)]2,0 is sufficiently small. Then for a fized point of transformation
(4.4), (4.5) there exists a constant A sufficiently large (see (4.10)) such that for

sufficiently small |g|o.qr + |h(0)|2,0 the estimate holds

(4.7) 1Pll21p.50r + [Vdlpsar < A.

Moreover, (4.11) implies that T and |g| or +|h(0)|2,0 are inversely proportional.
PrOOF. From (3.41) and (3.13) we have

(4.8)  [|2ll2+p,6,0r + [ Vallgs0r

< o(l[vlla,5/2,07)[| Vo
“(lgl2,0r + [7(0)]2,0) + c(llgllg.5,.07 + 1R(0)l24 5—2/5.5.2);

32,07 exp(c|Vv[3 5 gr) + 1]
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where

4
(0lla5/2.07) = 3 Mol o 0r
=1

a; = 1/(1 = 55), ;€ (0,1), ¢ = 1,...,4, are defined in Lemma 3.10. Next we
recall
[0]]2,5/2,0r <e(1+ X" +d" + b + T%dY) + (| fls 2,07 + [0(0)]l6/5.5/2.0);
X =1hlasgaor + |hls/3.07 + |hl2or + [qla/s,a,07
+ 1ql5/3,07 +14ql2,07 + da|h300, 07
d=dy+(1+T)dy+ l9l2,07 + | folass,aor
+1Fplo,0r + | fols/sor + [fol2ar,
b=[h(0)|2,0 + [w(0)]s,0 + [X(0)[2,2 + [lw(0)1,0-

We use the interpolation inequality
|hl3,00,0r <E1|Rll24p5.0r + L |R|gqr,
where > = (5/6 —1)/(2 + ). From (3.39) we have that
IVulgg0r < cTY5(1+ X5 +d° +0° + Td3).
Let us introduce the quantities
v = [[hll2yps0r +1IVdllssar,

F =lglaaor + [folassanr + | Foloar +1fls/2,07,
Fo = [h(0)|2,0 + [w(0)[l1,0 + [x(0)|2,2 + [|0(0)l6/5,5/2,0-

Then (4.8) implies

(4.9) v < G(T,7, F, Fo)(lgl2.07 + [h(0)|2.0) + c(ll9lls.5.0m + [7(0)l|245-2/56.2),

where G is an increasing positive function of its arguments.
We recall that G is a combination of power and exponential functions. Let
T be a given number. Let A be a number such that

(4.10)  G(T.0, F, Fo)(|gl2,0r + [R(0)]2,2)
+ clllgllssor + [1(0)ll215-2/5.60) < A/2.

Then assuming that v < A we obtain from (4.9) for sufficiently small |g|y or +
|R(0)|2,o the inequality

(4.11) G(T, A, F, Fo)(lgl2,0r +1h(0)|2,.0) +c(llgllg.6.0m +[1A(0)]l245-2/6,5.0) < A.

Hence (4.7) holds. From (4.11) it follows that for a given A an increasing of T
implies decreasing of |g|s o + |h(0)]2,0- O
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REMARK 4.3. To satisfy (3.3) we recall that (3.12) takes the form
|h(t)l2,0 < Go(T', 7, F1, Fo)llgl2,0r + [R(0)]2,0]-
Hence (3.13) implies the restriction
aGs(T, A, F1, Fy)lglz,ar + [h(0)[2,0] < v/4.
G2 and (3 are increasing positive functions. Next we need

LEMMA 4.4. Let the assumptions of Lemma 4.2 hold. Then the transforma-
tion (4.4) is uniformly continuous with respect to its arguments.

PROOF. The uniform continuity with respect to A is evident. Let A € [0, 1].
To show uniform continuity with respect to (h, q) we introduce the sets of func-
tions (h%,¢%), (h',q"), i = 1,2, which are connected by transformation (4.4)

(h',q") = ®(h', ¢, \), i=1,2.
Let us introduce
H:hl_h27 Q:ql_q27 ﬁ:hl_h27 QV:"’l_aQ’
h'(0) = h*(0),
Then problem (4.3) implies

H;—divD(H)+VQ = —A[V-Vh' +3%.VH
+H-Vi'+h?-VV] =K,

divH =0,
(4.12)
H-7n=0,
n-D(H) 7o =0, a=1,2,
H|t:0 :07

where v’ = v(h?,q¢), V' = v(?ﬁ,?ﬁ), i =1,2, V=3 —92, V =0l —02. We
examine problem (4.12) assuming that (h¢,q%) € W§+ﬁ’1+6/2(QT) X GE’B/Q(QT),
1 =1,2. Hence from (4.12) we have

(4.13) [Hll218,50r +[VQlgs0r <clKlpgsar
<c(|V - VR gs0r + 0% VH| 5507
4
+H -V gsar + 117 VV]gs0r) =c) K.

i=1

In view of Lemma 2.1 and (4.7) we get

K1+ Ky < o(A)|[V]|as/2.0r and Ko + Kz < o(A)||H |21 .50
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where ¢ is an increasing positive function. Hence, (4.13) implies
(4.14) [Hll248.50r + IVQlgs0r < p(A)IVlzs/2,0r + 1 H|l24s,507)-

Now we estimate the norm with V in the r.h.s. of (4.14). In problems (1.3)
and (1.4) v is treated as a weak solution which is given and that it does not
depend on h and ¢. Similarly w in the second term on the r.h.s. of (1.3) is
treated as the weak solution. However, the third term on the r.h.s. of (1.3) must
be treated as a solution of (1.4) because it can not be bounded in terms of the
energy estimate. Let X' = X(%i), Wt = w(%l,ff‘), 1=1,2. Let

K=x'-X*, W=uo"-u"

Then problems (1.3) and (1.4) imply

~ ~ ~ -~ 9 ~ 1 ~
Ki+v-VE 4 (Vg +0,.)K — vAK = V<—H@Z+HMO
T

)
1 ] 7oL ¥g Lo 132 212
(1.15) 2 (w0~ o L) 2 - )2
K|gr =0,
Kli—o =0,
and
W,t‘FU'VW-F%W—VAW—‘rV% = %@—l—%’ﬁr,
(4.16) iVTh:Ri=:ﬁ5ﬁZ i=1,2, on ST,
W.lsr =0
Wli—o = 0.

Multiplying (4.15); by K /r2, integrating over Q' and using (3.3) give
2

t
/
2,Q

t t
<c [ VR pqdt + BOVER wg+ o) [ TR gt
0 0

2
dt'
1,Q

)

K

r

K

(417) |

To estimate the last term on the r.h.s. of (4.17) we multiply (4.16); by W and
integrate the result over ). Hence we get

d — _ ~ _ _
(4.18) $|W|§,Q +W[iq < cluB3alWha+ Qo+ Hq)-

Integrating (4.18) with respect to time and utilizing (3.2) yield

t
(4.19) Wi3a +/0 W5 qdt" < c(A,d2)(|H[ 0 +1Q15.00)-
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Exploiting (4.19) in (4.17) implies
2

t
/
Q,Q

Now we consider problem (3.19) where v on the r.h.s. of (3.19)5 is treated as the

I? 2

r

K

r

dt’ < @(Avd2)(|VH|g/5,2,Qt +|H|§,oo,m +|H‘§,Qf + |Q|§Qt)
1,0

weak solution. Therefore (3.19) implies

- - 1~ - -
(420) V;",z - sz r = K7 VYT,T + Vz,z = _;Htp7 Vr|31 = 07 VZ|S2 =0.

)

For solutions of (4.20) we have

Sl:pHVHl,Q F IV Lso s 00w, @) + 1V | o 0.7:202))

< c(|K o007 + [Hlz oo 0r + Kl 0,700 0) + 1 H Lo (0,7550 0
< c(|Hls,00,0m + [[H| Ly 0,7501 () + |Ql2,07) = As.

For solutions of (4.16) we have

. t N 1/4
Wlao + ( [ @1+ 970 0) dt')
0

< c(A, dz)(@|4/3,4,m + |ﬁ\4/3,4,9t + |©|2,Qt + |Hl|g.0r) = Ao,
where
— o 1 —
/ o, | |[W|*da dt’ < 51/ [VW?2|3 o dt’ +c(€,|vr|2m,m>|W|§7Qt
Qt 0 1

and the last term we estimate in view of (4.19).

In virtue of the above considerations we have
[V]i0,0r < cAy, [Wla0/3,07 < cAs.

Now we consider problem (1.4) with coefficients 7 = v(k,§). Hence we obtain

~ _ o~ Up w 1. 2u~
Wy — VAW z—v-Vw——Tw—Z/fz—|—fq—&——2h,.—l—f<,g7
r r2 o r T
7| 1 .
Y,U7 =R; — w,
rir R,
iUv,Z|S2 =0,

Wi=o = w(0).
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Let W = w(h*, ") —w(h?,3?). Then
W= AW = = V- Vu(i,3) - o2, 3) - V7 — V(i 7)
W - W 4G+ 2,

—~ 1 .
Wlr=r, = =W, i=1,2 onS],

R;
W,Z =0 on Sg,
Wli—o =0.

Repeating proofs of Lemmas 3.7 and 3.8 we obtain
W [l2,00 < 0(A)(A1 + A).

Let us consider problem (1.1) with the nonlinear term equal to v(h,q) - Vo(h, ).

Denoting a solution of such problem by v(ﬁ, q) and introducing V = U(El, ql) —
v(h?,¢%) we see that

Vi—vAV +VP = -V -Vu(h',§) —v(h?,§) - VV,

divV =0,
n-V =0,

7-D(V) Ta=0, a=1,2,
Vl]izo =0,

where P = p(h',3") — p(h%, ). Repeating the proof of Lemma 3.9 we have
(4.21) H‘7||2,5/2,QT < p(A)(Ar + Ag).
Utilizing (4.21) in (4.14) yields
[H 218507 +IVQlasar < e(A)[[H|24ps50r + [[VQ|ss07)
Hence continuity of ® follows. O

Now we can prove the main result of this section

PROOF OF THEOREM 1. By Lemma 3.1 we have the existence of weak so-
lutions T to problem (1.1) with corresponding estimates. By Lemmas 3.2-3.10
we construct the transformation v = v(h,q,7). Next by Lemmas 4.1-4.4 we
can apply the Leray—-Schauder fixed point theorem to prove the existence of
a fixed point of transformation (4.4) so equivalently the existence of solutions to
problem (4.3) such that h € W52+B’1+ﬂ/2(QT), qe€ G?’ﬁ/2(QT) with the corre-
sponding estimate. Then Lemma 3.9 implies that the weak solution is such that
v E W;;(QT), where the existence time 7' is determined by (4.11). From (4.11)
T is large for small [g|5 o + |2(0)]2,0- O

Finally we prove uniqueness.
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PROOF OF THEOREM 2. Assume that we have two solutions of problem (1.1),
vl pt,i=1,2. Then V =o' —v?, P =p' — p? are solutions to the problem

Vi +02-VV +V . -Vo! —divT(V,P) =0,

divV =0,

(4.22) V.m =0,
T-T(V,P) 7o =0, a=1,2,

Vl]t=o =0.

Multiplying (4.22); by V and integrating over € yield
2dt|V|2Q +/ V-Vl - Vdx + Eq(V) = 0.
Q

Hence

(4.23) Z[W@ﬂexp ( /0 VO () e dt’)}
T Eo(V)exp ( / 9 e dt/) _

Integrating (4.23) with respect to time implies uniqueness. O

5. Global existence

The aim of this section is to prove global existence of solutions to problem
(1.1) by prolonging the local solution from Section 4 step by step. For this
purpose we want to show that estimate (4.7) holds in any time interval [(k—1)T,
kT], k € N, utilizing that for k = 1 it is already proved.

For this purpose we have to satisfy (4.11) for all intervals [(k — 1)T, kT,
k € N, with the same T" and A. Hence we must show that all quantities in (4.11)
do not increase with time.

First we introduce the decay estimates,

If(®)ls0 < [f(0)|z0e™, l9()]2.0 < 19(0)]2.0¢%",
(5.1) [Fo()]o0 < Fp(0)l2.0¢7%"  lg(t) (0)ll5.8.0¢ ",
l9()|1,0, (0)[1,0,06 %"
where §;, i = 1,...,5, are positive constants and
(5.2) 912 swpr2((—ryraery < @

where a does not depend on k € N. In view of (5.1) and (5.2) we know that F'
does not increase with k.
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Now we want to show that the quantity

(5.3)  Fj(k) =|h(kT)|100 + lwkD)|1,a + Ix(kT)|2.0 + lv(kT)l6/5,5/2,0
+ |R(ET) |24 275,50 + |w(k7T)|421,Q +19(kT)]1,0,.0

does not increase with k too. To show the statement we need a series of lemmas.

LEMMA 5.1. Assume that 52 > v, v € La(0,T; W4(2)), ¢(0),h(0) € La(9).
Then

—vt4c|Vo|? ¢ 1
(54)  hOBg < eI b LZ —19(0) .0+ |h<0>|g,g]

Proor. Utilizing (5.1)2 in (3.15) and integrating the result with respect to
time yield

)

t
(5:5)  [h(t)[3 gert=cIo [TV Sc\g(o)lin/ e O dt 4 1 (0)[3 0
0

Choosing d2 > v we obtain (5.4). O
<

Since for the local solution described by Theorem 1 we have |Vuls 5 or
©1(A), where ¢y is an increasing positive function and A is defined by (4.11),
the inequality (5.4) for T sufficiently large implies |h(T)|2,0 < |h(0)]2,0. Next
we have

LEMMA 5.2. Assume that there exists a weak solution described by Lem-
ma 3.1. Assume that (5.1) holds, 6, = min{dy,ds,03} and v > 40.. Assume
that v € La(0,T;W5(Q)), 9(0) € La(Q), f(0) € L52(Q), Fp(0) € Ly(Q2) and
x(0), h(0), w?(0) € Lo(Q). Assume that (5.16) with v, sufficiently small holds.
Then

2
t t ’ !
(5.6) ]’“ W 1) Ba + 0P (0) o < cldy)des 3 100N a0
T laq ’ '
Cc e It llo(t )2 . r_2s,
gy R MO 2 o A) g 0)5

+ |9(0)|i,9 + \f(0)|§/2,9 + |F«>(0)|3,Q]
0 2

et J ) g g e (‘X()
r

RO + |w<o>|3,g).
2,0

PRrOOF. In view of (3.3) inequality (3.8) takes the form

(5.7) %

2
X

2
X
r r

1,0

1%
5 < C(|Vh|g/5,9 + ”w”%SQVl‘%Q + |w|379 + |F¢|§Q)
2,0

From (3.10) we have

d v
(5.8) @\h@,n + §||h||§,9 < (Vo3 glhl3a + 1913.0)-
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Adding (5.7) and (5.8) appropriately implies

d X2 2 vinx ? 2
5.9) — [ |= h | ||= h
59 (|3 +mia) <5 (] it

< c(llvlli s alhl3 o+ wlio +1Fl3 o + 1913 )-

From the proof of Lemma 3.5 we obtain
d v
(5.10) %|w|3,9 + §|VIIU|2\§,Q < e(dv)di + c(lalijs.0 + hlisz0 + 1 foli/zn)-

To examine the norm [q|4/3 we consider the following elliptic problem for ¢

Ag = —div(v-Vh+h-Vov) +divg,

dq v

Al o m—m-(v-Vhah- 2
(5.11) o, g-n—n-(v-Vh+ VU)+R2 D)

2232 =g-n—n-(v-Vh+h- Vo).

To obtain an estimate for |g|2,o we introduce a function « such that

da =0, /adsz.
s Q

(5.12) Aa=¢q, —
Multiplying (5.11); by « and integrating over 2 yield

on

2
/ Agadr = —/ div(v-Vh+h-Vo)ads + R—I; / he,eadS + [ divgade.
Q Q S Q

Integrating by parts and utilizing the boundary conditions (5.11)9 3 imply
2
/ VqVadr = ——V/ hy, 0 dSy +/ g-Vadz.
Q R Js, Q

Integrating by parts again and using (5.12) give

2
(5.13) g3 o = —V/ hyo, dSh +/ g-Vadz.
R s, T Q
Since solutions of (5.12) satisfy [|all2.a < ¢|q|2.0, we obtain from (5.13) the
estimate
(5.14) lql2.0 < e([Pol2,s, +19l2,0)-

Utilizing (5.14) in (5.10) and using that [, w? dz < d} we obtain from (5.10) the
inequality

d v
(5.15) $|w2|§,9 + §||w2||isz < c(dy)d; + c(|hlF o + l9l5.0)* + C‘fw|i/3,ﬂ~
Assuming that

(5.16) sup([[allve + lgl2.0) < 7,
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where 7 is sufficiently small we get from (5.9) and (5.15) the inequality

d (|x|°
1 — | |=
(5.17) dt(’r

1%
+|h39+|w2|§g) +(HX
Q ’ ’ 2 r

2+ |w2||ig)

2
2, 1,9

< C||”||?,3,Q|h\§,sz + c(dy)d] + SQ(A)LG@,Q + C(|9|3,Q + \fwﬁ/g,n + |Fw\§,sz)'

To simplify notation we introduce

+ [B()[5 0 + [w?(t)

ot =22 o

2
2.0
Then (5.17) takes the form
(518) Snt T < cloll g on + () + o(A)lgl

+c(lgl3.0+ \fq:|i/3,9 + |Fy,

Continuing, (5.18) implies

(5.19) di(neut/z—cfg IR a0ty < o(dy)d2ert/2=e ds I 2.0
: <

—c t v ’ 2 7
+ C[SO(A)|9|§,Q + |g|§1,9 + \fw|i/3,9 + |Fw|§,sz]e t/2=e o v 5.0t

Integrating (5.19) with respect to time and using (5.1) yield

(5.20) 5(t) < c(dy)d2ecds 1P 5,0 dt'

C A E: '_95,
gy e ()9O 0 + 900
iy c t v 12 ’
+1F(O)[3 2,0 + [Fo(0)[3 0] + /20 o 100y 0),
Finally (5.20) implies (5.6).

To satisfy (5.16) we need

2.0)-
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LEMMA 5.3. Assume thatv € Ly(0,T; H2(Q)), h(0) € HY(Q), g(0) € L2(Q).

Then
(5.21) Ih(t)]2 o < ce o IM@NEa d ([n(0)[13 o + [9(0)[3 ).
ProOOF. From [1, (6.3.56)] and for 22 > v we have
ID(R)(1)2 g < ce™ s M0 d? (|6(0) 2. + [D(R)(0)[2.0).

Emploing (5.4) and Lemma 4.2.5, Remark 4.2.6 from [1] we obtain (5.21).

d

From (5.21) we obtain for a given local solution and T sufficiently large the

inequality
[R(T) 1,0 < [R(0)[|1,0-

Moreover, smallness of the r.h.s. of (5.21) implies that (5.16) might be satisfied.
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LEMMA 5.4. Assume that h(0) € HY(Q), h,(0) € L2(Q), g(0) € La(),
9.:(0) € La(R2). Assume that there exists a local solution to (1.1) such that
[vll23.0r < B with T sufficiently large. Assume (5.1), (5.2). Assume that

0<ti<T. Then
(5.22)  [[M(T)l248-2/6,5.0

< (B)e™" (|n0) 1,00 +19(0)]1,0,0 + 9(0)]5,6,0) + ca,
where @ is an increasing positive function.

PROOF. Let ¢ = ((t) be a smooth function such that ((¢t) = 1 for ¢ > ts,
Ct)y=0fort <t1,0<ty <ta <T. Let h =h(, ¢ =q(, g = g¢. Multiplying
(1.2) by ¢ yields

hy—divD(h,§) = —v-Vh—h-Vu+§+ hC,

divh =0,

(5.23) h-m =0,
n-D(h) Ta =0, a=12,

hli=o =0,

where ¢ = (. For solutions of (5.23) we have

[Bll24 5,507 < c(llv- Vhlgsar + |h-Volgsar + 135507 + 1] 55.07)-

In view of (3.45) and (3.48) we obtain

(5.24) 1Bll215,5.0r < @([v]l2,5/2.07) Bla.or + cl§llssar + cllhlls 507

Using that [|v]|2,5/2,07 < ©(A) (see Theorem 1) inequality (5.24) takes the form

(5:25) llaspiar < o(B)Flaar + 1l 0 s
+ ”hé”LJ(Q;Wf/z(O,T))] + C”g”ﬁ’&QT'

The second term on the r.h.s. of (5.25) takes the form

1/6

T . . 1/6 to
[t 40| <e| [ anliat hsne)| =0

t1

because ((t) # 0 for t € (t1,t3). For § < 2 and 8 < 1 we have by imbedding
HY(Q) € W7 () that

to 1/8
nse( [TIOlaa)  <cn-n)” s W0lho =t
t1 te(tl,tz)

Utilizing (5.21) yields

Iy <(B)e™ " (|1(0) 1,0 + [9(0)|l20) = Is.
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The third term on the r.h.s. of (5.25) we estimate by

1/6
C(tQ - tl)l/(; sup |h(t)|2,Q + (/S\2 dx<<h>>g/2,6,t,(t1,t2)> = I4.

te(ty,tz)
The first expression in I, is estimated by I3 and the second by
c(ta — t1)1/6Hh||L2(Q;H1(t1,tz)) =1Is.

Continuing,
.[5 S (p(tz — tl) sup |h(t)‘1707g = I6.
t

To estimate the r.h.s. we use inequality (6.3.41) from [4],

¢ , 1/2
1,00 + (/ |9(tl)ﬁ,o,neyt dt,) }
0

Using that |E|2,QT < el3, and (5.26) to estimate Ig, we obtain from (5.25) the
inequality

(5.26)  [h(Doa < e "(B) [|h<o>

oll2 15507 < @(B)e™ " ([h(0)]1,0,0 + |9(0) 100 + [l9(0)]

p.6.9) + ca,
which implies (5.22). O
To prolong the local solution we need also.

LEMMA 5.5. Assume that h ¢(0), 9,:(0), F,,(0),x(0) € L2(Q2), f(0) € Ls;2(),
h(0), g(0),w(0) € HY(Q). Assume that there exists numbers ty, ta, 8. such that
0<ty <te<T, b =min{01,02,d,v/2}. Assume also that there exists a weak
solution described by Lemma 3.1. Assume thatv € W3 (QT) and ||v||y5.0r < B.
Then

(5:27)  [[o(T)ll6/55/2.0 < @(da,dz, B)le™*" ([h(0)]1,0,0 + [x(0)|2.0

C
+19(0)1,0,0 + | £o(0)]2,0 + |Fp(0)|2,0) + 1]' +

—=d
(fg — t1)2/5 2,

where ¢ is an increasing positive function.

PROOF. Let ¢ be the same as in Lemma 5.4. Let o = v¢, p = pC, f = fC.
Multiplying (1.1) by ¢ we obtain
by +v- VU —divT(s,p) = f + v,

dive =0,
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where C = (. Repeating the proof of Lemma 3.9 applied to the above problem
we obtain

10l2,5/2,0x (t1,7) < C|:d2|h|3,oo,ﬂ><(t17T) + |hlassa,0x ) + 14la/3,4,0x ¢, 1)

+ 1hls/3,0x 0, 1) T 145 /3,0% (01,7) + 1Pl2,0x (61, 1) T al2,0% (41,1)
+dy + da + |glo0x 1) F | folaysaaxi,m) + [Fol2.0x 1)
+ [ folassaxn,r) + | folz0x @,

10

o+1

O+ | 4

+ [lw(0)]
2,0

+ ¢ flsj2,.0x (1) + €lCvls/2,.0% (41,1)-

In view of the decay estimates (5.1), (5.21), (5.22) we obtain

(5.28)  |[Dll25/2,0%(tr,7) < @(di,da, B)[e %" (|(0)]1,0,0 + |X(0) 2.0

C
+19(0)|1.0.0 + | £ (0)]2.0 + |Fs(0)|2.0) + 1] +

(tg _ t1)2/5
From (5.28) we get (5.27). O

dg.

LEMMA 5.6. Let B be a positive constant. Assume that

[[v

2,3,0x (kT,(k+1)T) < B, for k € N.

Assume (5.1) and w(0),g(0),h(0) € H(Q), h+(0),9,:(0), f,(0) € La(2). As-
sume that T is sufficiently large (see (5.33), (5.37), (5.38)). Then

(5.29) lw(®)lle <c(lw(0)]2.a + [A(0)]10.0
+19(0)l.0.0) + el fo(0)[2.0 + e w(0)]1,0.

PrROOF. By Lemma 6.3.4 from [4] have

(5.30) Jlw®)f o

< cexp(cl|vll3 5 /2,00 (1 + [1V]l2,5/2.00) sup w(t)o + csup w(t) q

t
+/0 (25,0 + A3 0l + 1o (t)]30) dt’ + e~ [lw(0)]]F o

To examine the r.h.s. of (5.30) we need the global estimate (see Lemma 6.3.5
from [4])

@m)hwm@s%wwumw/uwmm+mwmnﬂhwmmw
1 0

In view of (5.1) we obtain from (5.31) the estimate

(5.32) |w(t)lz,0 < %\w(o)lm + C/ (lg(t)|2.0 + [A(t)|2.0) dt’ + c| f(0)]2.0,
1 0
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for t € Ry. Now we examine the integrals on the r.h.s. of (5.32). To estimate

¢
t) = / |h(t")|2,0 dt’
0
we exploit (5.4) to calculate

WD) < e |g(0)3.0+ 1h0)B.0] < e /*[g(0)3. + [1(0)

where used that T is so large that

the integral

2.0l

(5.33) eVT/2+eBY < 1.
Next
—V C 2
h2T)30 < e THF |lg(T)[3 .0 + (T3 0]

< e T2 T1g(0) o + e T2 (19(0) 3.0 + [1(0)[30)]
< e e C2=/DT | 4(0) 3 , +19(0)3.o + [h(0)[3.0)-

Continuing the considerations and using that d2 > /2 we obtain
IR(KT)[3.0 < e 2 [clg(0)[3 0 + 1(0)[5.q)-
Now

9+1)T
(k+1)T Z/ \mdt<2|hsT

s=0

STZS YT elg(0) 2.0 + 1A(0)]2.0] < ¢T(|g(0)|2.0 + [h(0)|2.0)-
s=0

Finally we estimate the expression

t
Iy = / 9(t") 2.2 d.
0

From (6.3.41) in [4] we have the inequality

(5.30)  ha(®)Ro + [h(O)]2q <e 0t +eB [|h,t<o>|%,g IO

t
e / (9.2 () e + lg(t) |2 o) di’

where vy < v, which holds for the local solution. In view of the decay estimate
(5.1) we have

— C 2
he) o+ 1hO]T 0 <e TP (0) o + [10)]F

1
t5— (19.:(0)3,0 + l9(0)][F 0)]-
5 — 1
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From (6.3.45) in [4] we get
(5.35)  la(t)q <1+ sup [o@) ) (1A (@)3.0 + [RE)F o) + clg(®) o

Using that

sup o )10 < c(llvllz00 + [[0(0)[[1,0) < e(B+ [v(0)[1,0), t<T,
<t

and in view of the above estimates the inequality (5.35) takes the form

(5.36) la(t)l3.0 < (B [|h4(0)3. 0 + 1h(0)I o +19.6(0) 3.0 + 9(0) I o]-
In virtue of (5.36) we have
(kT30 < @(B)IW(KT)[3 o0 + clg(kKT)[E o 0
<@(B)e ™ [Ih((k = )T) g 0 + lg((k = DT} o.0]
+ee " Tg((k = D)D) o

<e TR (|h((k = DT)[F g0 +9((k = DT)IF 00] = I,
where we used
(5.37) o(B)e 0T/ 4 cem(Os=10/AT < 9

Continuing, we have
1
£ T2 T (= DR g+ ok - 2T g
5= Vo

gk - DT)R o)
<eTh((k —2)T)[ o0 + lg((k — 2)T) [ 0.0l

where we used

(5.38) e—VDT/2+cB2 <1, 5 1 e—yoT/2+c82 +e—(65—y0/2)T <1.
5 — 10

Summarizing, for T sufficiently large we obtain
la(kT)[30 < e M 2[IR(0)I7 0.0 + 19(0)|F 0 0l-
Finally we calculate

=1 (k)T -1
5SS /k o la®kedt< ([h(0)]F 0.0 + 19(0)[F 0,0) /2T Y e oK/
k=0 =0

T
< (1h0)[F 0.0 + \9(0)|f,o,sz)l/2m~

In view of the above considerations (5.6) implies

(5.39) [w(t)]s.0 < g—jm(ong,g + T(B)(|h(0)

1,02 +19(0)]1,00) + c[f,(0)|2,0-
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Utilizing (5.39) in (5.31) and additionally using the considerations leading to
(5.39) yield (5.29). O

We prove global existence of solutions to problem (1.1) step by step. There-
fore we introduce the quantity
(5.40) F(k) =gl2,0x k1,(k+1)T) T | fola/3.4,0x kT, (b+1)T)
+ [Fplo,ox(kr,(k+1)7) + | fl5/3.0% 0T, (k+1)T)

for k € N. To prolong the local solution step by step we have to satisfy (4.11)
for any k,

(5.41) G(T, A, F(k), Fy(k))(lgl2.0x br (ks 1)) + [R(KT)
+ cllgllg.s.0xkr,k+1yT) + 1RET) |29 8-2/5,5,0) < A,

where k € N, G does not depend explicitly on k, and Fjj(k) is defined by (5.3).
Our aim is to show that T and A do not depend on k. For this purpose we

2.0)

have to prove that all quantities in (5.40) which depend explicitly on k& do not
increase with k. Therefore we need some lemmas

LEMMA 5.8. Assume that (5.1) holds. Then
(5.42) F(k) <F(0), keN.

PROOF. Let ay,..., a4 be positive constants. Let |f|3 or < a1, |gleor < as,
|Foloqr < as, HgHLg(O,T;Wf(Q)) < ay4. Then (5.1) implies

fls.oxar@rnr <e " ar, lgl2.ox .1y < €7 ay,
5. s
|FLP‘2,Q><(kT7(k+1)T) S € dkTG/?n ||g||L5(kT7(k+1)T;W§(Q)) S e 4kTa/4,
Since F(0) = Z?zl a; we see that (5.42) holds. This ends the proof. O

Next we have

LEMMA 5.9. Let B, b;, i = 1,...,k;, 7 = 1,2,... be given constants. Let
there exists a local solution to problem (1.1) such that v e Wi (QT) and

(5.43) o

2,3,QT S B

Let (5.1) hold and

0
hO)z0 < b, \X“ RO + [w(0) 0 < b
2,Q
5.44
(54) |h(0)]1,0.0 < b3, [w(0)1.0 < ba,
||w(0)||6/5,5/2,§2 S b57 Hh(o)||2+ﬁ_2/67579 S b6~
Let

(5-45) 19(0)lo0 <k, |fO)ls0 <kz  [Fo(0)l20 < ks [9(0)]lps0 < Ka.
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Let T and t; < T be so large that
e—yT-}-cBZ 1 k22| <2
P 1| =01,
e(d) e + ce =T [p(ARE + i + K3+ R3]+ 7T <3,
(5.46) ce VTHeB (12 4 |2) < b2,

Cdg
- upr =

@(B)Biutl (bg + kl + k4) + ca S b6.

@(dy, da)[e” 1 (by 4 by + bz + ky + ko + k3) + 1] +

Then there exists a constant ¢; > 1 such that

(5.47) Fi(k) < 1 Fj(0), keN.
PRrROOF. In view of (5.43), (5.44)1, (5.45); it is clear that Lemma 5.1 implies

—v cB? 1
|mnags61*3[®_y

By (5.46); we have that |h(T)|2,0 < |h(0)]2,0. By (5.43), (5.44)2, (5.45)2.3 we
see that (5.6) implies

'Mﬂ

k3 +b§].

2

+ (D)0 + [w(T)[iq
2,0

< c(d)dieB” + ceB T (A2 + kY + k2 + k2] + eV T/2HeB 2

Hence (5.46)2 gives

2]

X(0) |
+ D) B + oDl < [

+[h(0)[3.0 + [w(0)]i q-

2,0 2,0

By (5.43), (5.44)3, (5.45)1 and (5.21) we have
I < ce™ T (05 + k).
Then (5.46)3 gives ||h(T)]1,0 < ||h(0)]|1,o. By Lemma 5.4 we have
IR(T)||245-2/6.6.0 < p(B)e™ " (b3 + k1 + ka) + ca

To estimate the r.h.s. we use (5.46)5. Emploing (5.21), (5.44)1,23.4, (5.45) in
(5.27) yields

Cdg

0T lo/s.5/20 < (s o, A)le™" (bbbt btk s +1] 01—

Then in view of (5.46)4 we have |[v(T)[¢/5,5/2,0 < bs.
Finally in view of the above estimate and (5.29), (5.34) we obtain (5.47). O
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REMARK 5.10. Up to now we have only proved that v € W;;(QT) and
Theorem 1 yields the estimate (1.6). Then for solutions of problem (1.1) we

have the additional estimate
[vll2,50r < C(HU||§,5/2,QT + [ fls,or + [[v(0)]la/3,3.0)-

Hence assuming that f € L3(QT) and v(0) € Wé/S(Q) we have that v €
W2H(QT) and the above construction (see Lemmas 5.1-5.9) is justified.

PrROOF OF THEOREM 3. Assume that (4.11) holds with ¢; F}(0) which re-
places Fy(0) and appears in Lemma 5.9. Then in view of Lemmas 5.8 and 5.9
and Remark 5.10 we see that inequality (5.41) holds for any k. Then the results
of Section 4 can be prolonged step by step. O
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