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DIMENSION AND INFINITESIMAL GROUPS
OF CANTOR MINIMAL SYSTEMS

JAN KWIATKOWSKI — MARCIN WATA

ABSTRACT. The dimension and infinitesimal groups of a Cantor dynamical
system (X, T) are inductive limits of sequences of homomorphisms defined
by a proper Bratteli diagram of (X,T"). A method of selecting sequences of
homomorphisms determining the dimension and the infinitesimal groups of
(X, T) based on non-proper Bratteli diagrams is described. The dimension
and infinitesimal groups of Rudin—Shapiro, Morse and Chacon flows are
computed.

1. Introduction

By a Cantor minimal system (C.m.s.) we mean a pair (X,T), where X is
a Cantor set and T is a homeomorphism of X. Let By = {f — foT ! f €
C(X,Z)} be the coboundary subgroup of the group C(X,Z) of continuous func-
tions f: X — Z with integer values. The dimension group K°(X,T) of a Cantor
minimal system (X,T') is the quotient group C(X,Z)/Br. Let M(X,T) be the
set of all T-invariant Borel probability measures on X. Let

N(X,T)= {f € C(X,7Z) :/ fdu =0 for every pu € M(X,T)}.
X

Of course, By C N(X,T). The infinitesimal group Inf(X,T) of (X,T) is
the quotient group N(X,T)/Br. The dimension group K°(X,T) is an or-
dered group with positive cone K°(X,T)" and a distinguished order unit [1],
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where K°(X,T)* = C(X,Z%)/Br and [1] is the coset of the constant function
equal to one. The dimension groups K°(X,T) and the infinitesimal groups
Inf(X,T) play important roles in the orbital theory of Cantor minimal sys-
tems. It was proved in [5] that K°(X,T) as an ordered group characterizes
the strong orbit equivalence class of (X,T). At the same time the ordered
group K Y(X,T) ~ C(X,Z)/N(X,Z) characterizes the orbit equivalence class of
(X,T). The dimension group K°(X,T) and the infinitesimal group Inf(X,T)
are inductive limits arising from a sequence of Kakutani—-Rokhlin partitions.
A Kakutani—Rokhlin partition is a partition £ of X into clopen sets of the form

E={T"Dy,), 0<k <h(v)—1, veV},

where V' is a finite set. In other words, X is partitioned into |V| (|V] is the
cardinality of a set V) disjoint clopen T-towers &,, v € V, &, = {T*(Dg,), 0 <
k< h(v)—1}.

The set B(§) = U,cy Do,v is called the base of . Let C(¢§) € C(X,Z) be
the set of functions which are constant on each set T*(Dg ), 0 < k < h(v) — 1,
v € V. Of course C(€) is a subgroup of C(X,Z). Let Br(£) denote the subgroup
of C(&) consisting of all coboundary functions f — foT~t, f € C(¢).

Let (X,T) be a Cantor minimal system and let £, n € N be a sequence of
Kakutani-Rokhlin partitions, £ = {Tk(D((JZ})), 0<k<hnw) -1, veV,}
satisfying the following conditions:

(1.1) 0D et e €D refines €7 and B(£"TY) ¢ B(e™),
(1.2) the partitions £ span the clopen topology of X.

We have the inclusions: C(£M™) c C(¢M™*V) and Br(é™) c Bp(¢M+Y).
These inclusions determine the natural homomorphisms

Fp: O(6™)/Br(6™) — C(+D) /Bp(¢+D).

The dimension group of (X, T) is the inductive limit of the homomorphisms
F, ie.

(1.3) K°%X,T)=C(X,Z)/Br
= h_rI)l{Fn C(S("))/BT(f(")) _ C’(é‘(n-i-l))/BT(g(n-&-l))}.

If a sequence &(™ satisfies an additional condition

(1.4) ﬂ ( U Do,v) is a single point of X

n=1 “veV,

(1.5) KX, T) = lim{F,: 2" — Z¥»+1}.
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In this case, the T-towers determine a proper Bratteli diagram of (X, T). How-
ever, there exist many examples of Cantor minimal systems with natural se-
quences of Kakutani-Rokhlin partitions not satisfying (1.4) and generating the
topologies. In those cases the homomorphisms F),, are defined also by the T-
towers £, however (1.5) is not valid. To get (1.5), we must replace the group
ZV by quotient groups Z'» /Z{™. In this paper we propose a method of de-
scribing groups Z"» /Zén) and changing a sequence of the homomorphisms {F, }
to get (1.5).

The group C(£)/Br(£(™) can be identified with the group Z'» /Zc(n). To
define a subgroup Zc(,n) C Z", let us consider a subgroup H,, C C(f(")) consist-
ing of those functions f € C(£(™) which have the null sum over each tower &(,n),
v € V,. Given f € C(£(™) we can associate a vector Z; = (x,) € Z" as follows:

h—1
(1.6) Ty = (xy), vEV, wherez,= Zf(Tk(Doﬁv))JL = h(n,v).
k=0
The map f — Ty is a homomorphism from C(§ (") onto Z"» and its kernel is
the group H,. Therefore,
(1.7) C(E™)/H, ~ 7",

It is easy to check that every function f € H,, is a coboundary. Then we have
H, C Br(£™) c C(¢™), which implies

(1.8) C(E™)/Br(E™) = C(™)/Hy : Br(€™)/H,.

By (1.7) we can identify C(¢™)/H,, with Z"» and Br(¢™)/H, with a
subgroup Z™ of ZV». Hence, (1.8) and (1.3) can be written in the form

(1.9) C(E™)/BrE™) = 2" /Z{”
and
(1.10) K°(X,T) = im{Gp: 2" /2" — 7Vr+1 ) z{ 1)}

where GG,, are homomorphisms determined by Fi,.

In a similar way we can represent the infinitesimal group Inf(X,T) as an
inductive limit. For every u € M(X,T), let us denote by p, the measure of
the tower &, i.e. p, = ,u(U?;ll T'Dy ), h = h(n,v) and let N,, = {{z,) € Z'» :
> vev, Tofty = 0 for every € M(X,T)}. Then

(1.11) If(X,T) = lim{G : Noo /28 — Noun /200,

The authors would like to thank Piotr Dowbor for many helpful discussions
concerning the algebraic part of the paper. We also thank Eli Glasner for paying
our attention to papers [3] and [4].
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2. Graphs (a;,,V,) determined by the Kakuthani—-Rokhlin partitions

To describe the subgroup Zc(”) of ZV», we define a partition o, of the set V,,
(the set of T-towers £5™).

We say that v~ v’ if there exists 21 € Dy, x2 € Dy, such that Th0) (1)
and Th("’”/)(xg) belong to the same D(()") for some v” € V,,. We say that v, v’

1’0//

are ap-equivalent (v~ v’) if there exists a finite sequence v, vy, ... ,vs,v" such
that v izvl, U1 "\*J’UQ, e, Vs ~ g and vs ~v'. Notice that a,, is an equivalence
relation so it partitions the set V,, into disjoint subsets. Let us denote this
partition by «, as well. Now we define an oriented graph I',, whose vertices are
the elements J € a,, and the arrows are elements of V,,. Every v € V,, determines
an arrow v going from a unique I to a unique J in such a way that v € I and
Th(”vv)(D((;fU)) € Upey D((:U),. We will write o = (I, J). By V,, we denote the set
of all arrows v, v € V,.

In this manner, we have defined an oriented graph (v, ‘7”) It is easy to
remark that the minimality of T implies that (c,, ‘7”) is a connected graph.
Every element T = (z,),cy, € ZV* is an integer valued function defined on V.
By a cycle T of (a,, XN/n) we mean a closed path I' = {v1,...,0,,01} of (ap, ‘7")
without loops. The following characterization of the subgroup ZE”) C ZV follows

from [1] (see Theorems 2.6 and 4.8).

THEOREM 2.1. An element T = (y),cy, € ZV~ belongs to zm if and only if

(2.1) va =0 for every cycle T of (an, ‘7“)

vel

To give a better description of the subgroup Zén) of ZV», n € N consider
linear space Q", Qﬁn) and ng) over the field Q (Q is the set of all rational
numbers), where

(2.2) an) = {33 = <$U>y€Vn € Q" such that
Z x, = 0 for every cycle I of (a, f/vn)},
vel

and

(2:3) QLY = ()™

Of course ZV» c Q"», zZM ¢ Q&n)-
We will define vectors Z; € Z"» for each J € ay,. To do this, let us denote by
JT the set of all arrows arriving to J and by J~ the set of all arrows leaving .J.
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Let us define Z; = (z,,) as follows:

1 forve JT,
(2.4) T, =< —1 forveJ,
0  for the remaining v.

THEOREM 2.2.

(a) The vectors Ty, J € o, generate the space an).

(b) = {Z = (2o)yey, € QY such that Y ;v 2y = Y c)- Ty for
every J € ay,}.

() dim Q™™ = |an| — 1, dim QYW = Vi — |an| + 1.

PROOF. It is evident that T; € an). In fact every cycle I' either does not
pass by J (then all coordinates z,, v € T of T; are zero) or I' pass through .J
and then z, = 1, z,, = —1 for some v,v’ € V,, and z, = 0 for the remaining v.
Thus T ; satisfies the condition (2.1) i.e. T; € Q.

Let L be a subspace of Q&n) generated by the vectors ;. We have proved
that L C QE"). This implies
)J_

Lo @My =Q.

We will prove the equality
(2.5) L= Q.

Let us take T = (z,) € L*. Then T L T; for every J € a,,. The last condition
is equivalent to the following equalities

(2.6) Z T, = Z x, for every J € ay,.

veJ+t veJ~

Define vectors wr = (w,), v € V,, where T is a cycle of (ay,, f/;) by

1 forovel,
Wy =
0 forvegl.

It follows from (2.2) that the space Qﬁ’;) is generated by the vectors wr.

It is easy to see that wr satisfies condition (2.6) for every J € a,. To
prove (2.5), it is enough to show that every vector T satisfying (2.6) is a linear
combination of the vectors wr.

First, let us assume that x, > 0 for every v € V,, and T # 0. Choose v with
2, > 0. It is not hard to see that there exists a cycle I' containing v. It follows
from (2.6) that x,» > 0 for every v’ € T'. Let us put ¢ = min,er x,» and let
Yy =T — ¢ -wr. Then, § satisfies (2.6); moreover, y, > 0. If y, > 0 for some v
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then we repeat the above procedure. It is not hard to see that this procedure is
finite which implies that the vector T is of the form

(2.7) Z= arwr, T runsover all cycles of (ay,V,).

Now, let us assume that there exists v such that x, < 0. Choose v in such
a way that x, = min; ,<oz,. Let us again choose a cycle I' containing v.
The vector § = T — x, - Wr satisfies the condition (2.6) and min, ey, yr >
minv/evn Ty’ -

Repeating the above reasoning we find a vector § = (y,) with non-negative
coordinates y, such that 7 = T — > . bp - wp. Using (2.7) for the vector y we
see that every T € Q" satisfying (2.6) is of the form (2.7). In this manner the
equality (2.5) is proved which implies (a) and (b).

Now we are in a position to prove (c¢). Consider the matrix A = (a(J,v)),
JEay,ve V,, of the system of equations (2.6). Then a(J,v) are equal to 1, —1,
or 0. Moreover, each column of A corresponding to v = (I, J) either consists of
all zeros if I = J or contains a unique 1, a unique —1 and the remaining entries
are equal to zero if I # J. Using the same arguments as in the transportation
problem it is easy to check that rank(A) = |a,| — 1. This implies (c), so the
theorem is proved. O

3. The groups Z"» /Zc(") and the dimension group K°(X,T)

In this part we describe the sequence of groups Z"» and of homomorphisms
G, from (1.10). The group Z"» /Zén) is isomorphic to the image of Z"» in ng)

by the natural projection II, of Q' onto ng). To find this image, we need a

basis of the space Qg?). To do this we use spanning trees of the non-oriented

graph (an,V,). (We treat every arrow o € V,, as a non-oriented edge %) By

a path in (o, ‘7n) we mean a sequence of edges P = (51, .. ,%s) such that 51
and %i—rl have a common vertex, i =0,...,s — 1. A path P is closed if 51 = %S.
Using the similar arguments as in the transportation problem, it is easy to prove
the following characterization for a subset E C V,, of the columns of A to be
linearly independent.

THEOREM 3.1. A subset E = E, C V,, of the columns of A is linearly

independent if and only if E does not contain any closed path of (cyp, ‘7n).

A spanning tree is a sub-graph (ay,, E) of (ay,, V) such that |E| = |ay,| — 1,
E does not contain any closed path and for every v ¢ E there exists a unique
path P, without loops and such that v € P, and the remaining edges of P,

belong to E. The paths P,, ve Vo \ E allow to define vectors i, = (u,/) € Q"~.
For this reason, we partition P, into subsets P and P, . Every edge v € P, is

simultaneously an arrow of the graph (a,,V,). We define P} as the set of all

v
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v' € P, such that v’ has the same orientation as ¥ and P are those which has
the inverse orientation than v. Now define Z(v) = (z,/), v’ € V,, as follows

1 forv € P,
(3.1) Ty =19 —1 forv' e P,
0  for the remaining v’ € V,, \ E.

THEOREM 3.2. If (an, E) is a spanning tree of (ozn,r/;), then the vectors
T(v), v € Vi, \ E form a basis of the space Q.

Proor. The subspace QQCL) is determined by the system of linear equations
(2.6). It follows from the Theorems 2.2 and 3.1 that the columns of the matrix
A corresponding to v € E form a minor having the order equal to |a,| — 1. For
every v € E there exists a unique solution 7 of (2.6) such that y, = 1 and y,» =0
if v/ # v and v’ ¢ E. The family of such solutions forms a basis of QEZ) if v runs
all over V,, \ E. It follows from (3.1) that § = T(v), for v € V,, \ E. O

Let Toy = Zvev" T, - Y, be the inner product of vectors Z,7 € Q". The
basis {Z(v)}, v € V,, \ E allows us to define a homomorphism 7,,: Q"» — Q"»\F,
E:=F,.

For T = (x,/) € Q" define I,,(Z) € Q"»\F as follows

(3.2) I,(T)=(Tex,), veV,\E.

THEOREM 3.3.

(a) ker(I,) = Q"

(b) Im(In) = QVn\Ey

(c) Qg’cl) ~ Q% /an){ilQV"\E where 1, is the induced 1somorphism.

PROOF. (a) We have ker(I,,) = {Z € Q" : 7T, = 0} forevery v € V,,\E} =
). because the vectors Ty, form a basis of ( (ML (see Theorem 3.2).
(b) Let e, v € V;, be the standard basis of Q" (i.e. e, is the vector with
the coordinate 1 on the position v" and 0 for the remaining positions) and let €,,
v € V;,\ E be the standard basis of QV»\F. Tt follows from (3.2) that I,,(e,) = &,
whenever v € V,, \ E. This implies (b).

The property (c) is a consequence of (a) and (b). O

(n
c

COROLLARY 3.4.

(a") ker(I,|Z") = Z{™,
(b)) Im(ZV) = ZV~\E,

(') ZVr)Z{ =~ ZV\E,
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PROOF. If 7 € ZV», then I,(%) € ZV-\E < QY»\F because the vectors Z,,
v € Vi, \ E, have integer coordinates. Further ker(I,|Z"") = ker(I,) N ZV» =
QM NzVe = Z™ Thus (a’) and (b’) are valid. The property (c’) is an evident
consequence of (a’) and (b’). O

The above considerations lead to a tower algorithm (TA) of computing the
dimension and the infinitesimal groups of C.m.s. (X,T). To formulate it, we
reconstruct the sequence (1.10).

Using the isomorphisms fn, n =1,2,... we can replace ZV”/ZC(n) in (1.10)
by ZV»\F and then

KX, T) = lim{G,,: V" \Fn — zVn+1\Eni1y

where G, are homomorphisms determined by G,, (or F,).

Now, we describe the homomorphisms G,,. First, we recall the definitions
of the F,,’s. We have homomorphisms F,:Z"» — Z"»+! determined by natu-
ral homomorphisms C(¢()/H,, — C(¢M™+tV)/H, ;. Let us remind that the
elements v € V, correspond to the T-towers & = {D(()ZJ),... ,Thfl(D(({lg)}
h = h(n,v). Every T-towers &(,,"H), w € V41 consists of some sub T-towers
™ of ¢™. Thus, we can write £ = Uves., 2™, where Sy = (v, ... ,vy) is
a unique sequence of v. Define a matrix {by, ,} = B, w € V41, v € V,,, where
by = #{1 <i <t:v=uv;}. Using the map f — T, defined by (1.6) it is easy
to conclude that F,(T) = B - 7.

We have the following commuting diagrams

Z‘/n

Hnl lnni»l

I 7 Vn+1

(33) Zvn /Zc(n) Gn ZV'H’I /Z§n+l)
f’r\ll l[ﬁl
ZV"\E" —_— ZV"L+1\EH+1
Gn

where II,,, II,,41 are the natural homomorphisms and CA}'n = An“ oG, o (fn)_l7
n=1,2,... Now we describe G,,. To do this we find spanning trees (a,, Ey,) of

(an, V) and (api1, Eny1) of (g1, V1), Now for every n we define a matrix
B= En as follows:

(3.4) Take v € V,, \ E,,. The v-th column of the matrix B, is a vector

b(’U) = <bw,v> S ZV"'H, w € Vn+1-

We compute vectors I, 11 (b(v)) = <3w7v>, w € Vg1 \ Eng1, v €V, \ B,
using (3.2) and then B = {Zw,v}, w € Viy1 \ Ent1, v €V \ Ey.
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THEOREM 3.5. For every Z = (z,) € ZV"\Pr v € V,, \ E,, it holds
(3.5) Gn(2) =B -=.

PROOF. It is enough to check (3.5) for z = €,, v € V,, \ E,. From the
equalities I,,(e,) = €, and F,(e,) = b(v), v € V;, \ E,, and from the commute of
(3.3) it follows that

Ga(@) = (Tns1 0 Fa)(en) = Lupr (b(v) = (bun).
w € Vg1 \ Eny1. This gives (3.5) for every zZ € ZV»\Fn, O
Using the above theorem, (3.3) and (1.10) we get
COROLLARY 3.6.
(3.6) KO(X,T) = lim{G,: 2V \Pr — Vs \Fry,

To describe the cone K°(X,T)* = C(X,Z")/Br, we must regard all vectors
I,(ey) € ZV"\Pr when v runs over all V,,. Let us denote ZJ(rn) = {Zvevn ay
I,(e,) with a, € Z*}. Then, we have @n(ZJ(rn)) - ZJ(rnH). There are natu-

-~

ral homomorphisms G ZV"\E"AH K% X,T). Then, we can identify the cone
K°(X,T)* with the set (-, @n(ZEL")) In a similar way we can replace the
sequence (1.10) by a sequence of G, on the subspace Inf(n) = fn(Nn/Zc(n)) C
ZYo\Pr. Thus Inf(X, T) = lim{G,,: Inf(n) — Inf(n + 1)}

Before formulating an algorithm (TA) we illustrate previous consideration
using the Chacon flow.

3.1. Chacon flow. We remind briefly the definition of Chacon flow. For

this, we start with the sequence {B,} of blocks over two symbols (0, s):
By =0, Bn+1 = BanSBn, n > 0.

Then
1
2
Let w be a one-sided sequence defined by the blocks B, as follows: w[0,r, —1] =
By, n > 0. We take the subset Y C {0,s}% which is the closure of T-orbit of
w with respect to the left shift. The Cantor minimal system (Y, T) is called the
Chacon flow. For n > 0, we denote

|Bn| = =(3" ™ —1) = 1,,.

D\ ={x €Y :a[-ry,2r, — 1] = B,B,By},
DWW ={reY :a[-r, —1,2r, — 1] = B,sB,By},
D[()Z) ={xeY :z[-ry,2r,] = B,B,sB,},

DM ={zeY :z[-r,—1,2r,] = BysB,sB,}.
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Let Dy, = U, 4—0. D,()Z). Let us take Kakutani-Rokhlin partition £ built
by the base D,, and the return time function. Then £ has four towers 51(,2),
p,q = 0, s corresponding to the sets Dz(,Z). We have h(00,n) = h(s0,n) = r, and
h(0s,n) = h(ss,n) =r, + 1 (see Figure 3.1).

D(]U DsU DOs Dss
J1 J2
FIGURE 3.1

It is known that (Y,T) is strictly ergodic and the values of the unique T-
invariant measure g on the sets DI()Z), n > 0 are M(D(()g)) = u(Dgz)) =1/3"+2
w(DY) = (DW= 2/37+2. Taking (¢€() as above, one can point out
partitions «,, introduced in Section 2 (they do not depend on n). We get
V., = {00,50,0s,ss} and J; = {00,0s} Jo = {s0,ss}. Then «, = {J1, 2}
The graph (o, ‘7”) determined by the T-towers DI(,Z) is presented in Figure 3.2.

Os

RN

00 ss

~_

s0

FIGURE 3.2

Let us notice that there are three cycles of (a,,V;,) namely: I'y = {00},
Iy = {ss} and I's = {0s,50}. As a spanning tree of the graph (o, V,,) we can
take (avn, {0s}) (see Figure 3.2), i.e. E, = {0s}. Any vector T € Z"* we will
write as T = (Xgo, Ts0, Los; Lss)-

Now for each path P,, v € V,, \ E,, = {00, 50, ss} we define vectors T(v) as

in the Section 3. We have:
Z(00) = (1,0,0,0), Z(s0)=(0,1,1,0), =Z(ss)=(0,0,0,1).
Then the homomorphisms I,,: Q* — Q3 have the form

In(f) = <J)00,l‘30 + m05a$88> = <y007y807yss> S Q3
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for T = (200, 250, Tos, Tss) € Q.
To find matrices B,,, we must express the T-towers 5,5,1}“) by some sub-T-
towers n(™ of £, We have:

ot =iy uniy uny, ot =iy uni? unly,
n+1 n n n n n n n
o =i un{P un®, €t = & Uyl U,

This leads to the following matrices B,,

00 sO 0Os ss

oofl 1 1 O
s0l0 2 1 O
Bn= 0110 11
ssLO 1 1 1

For each column b(v) of the matrix B, v € V;, \ E,, = {00, 50, ss} we calculate

o~ —

I(n41)(b(v)). We have:

b(00) = (1,0,1,0), b(s0) = (1,2,0,1), b(ss) = (0,0,1,1)

and

— ~ — ~ —

T ((00)) = (1,1,0),  Tii1(B(s0)) = (1,2,1), Ins1(b(ss)) = (0,1,1).

Thus,
00 s0 Os

110
B,=B= |1 2 1
01 1

defines the map G,,: Z3 — Z3 (see (3.4)). Then Corollary 3.6 results in K°(X, T)
= lim{G,.: Z3 — Z3}. We have det B = 0 so dim G,(Q?®) < 3. To indicate
lim{G,: Z® — Z3} we must find G,(Z?®) and describe the action G,, on it. It is
easy to remark that én(ZS) C m C Q3 where 7 = {¥ = (00, Ys0,¥ss) € Q3 :

~

Yoo + Yss = Yso }. Moreover, G,: ™ — 7 is one-to-one. Then,
Hm{G,: Z° — 7%} = lim{G,: 7 N Z3 — 7 N Z%}.

It is convenient to replace the subgroup mNZ3 by Z2 = {Z = (200, 2ss), 200, Zss €
Z} by putting 200 = Y00, Zss = Yss, <y007 Yoo+ Yss, yss> en. Let H= Hn: ZQ — ZZ
be the isomorphisms determined by G,, on w. Then, H,, is defined by the matrix

C,=C= [f ;] We have the inclusions

.DH™(Z*)>H "N Z*) > ... H 2% > 72
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Thus we have
K°(X,T) =lim{H,: 2> - 2°} = | ] H "(Z*) c Q*.
n=0

Now we describe the group Inf(X, 7). Consider the subgroups N,, C Z*,

_ 1 2
Nn = {:L’, W("Eoo +$55) + W(xso + (EOS) = 0}
= {f, 0o + Tss + 2($So + l’os) = O}

We have In(Nn) = {<y007y507yss> C ZS * Yoo + sto + Yss = 0} S ZB and
next Gy, (In(Ny)) = {{(W00, Ys0, Yss) € T NZ3 : yoo + yss = 0}. Passing to the

~

coordinates zgo, zss we can identify G, (I, (NV,)) with the subgroup Zy = {z =
(200, 2ss) € Z2, 200+ 2ss = 0}. Further H,|Zy = id. So we can identify Inf(X, T)
with Zy € 22, H-"(Z2).
To describe the cone K°(X,T)™, let us remark that
Li(eoo) =00 € Z°,  In(eso) =@ € 27,
L.(eos) = €0 €Z%,  In(ess) = €55 € Z2.

Then Z_s_n) =173, @n(zi) = Zf_ = {(200, 2ss) € Z? : 200, 2ss > 0}. Thus,
KX, )" = | H™(Z2) = {(200, 2ss) € K*(X,T) : 200 + 2ss > O}
n=0

Now we are in a position to formulate the algorithm (TA). We distinguish
Stages I and II of it. The Stage I contains all calculations to get the sequence
(3.6). The Stage II is a simplification of the sequence (3.6) if, for infinitely
many 1, dim(Im(é;)) < |Va \ Enl.

3.2. Algorithm (TA).
Stage 1.
Step 1. For a given sequence of towers {&,} find homomorphisms

gV Iy ogve Beogve

Step 2. For every T-invariant measure p calculate the measures p, of every
T-tower 51(,"). Then define subspaces

(3.7) N, = {(xv> SYALE Z Typphy = 0 for every p € M (X, T)}
veEV),
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Step 3. Find the partitions o, of the towers {¢,}. For (an,V,) choose
spanning trees (o, Ey) and calculate homomorphisms I, using (3.2). Let us
calculate sequence of homomorphisms G,, (and matrices B,) by (3.4) and (3.5).
Then,

KO(X,T) = lim{G,: 2V \Pr — Ve \Prsy,

If det(B,,) # 0 for suﬂi(nently large n then we can identify (~)K°(X,T) with the
subgroup Un:1 Tlo...o G L(ZV+1\En+1) of the additive group Qmax[Va\Enl,

Step 4. To find the cone K°(X,T)* consider subsets

Z-(i-n) _ { Z ay - In(ey) with a, € Z+} - ZV,L\EH, n>1.
’Ue‘/n

Because I, (e,) = €, for v € V,, \ E,, then

-("_77/) { ‘/TL\ETL _|_ Z av . 61) av Z 0}

veE,

Then

(3.8) KX, T)* ~ | Gilo.. oGl (Z!™Y).

Step 5. Set Inf(n) ~ I,,(N,). Then
(3.9) Inf(X, T) = lim{G,: Inf(n) — Inf(n + 1)}
Stage II. Inspecting the sequence (3.6) and simplifying.
Step 6. If det(gn) = 0 for infinitely many n, then we can reconstruct the

sequence (3.6) to the other one. We replace (3.6) by the sequence

o Im(Gpy) E Im(Gp) — -
which has a form (3.6), too. Namely, find a basis V, of Im(én,l) and let
Jn:ZVv/L — Im(@n_l) be the natural isomorphism. We obtain the following

commuting diagram:

én—l‘l a Gnly@ €
m(Gp_2) ~ m(Gp_1) ~ Grtilim(an)
D) (@) ) (@, Srthmen,
TJn TJWH»I
_— Zvnl, —_— Zvvii»l —_—
Gl 1 G, Gl

where G, = J; o G, o J Then, K°(X,T) = hm{Z 7 G, ZV»+1"} and
Inf(X,T) = lim{Inf’(n) G, nf! (n+ 1)}, where Inf’(n) = J,, 1 (Inf(n)).
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Step 6a. To find K°(X,T)* we choose Z(f)/ = J;l(Z(f)) and
KX, Tt = |G oo, 2.
n=1

Step 7. If dim(Im(G),_)) < |V,;| for infinitely many n, then we repeat Step 6.

Step 8. If dim(Im(G%,_;)) = |V,.| for sufficiently large n, then we compute

K°(X,T), K°%(X,T)", and Inf(X, T) by (3.6), (3.8) and (3.9) with V,,\ E,, := V.,
G, =G, Zsr") = Z(f) , Inf(n) := Inf’(n).

REMARK 3.7. In the sequel, we present examples of the topological flows.
We compute their dimension groups applying the algorithm (TA). After applying
the Stage I, we get a sequence of the following form

é G

G Gogk &

(3.10) 7k = 7+

where G,, = G for n = 1,2,... If det(@) = 0 then we apply the Stage II. In
this case we choose the positive integer [ > 1, such that rank(G!) = rank(G!1).
Then we choose a group isomorphism J’: GY(Z*) — Z*, where s = rank(G') and
we replace the sequence from the Step 6 by the sequence

é// é//
—_—

75 G gs 7 S, .

where G = J' 0 G o (J')~! and det(G”) # 0. Finally, we have K°(X,T) =
lim{zs <5 75} c Qe

3.3. Relation between our results and results of papers [4] and [3]. In
this section we would like to indicate some relations between some results of our
paper and the main result of [4] and also to compare our algorithm (TA) and the
algorithm described in [3] for computing the dimension groups for substitutions.

Let &M = {Tk(Déflv)), 0 <k < h(n,v) —1, v € V,,} be a sequence of
Kakutani-Rokhlin partitions of a Cantor minimal system (X,T) satisfying the
conditions (1.1) and (1.2). The sequence {¢(™} determines a Bratteli diagram
I = (V,,, E,) (for the definition see [3] and [4]). The diagram I is proper if
additionally (1.4) holds. Assuming that (1.4) is not satisfied and the set N’ =
Mozt (Upev, D(()Z;) ) is finite, a natural question regarding relations between our
considerations and Theorem 9 of [4] arises. The theorem 9 states the following
isomorphism
Ko(I)

Q

where Ky(I) is the dimension group of the diagram I, @ is a subgroup of Ko(I),

(3.11) ® Z" = K11, S),

v is a non-negative integer, and (II,.5) is the path-sequence dynamical system
(for the needed definitions see [4]) and K°(II, S) is its dimension group.
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It is not difficult to see that in our case we can identify the path-sequence
dynamical system (II, S) with (X,T). At the same time

Ko(I) = lim{Z"» I 7V},

where F,, are homomorphisms from Step 1 of the algorithm (TA). In [4] the
following formula for v is given

v=e—v-+tec,

where e is the number of ~ equivalent pairs of maximal paths and minimal paths,
v is the number of maximal or minimal paths and ¢ is the number of components
in the graph whose vertices are maximal or minimal paths connected by the ~
relation. It is not difficult to remark that in our case v = 0.
In fact, we identify the set N of minimal paths of (II,S) with the set
Mozt (Upev, D(()Z;) ) = N’. While the set M of maximal paths is identified with
o0
N ( U Th(n,v)—l(D(()Tlg)) _ M= TN,
n vEV,

the set

=1
Moreover, a pair (z,y), © € M', y € N', is “~” if and only if y = T'(x). Then
e=#N,v=2-(#N') and ¢ = #N’. Thus, we have v = 0. Then (3.11) has
the following form

(3.12) lim{z" L2 ZVer1}/Q = KO(X,T).
Let us remark that (1.10) can be written in the form

(3.13) C(X,T)/Br
=lim{Z" £ ZVer1}/lim{z™ Izt = KO(X, T).

The formulas (3.12) and (3.13) lead us to ask what the relations between sub-
groups @ and By = llm{Zg") ELN Zénﬂ)} are. To answer this question we
must adapt the description of @ from [4] to the case considered here. First we
distinguish subsets En C ZY, n > 1. Take any element z € X and consider
its T-trajectory Op(z) = {T™(z), n € Z}. The trajectory x passes through the
T-towers &,, = {T’“(D(()ZJ)), 0 <k < h(n,v) —1}, v € V,,. Let us mark the
places in O7(z) whenever it passes through the top Th("*”)’l(D((Jtlv)) and denote
by Z,, . the set of such places. Now, take any finite fragment z[i,i + k] = v of
and define the vector 7, = (z,) € Z"" as follows: z, = #Z,, Nu.

Let B, be the set of all vectors %, when u is any finite fragment of x. Next
we define

Qn={yeZ" : [jeT,| < oo, the supremum is taken over all T, € B,}.
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Using the minimality of (X, T), it is easy to check that @,, does not depend on z.
Then @Q,, is a subgroup of Z"» and F,,(Q,) C @,+1. The group Q is defined as

Q=1m{Q, ™ Qui1}.

Now we will show that ZC(") C @y for every n > 1, whenever sup,, #V,, < oc.
Take x € X and assume that its zero position is marked. Then the positive part
O3 () of the trajectory Or(z) determines an infinite path of the graph (o, Vi).
Let u be a finite fragment of x. First, let us assume that v determines a closed
cycle T' of (au, ‘7”) without loops. Then %, = Wr (see proof of Theorem 2.2).
Fory e Zén) we have yeZ, = 0. If u determines a finite numbers of closed cycles

'y then 7, = ZS wr, and again we have j e 7,, = 0. In general, T,, has a form
T,=Y Wr, +7,
S

where the coordinates z!, of Z' are bounded by the number sup,, #V,,. Then, for
every y € Zc(n) we have

‘y'fu‘ § Sup#vn : Z |yv|
n veV,

In this manner we get Zén) C @Qn. As a consequence we have By C Q. We are
unable to answer whether Zc(n) = @, for every n and also whether By = Q.

Now we want to compare the algorithm (TA) with the algorithm from [3].
For the necessary definitions and notions we refer the reader to [3] including the
definitions of substitution minimal systems.

Let 0: A — AT, be a primitive, aperiodic substitution on a finite alphabet A
and let (X,,T) be the corresponding minimal Cantor system. The substitution
o determines the matrix M, = (mgs), a,b € A, where

Mmap = the number of occurrences of a in o(b).

We can define sets D(()")

Di") ={z € X, :2[0,A, — 1] =0"(a)}, aecAand )\, =|o"(a)l.

The sets D(()na) define disjoint T-towers fén)l = {Tk(D(()na)), 0<k<A —1} A
substitution o is proper if there exists a pair r,l € A such that for every a € A,
r is the last letter o(a) and [ is the first letter of o(a). If o is proper, then the
towers 5((1")/, a € A satisfy the conditions (1.1), (1.2) and (1.4). In this case

K%(X,,T) = lim{z* = 74},
The algorithm presented in [3] consists in an associating a primitive, aperiodic

and proper substitution 7 to a given primitive, aperiodic substitution ¢ in such
a way that (X,,T) is topologically isomorphic to (X,,T). Then K°(X,,T) =
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K°(X,,T). We can also apply the algorithm (TA) for substitutions. Then V;,
(n)

e are defined in the

is the set of all triples abc appearing in X, and the sets D
following way

D) ={x € X, a[=|o"(a)],|0™ ()] + |o™ ()| = 1] = 0" (a)o™ (B)o" (0)}.
We have F,, = F = (fotv¢’ abe), Where
farte’,abe = the number of occurrences of the triple abc
in the sequence u}o(b')ub,

where u} is the last letter of o(a’) and wu} is the first letter of o(¢’). In general,
the algorithms presented in [3] and (TA) are independent. We illustrate both
algorithms using the example from [3].

3.3.1. Example of a substitution. Let o be the substitution defined on
the alphabet A = {a,b} by o(a) = aba, o(b) = baab. A substitution 7 associated
with o is the following: 7(1) = 112, 7(2) = 1212. Then

21 0 0 : 2 M: 52
M, = (2 2> and K°(X,,T)=K (XWT):th{Z == Z°}.

Now we apply the algorithm (TA). We have V,, = {aba, bad, baa,abb}. The
graphs (ay,, V,) have the following form

aba bab

FIGURE 3.3

where J; = {aab}, Jo = {baa,bab}, J3 = {aba}. Next, we have

aab aba baa bab

aab 1 1 0 1

P% B aba 1 2 1 0
baa 0 1 1 1

bab L 0 1 0 2
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As a spanning tree we take (., baa,aba). Applying Step 3 of (TA) we get

bab aab
ﬁn P bab | 2 1 '
aab 2 2

Thus F = M.

4. Examples

4.1. Teoplitz and Teoplitz—Morse flows. Let us remind briefly the def-
inition of Teoplitz flow. Let S be a finite alphabet with at least two symbols.
Consider the sequence of positive integers A, > 2 and let p, = A1 - ... Ay,
n > 1. Let us take a sequence of blocks A over S U {—} (“~” is the empty
symbol or the hole) such that |[A™| = p, and the block A1) is obtained by
a concatenation of X\, copies of A, where some “holes” are filled by symbols
of S. Let us denote

kn = max{k: A™[i] €S, forall 0 <i<k},
l, = max{l: A(")[pn —ies, forall<i<I}.

We make an additional assumption that k,,[,—oc0.

Now we define a bisequence w € S% as follows: w[kp,, (k + 1)p, — 1] = A"
for each n > 1.

Let X = O(w) and let T be the left shift. The dynamical system (X,T) is
called a Teoplitz flow if it is not-periodic.

Now we are in a position to define n-symbols. By a n-symbol we mean each
block B of the form B = w[kp,, (k+ 1)p, — 1] for some k € Z, so each n-symbol
coincides with the block A™) at every position i such that A(™[i] € S and the
remaining positions i (the empty positions in A) are filled in some way by the
alphabet S. The set V,, of all n-symbols qun) is finite. Now we define bases of
Kakuthani-Rokhlin partitions &, in the following way:

D(()Z;) ={zeX:z[0,p, — 1] =B, veV,}.
The partition &, consist of |V,,| T-towers
& = {THDY)), i=0,...,po—1}, vEV,.
Let us note that
1 1
diam(vg Détlv)) < max (kn, ln) — 0,

hence (1.4) is satisfied, so we have

KO(X,T) = lim{z" = 7V},
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The homomorphism F,, is given by the matrix B = [byy], w € V,, v € V41,
where b,,, is the number of the appearance of n-symbols B,(Un) in the (n + 1)-
symbol Bq(,"H).

Take S = Zo, A, = 5 and let AY) = 01 —10. For n > 2 we define blocks A(™)
with |[A(™| = 5" in such a way that A has the only hole in its middle. Let
A™ (i =0 or 1) be the block A(™ filled by i in the middle. We define the block
A+ = A A A A AT Ty ghis case, we have only two n-symbols: A"
and Ag"), and V,, = {Aé"),A(l")}. Moreover, A(()"H) = Aé")Agn)A(()")A(l")Aén),
APTD = Al 4 A A7) 40 Thug, the homomorphisms F, (= F) are given
by the matrix

Ag)n) Agn)
Al 3 27,
A§n+1) 2 3

The unique T-invariant measure  is given by u(A) = 1/(2-57) = p(A™),

pn=5" n=1,2,... Because det(F) =5, then
K(x,T) = | F (2%,
n=0
Inf(X,T) = {(z,y) € Z*,x +y = 0},

K'x, 1)t = | J F™2Z3) = {(z,y) € K°(X,T),z +y > 0}
n=0
(see algorithm (TA), Stage I).

There are Teoplitz flows defined by a sequence of blocks A™ not satisfying
the condition min(k,,l,) — oco. An example of such flows are Teoplitz—Morse
flows. Consider sequence of blocks a,, such that a,[i] € S,i=0,...,\,—2 and
an[An —1] =“=" and each element s € S appears in every a,. Define inductively
a sequence of blocks (A(™),,> as follows:

A0) — ao,
AFD = A _anial0] A _annl] 0 A®M) aneiA=2] 4

n >0, A = A41. Thus, A1) g obtained as the concatenation of An+1 copies
of AM with holes filled by the successive elements of a, 41 except of the latest
hole.

Define a bisequence w over SU{—} as w[kp,, (k+ 1)p, — 1] = A™ for every
k € Z and n > 0. The sequence w has all positions filled by symbols from S
except for the position “—17, w[—1] =“=". We will write w = ag *xas *...

Now let X C S% be the closure of T-orbit of w. We get a topological
flow (X,T) which is called a Teoplitz—Morse flow. We define the sequence of

Kakuthani-Rokhlin partitions {&,}. As the bases of the towers we take sets

D(()TLg)h = {x €X: x[—pn,pn — ]_] = A(n) g9 A(n) L}
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Let V,, € S x S be the set of all pairs gh € S x S that appear in the sequence
Wnt1 = Qpy1 * Apyo * ... Then V,, is the set of the towers of the partition &,. It
is easy to see that diam(UJ, ey, D((JZ]),L) = 1/2, so (1.4) is not satisfied. Thus
we apply the algorithm (TA).

In this case, homomorphisms F;, are given by matrix

Bn = [bghuv]ghGVn+1,uv€Vn

where bynuy equals the number of the appearance of uv in the block ga,41h.
Consider the following example: S = {0,1}, agr, = 1—, agxy1 = 0—, for
k > 0. Then,

wor = ag *ap *...=101110101011101110... ,

W2k+1 :al*ag*:()l()OOl

We find that Vo, = {01,10,00} and Va1 = {01,10,11}. Thus, homomorphisms
F,, are given by the matrices:

Vor, 00 01 10 Vaggr 01 10 11

Vakt1 Vag
01 1 1 0 00 1 1 0
10 1 0 1 01 1 0 1
11 0 1 1 10 0 1 1

Define J, = {gh : gh € V,,}, g € {0,1}, then the partitions a,, = {Jo, J1}. The
graphs (ay,, V,,) are presented in Figure 4.1.

We choose spanning trees (o, Fy), E, = {01} in both cases (Figure 4.1)
and calculate the homomorphisms I,,. We have

L (00, Zo1, €10) = ( Zoo , To1 + 10 ),
~ N——
Yoo Y10
Ioky1(zo1, x10,211) = (T01 + T10, T11 )-

Y10 Y11
Now we calculate the homomorphisms G = én They are given by the

matrices:
00 10 10 11

102 1 o[l O
1110 1 |l 2
It is convenient to consider the sequence

A2 2 2
ZZ G ZQ G, ZQ G,
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01

7N
N

10

n even

01

SN
N

10

n odd

FIGURE 4.1

instead of the sequence (3.6). The homomorphisms @% are given by the matrix

F= ﬁ ;] Thus, we have

KY%(X,T) = G F~(Z).
n=0

The unique invariant measure is given by M(D(({Lg)h) =1/(3-2") for (gh) € V,,
n=1,2,... Thus,

Nag = {{z00, Zo1,10) € VAR Zoo + o1 + x10 = 0},
Noryr = {{zo1, w10, 711) € Z* : o1 + 210 + 211 = 0}
Then
IQk(NQk) = {<yoo,y10> VAR Yoo + Y10 = 0},
12k+1(/\/2k+1) = {(ylo,yu) S 72 Y10 + Y11 = 0}

and
Inf(X,T) = {{z,y) € Z* -z +y =0} C K°(X,T).

We have also

KX, T)" = D F~™(z3) = {{z,y) € K°(X,T) : x +y > 0}.
n=0
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4.2. Morse flow. Let G be a nontrivial finite abelian group. Let B, C be
blocks over G, (|B| = Ag, |C|] = A¢), g € G. Then, B + g denotes the block
(B[0] +¢,B[1]+g,... ,B[Agp — 1] + g) and B x C is the block defined as the
concatenation (B + C[0])(B + C[1])... (B + C[A¢c]).

Now take the sequence of blocks a, over GG, such that a, contains every
symbol from G and a[0] = 0 for n = 0,1,... and set w = ag X a; X ... The
one-sided sequence w is called a generalized Morse sequence if it is not periodic.

Let X = O(w) and T be the shift. The dynamical system (X, T) is called a
Morse flow. We define also sequences w,, = @y, X @n41 X ... and blocks B(") =
ag X ... X ap, |[B™| =p,, (w=B™ xw,).

Now we define the bases of Kakuthani-Rokhlin partitions &,, in the following
way:

D(")

0,ugh — {.’E €X: x[_pm2pn_1] = (B(n)+v)(B(n)+g)(B(n)+h)}a v,g9,h € G.

Then V,, is the set of all triples vgh that appear in the sequence wy,yi. The
partition &, consists of |V,,| T-towers ffjg;l = {Ti(D(()iII))gh) 21 =0,...,pn — 1},
vgh € V,,.

The homomorphism Fj, is given by the matrix B = [by,,], v'¢'h = w € V,,,
vgh = u € V41, where by, is the number of appearance of the triple v'¢’h’ in
the block

(a[]A =14+ v)(a+g)h = (a]A — 1] +v),g,(a[l] + g),...,(a]N = 1] + g), h,

where @ = ap4+1, A = Apy1.

The partition a,, consists of sets Jgp,, where gh is a pair of elements of G
such, that a triple (ghv) € V;, for some v € G and Jg;, = {ghv € V,,}.

Let G = Zs, a, = a = 01. Then

wy, = w = 01101001100101101001011001101001 . ..

and V,, = {001,010, 011, 100, 101, 110}.
To find the homomorphisms F,,, we must know triples v'¢'h’ = w € V,

appearing in the block (v+1)(a+ g)h = (v+ 1)g(g+ 1)h, v,g,h € Zs. We have
n+1) (n)
o

vgh = Mot1)g(gt1) Y 775(’;_‘_1),1. The homomorphism F,, = F is given by the
matrix:
001 010 011 100 101 110

o1 [0 O 1 0 1 0 7

o0 | O 0 0 1 0 1

o1 | O 0 0 0 1 1

100 | 1 1 0 0 0 0

101 | 1 0 1 0 0 0

110 L O 1 0 1 0 0 ]
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001 100
010 N
Jou >, 101 < Jio
<
011 110
FIGURE 4.2

The Morse system is uniquely ergodic, the only measure y is given by ,u(D(()tlg p n) =
1/(3-2™), n = 1,2,..., vgh € V,. The partition «, has the following form
ayn, = {Joo, Jo1, J10, J11}. The graph (a,, V,,) is presented in Figure 4.2.

We select a spanning tree (o, E,,) with E,, = {100, 101, 110} (see Figure 4.2).
The homomorphisms I,, = I are defined as follows:

In (2001, 0105 T011, T100, T101, T110)

= (w001 + T100 — T101,T010 + T101, To11 + T110 + T101) = (Y001, Y010, Yo11)-

Hence the sequence of homomorphisms @n = G is defined by the matrix:

001 010 011

Because det(G) = 0 we apply the Stage II of the algorithm (TA). We have

~ JTL
G(Z3> = {<y001790107y011> €Z’: Yo11 = Yool + y010} 27 = {<y0017y010>}-

The homomorphism G’,, = G’ is given by the matrix:

001 010
G — 00t 0 1
010 | 2 1

Because det(G7,) = —2 thus KO(X,T) ~ U~ (G'")(Z?).
Next we have

Ny = {F € Z° : 3001 + 010 + To11 + T100 + T101 + T110 = O}
and

Inf(n) = I,,(Nn) = {{Yoo1, Y010, Yo11) € Z* : yoo1 + Yo10 + Yo11 = O}.
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Moreover,
Jo H(Inf(n)) = {7 € Z° : yoo1 + yo10 = 0}
Finally
Inf(X, T) ~ {(yoo1, Yo10) € Z* : Yoo1 + Yor0 = 0} ~ Z.
To describe the cone K°(X,T)* we find

I,(e100) = €oor, I,(e101) = (—1,1,1),

I, (e110) = €011, I, (evgn) = €ugh,

(vgh) € Vi, \ E,,. Then Zﬁr") ={Z3 +a(-1,1,1), a € Z} for every n > 1. Next
we have

7 =)

n

={J;NZ%) +a; ' ((-1,1,1)), a € Zy} = {Z2 + a(-1,1), a € Z, }.

Then
KX, )" ~ | J & "(2") = {{2.9) € K°(X,T) 12 +y > 0}
n=0

4.3. Rudin—Shapiro flow. The Rudin-Shapiro flow (X, T) is a symbolic
topological flow, where X = O(w) C {0,1}%, T is the shift and w is the Rudin—
Shapiro sequence. To define the sequence w, we consider the binary expansion
n= Zf;o 2t.g;,6;=0,1, e, = 1 of every positive integer n. Then, we compute
a sequence {a[n]}52,, where a[n] = the number of the appearance of the pair 11
in the block €q . ..¢ex, for n > 1 and a[0] = 0. The sequence w[n| is defined as

1 if a, is odd,
w(n] =

0 if a, is even.

Then w = 0001001000011101 ... The sequence w is determined also by a sequence
of blocks A§”>,A§") over {0,1} = Za, n = 0,1,..., such that A(()O) = A§°) =0
and AL"TY =AM AM AP = AW (AN where B® = B = B + 0 and
B! = B+ 1in Zy (B is called also the mirror of the block B). Then,

AT =AY = 2" and w[0,2"* — 1] = AV A

for every n > 0. The blocks Aé”), Agn) define partitions €™, n > 0, on T-towers

e = {THDS) ), i =0,...,27 — 1, g, h,u,v € Zy}, where

Dy, = f € X sa[=2",3-2" — 1] = (A[)7(AF")"(Af”)"(AG”)" ).

ghuv
Then V,, = Z3 and Z"» = 7Z'°.
To find a matrix F,:Z'% — Z'6 we remark that

+1
g_z(;:Lw,v) = ng(yz—)l,hhu U ni(L:L,L),u+l,v for every ghU’U € Z4'
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We have F,, = F, where F has the following form:

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
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The partition «, of V,, has a form «, = {Jgn,9,h € Zs}, where Jy, =

{ghuv € V,,}. The graph (ay,,V,,) is presented in Figure 4.3.

1001

0110

FIGURE 4.3

To simplify notations, we will write sometimes 0 instead of 0000, 1 instead

of 0001, ..., 15 instead of 1111. In particular zggoo := xo, Yoooo = Yo, ---

T1111 ‘= 215, Y1111 ‘= Y15-

)
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As a spanning tree we take E, = E = {1,7,14} (see Figure 4.3). Then by

(3.2) we have I{xq,... ,215) = (Yo, .--,Y15), In = I, where
Yo = To, Yo = T9 + X7 + T14,
Y2 = T2 — X1 — X7 — T14, Y10 = Z10,
Ys = T3 —T1 — T, Y11 = T11 + T14,
Ya = T4 + Ty, Y12 = T12 + x1 + 27,
Ys = Ts, Y13 = x13 + 7,
Y6 = Tg — T7 — T14, Y15 = T15-

Ys = g+ 21 + X7 + T14,

Next, we compute the homomorphisms G,, by (3.4) and (3.5). We have G,, = G
for every n > 1 and G:Z'3 — Z'3 is given by the following matrix G (denoted
by the same symbol).

0 2 3 4 5 6 8 9 10 11 12 13 15
ofo0o 1.0 0 0 0 1 0 0 O O 0 07
210 0-1 1 0 0-1 1 0 0 -1-1-1
3|0 0-1 0 1 0-1 1 0 O 0 -1-1
40 0 1. 0 0 0O 1 0 1 O O 0 O
5/]0 0 0 0 0O 0O OO O 1 0 0 O
6/0 0 0 0 O O O O O O O0-1 0
&1 110 0 0 1 O O O 1 1 1
991 0 1 0 O 0 O 0 0 0 1 1 1
({0 0 0 1 0 0 0 0 0 O 0 0 O
n|{0 0 0o 0 1 0 0 0 0 O 1 0 O
20 0 1 0 0 1 1 0 1 0 0 1 1
B0 0 0 0 0 1 0 O 0 1 0 1 1
LO 0 0O O 0 0O 0 O O O O 1 o0l

Here rank(@)) =9, so we apply Stage II of the algorithm (TA). Moreover,

(4.1) Im(@ ={ye Z" tyg = —yo +Ys, Y11 = —Y2 + Y3 + Y10,
Y13 = —Ya + Y5 + Y12, Y15 = —Y6}-

Thus Im(G) ~ Z° = {(yo, Y2, Ys3: Ya, Y5, Y6, Ys> Y10, Y12)} (We omit the coorcli—
nates Yo, Y11, %13, ¥15), i-e. Vi = {0,2,3,4,5,6,8,10,12} and J,:Z° — Im(G)
(see Step 6 of the algorithm (TA)) is given by J,(e;) = e;, i € V.

The homomorphism G: Im(G) — Im(G) defines a homomorphism G': Z° — Z°.
The matrix G’ is obtained from the matrix G by eliminating yo, 11, Y13, Y15
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using (4.1). Then, we get the following matrix G’

0 2 3 4 5 6 8 10 12
of 1 0 0 0 0 1 0 07
21-1 0 -1 2 -1 1 0 0 =2
3-1 0 -1 1 0 1 0 0 -1
410 0 1 0 O 0 1 1 O
50 -1 1 0 0O O 0O 1 O
6/ 0 0 0O 1 -1 0 0 0 -1
s 11 1 -1 1 -1 1 0 2
of0 0 O0 1 0 0 0 0 0
200 0 1 -1 1 O 1 1 1|

We have rank(G’) = 5 and

Im(G") ={G €Z° : ys = —yo + ys, Y6 = Y2 — ¥,
Y10 = —Yo + Y2 +Ys, Y12 = —Y2 + Y3 + ya}.

Repeating the same procedure as above we get G'': Z°5 — Z° given by the matrix

o 2 3 4 8
ofO 1 0 0 1
210 3 -4 -1 0
3[-1 2 =3 0 0
41-1 1 1 0 2
g0 -2 4 2 1

We have rank(G"”) = 4 and Im(G") = {y € Z5 : ys = 3yo — 2y2 +y3 — ya}. Then,
Im(G") ~ 7*.

Consequently, we replace the homomorphism G”:Im(G"”) — Im(G"”) with
the homomorphism G": Z* — Z*. Tt is given by the matrix

0 2 3 4
o3 —1 1 -1
2| 0 3 —4 -1
3|-1 2 -3 0
4Ld =3 3 -2
We have det(G"’) = 4 and then K°(X,T) ~ J,—, G" "(Z*).
The unique T-invariant measure of (X,T) p is given by u(Df)")) = 1/2n+3
for every n > 1 and v € V,,. Then N, = {(z,,) € Z'%: Y _, x, = 0}.
It is not hard to remark that

Inf(n) = L,(N,) = {<yv>UeVn\En €73 Z Yo = O}.

UeVn\En
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To find Inf’(n), we remark that G(Inf(n) C Inf(n). Then, we have G(Inf(n)) =
G(Z'3) NInf(n). Therefore,

Inf(n)" = (J,;* o G)(Inf(n)) = J,, 1 (G(Z*®)) N J, *(Inf(n))

n

={y e 77 : 7 satisfies the equation obtained from

Z y» = 0 by using equations from (4.1) }
Ue‘/'IL\En

={7€Z”:ys+ys+ys+ 10+ y12 = 0}.
By the same arguments, we get
Inf’(n) ={g€Z°:J@) cnf'(n)} = {7 €Z°: —yo +ys +ys+ys =0}

Finally, Inf"”’(n) = {y € Z* : yo—y2+y3 = 0}. We have G"'(Inf(n)"") C Inf(n)".
Thus,

Inf(X,T) = lim{G: Inf"”"(n) — Inf"’(n + 1)}
={(yo,v2,y3,9a) € K°(X, T) 1y — 92 + 93 = 0} C K°(X, 7).
To describe the cone K°(X,T)* we find that I,,(e,) = €,, v € V;, \ E,,, and

In(60001) = <Oa71771a150707170a070717070>a
In(eolll) = <07_17_170u07_171u]~7070717130>7
In(elllo) = <Oa_1707Oa0a_17171a071707070>a

in Z'3. Thus,
Zsrn) ={Z + a1l (eooot) + azln(eorn) + asly(einno), ar,az,a3 € Z1} = Z,.

Let 2" = 2% = (G" 0 G' 0 G)(Z',). Then

KX, 7y = (@),
n=0

Of course

KX, T)* C {<y073/2,y37y4> € U G" L) s yo+ys > y2}~

n=0

We show that

(4.2) U (G")™™ZY) = {{yo, y2,y3,y4) € K°(X,T) : yo +y3 > y2}.
n=0

For 7 € Z* let LE be a positive line defined by 7 i.e. LE = {\T, A € Z,}. Let
us denote w; = (G" 0o G' oG o I,,)(¢;) € Z*, &; € Z'6, i = 0,... ,15. Of course,
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L%i are elements of the cone K°(X,T)*. We need the vectors Wy, Wa, W5 and
wg. By direct computations we find:

wo = <1a 717 71a 1>7 Wa = <1a0507 1>7 Wy = <07O7 170>5 We = <07 727 717 1>

The matrix G”” has four eigenvalues A\; = —1, Ao = 2, A3 = V/2, Ay = —/2, with
the eigenvectors:

f(fl) = <Oa1a150>7 j(2) = <17_27_172>a
T3 = (V2+1,V2+2,1,V2), T =(1-v2,2—-v2,1,-V2).

The vectors T(_y), T (3 and T(_y3) form a basis of the subspace
II = {<Zo,22,23,2’4> 120+ 23 = 22} C R*.

Let Hint = HOZ4 For any y = <i‘/0»y2793a y4> € Z47 we have y =a f(2) +ﬂ’
u € II, where a = (yo + y3 — y2)/2. In particular, we have W; = Z(9)/2 + s,

1=20,2,5,6, where
1 1
-, 1,=,0
<27 727 >7

_ 113 1 _ 1 1 10
U5 = 27727 y Ug = 27 727 .

The subspace II is G"’-invariant and the map G’ (in the coordinates zg, z3,

2|

<)

Il
S
N —

=

|
|

o
~_—

2|

)

Il

z4 of II; we omit 2o = 2o + 23) is given by the matrix:

0 3 4
o2 0 -1
F = 3 1 -1 0
4 [2 0 =2
We find that 1
1 0 —=
2
-1 _
Fl=1y 4 1
2
1 0 -1
By the induction we check that
1 1 1
o 0 0 o 0 ~ o
1 1 1
—20 _ —(2041) _
F = E—l 1 1—5 , F =1 -1 —ﬁ—l )
1 1 1
o003 g Y o
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for 1 =0,1,2,... We find:

1 1 1 1
—2l— \ _ —(2l+1) (=
F (u2) _<2l+1’2l+170>’ F ( )(U‘Q) <21+170721+1>7
1 1 1 1
—(204+1) (7= ) — =2l \ _
F~ED (@) <21+1’1’21+1>’ F= (us) <_2l+1’_2l+1’0>’

1 -1 1 1
—(2l41) (= _ —(2141) (= _
F ( )(UG) _<_2l+17072l+1>’ F ( )(U5) _<O’_1’_2l+l2l+1>’

Then, we have

(") (@2) = e + s e e 0):

(") 2 w0) = gz + - g g0
(G 4m2) = stz + (s . )
(G~ (wg) = ﬂ%@ + < - 2111 ’ *2511 0, 72l:-li-1 >7
(O 000) = gzt (r 1+ e o )
(G~ () = 221%@ + <O’ o 211+1 1 - 211+1’ 2111 >

Further, we have
2HE") (@) = 5+ (1,2,1,0) = (A),
2 (G T () = %f@) +(=1,-2,-1,0) = (B)),
2”1(G’”)’(2”1)(@2) — %f@) +(1,1,0,1) = (C)),
21(G)~CHD () = Ty + (~1,-1,0,-1) = (D).

Of course A;, B;,Cy, Dy € U, o(G")~™(Z!). Then,

limA; = (1,2,1,0),  limB = (~1,-2,-1,0),

11{1161 =(1,1,0,1), lilmﬁl =(-1,-1,0,-1)

are some elements of the cone K°(X,T)T. At the same time (0,1,1,0) =
limy (G"") =1 (@) and (0, —1, —1,0) = lim;(G"")~ 2+ (w;5) are also elements
of K%(X,T)*. It follows from above that for any vector 7 € Il;,; the positive line
L; is an element of K°(X,T)*. Then for any ¥ € ;- o(G") (i) = {y €
K°X,T), yo+ys — ya = 0} the positive line Ly is an element of K°(X,T)".
This implies (4.2).
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4.4. Skew product extensions. Let (X,T) be a Cantor minimal system,
G a finite abelian group and ¢: X — G a continuous cocycle. Consider a minimal
group extension (X xG, T.), where T.(z, g) = (T(z), g+c(z)). Assume that {£],},
&, = {Ti(D(()TLJ), i=0,...,h(n,v) — 1, v € V,} is a sequence of Kakuthani-
Rokhlin partitions of (X, T') generating the topology. The clopen sets Ti(D(()Z))) X
g, g € G, form partitions &, of (X x G) generating the topology of X x G.
Because ¢ is continuous we can choose n, such that ¢ = const on every Ti(D(()Z) ),
it =0,...,h(n,v) — 1, v € V,,. Without loss of generality we assume that
this property holds for every n = 1,2,... Then the partitions &,, n > 1, are
Kakuthani—-Rokhlin partitions of (X x G,T,.) consisting of T,.-towers

Enlv,9) = {THDEY) x g), i =0,... ,h(n,v) =1}, vEVp, geq.

Let (v, Vy,) be the oriented graphs determined by &, (see Section 2). In addition,
we assume that

(4.3) max (diam U 9573) —0.

Jeay,
veJ

This implies that

; -1/p®)
(4.4) Iax (dlam U T (Dy )) — 0.
veJ
The conditions (4.3) and (4.4) imply that the sets T, (U, D(()Z)) X g) are
&n-sets for every J € «,, and g € G. Thus, the sets
&(.9) =] &v.g), JEay,
veJ
form a partition of the set V,, x G and it is the smallest partition having this
property. Thus, the sets &,(J,9), J € an, g € G form a partition of V,, x G

defined in the Section 2. Denote it by «, x G. We have an oriented graph
(an X G,V, x Q). For v € V, let

d(v) = 4 c(T'z), h(v) = h(n,v),

where x € Dl()ilo). The arrows of (a,, X G, V;, X G) are characterized by the following

property:

(4.5) Let (J,g) € an, x G and (J', h) € ay, x G. Then, there exists an arrow v X g
joining the vertices (J,¢) and (J', h) if and ounly if v = (J,J') and h =
g+ d(v).

We will construct a spanning tree (o, X G, E}) of the non-oriented graph

(an, x G, VZ_\/XG) using a modification of the Kruskal algorithm (see [2]). To do
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this, take a spanning tree (a,, E), F = E,, of (amf/n). Let P,, v € V, \ E, be

the cycle of (o, V) defined in Section 3. Set

(4.6) d(Py) = > d) - > d').

'U’EF';r v EP,

Let Py, J,J € ay, be the unique path joining the vertices J and J' inside E.
Let

(4.7) d(Pyp)y= Y d@)— > d),

’ + ’ -
v GPJJ, v EPJJ/

where PL, is the set of all v’ € P;; having the same orientation as the direction
from J to J" and P, = Py \ PL,. In the sequel we need two facts:
(F1) The minimality of (X xG, T¢.) implies that the elements d(P, ), v € V,\E
generate the group G for every n > 1 (this fact is easy to prove).
(F2) A connected acyclic subgraph (o, E') of a connected not oriented graph
(a, V) is a spanning tree if and only if |E| = |a| — 1 (see [2]).

4.4.1. Construction of a spanning tree of the graph (o, xG,V,, x G).
Using (F1) we choose vy,...,vs € V,, \ E such that

G:leG(al,...,aS) QHQZG(GQ,...’GS)D...

=

2 H, =G(as) 2 Hyyq = {0},

where a; = d(P,,).

Let r; = ranka; in H;/H; 11,1 =1,...,s. Of course r; > 1. Then, every
h € G has the unique decomposition h =7 a1 + ...+ 75 a5, 0 < 7, < r; — 1.
Inductively, we construct a family of connected, acyclic subgraphs S_S,m)(J ) =
(oz_gm)(J),E_Lj(,m)(J))7 g€ Hy, JEay,, m=1,...,s, satisfying

(@) al™ ()N al™(J) =0, g #h, g,h € Hyp,
(b) U aém) =a, X G, for every J € a,
gEH,
(4.8) (©) En(T,h) €A™ (J) S h =11 a1+ .+ Tt - Gt + g,
heG, ge Hy,
(d) a§™ (J) = a1y (), ES™(J) = BY), (J'),g € Hu,

where d,,, € H,, is chosen from the conditions di = d(P; /) and d(P;;) =
T a1+ oo+ Tt - Q1 + dp, m > 1.

Step 1. For J € o, and g € G set agl)(,]) ={(J,g+d(Psy)),J € ay} C
an x G, and BV (J) = {€n(v, g+ d(Pyy) +d(v)) : (J',J") = v € E}.
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It is easy to see that agl) and Eg(,l) satisfy (4.8). We define a family S’_c(,l)(J)
of subgraphs of (a, x G,V,, X G) as follows:

S0 () = (agP (1), BV ().

The graphs S (1)( J) are connected and acyclic.
Step m + 1. Assume that we have constructed a family S(m)( J)ym<s+1,
g € Hy,, of subgraphs satisfying (4.8). For g € H,,,+1 and J € «, define

T —1
m+1 (m)
O‘é U Yg+k- am
Tm—1 Tm—2
B = U Bya, (DU U &vmg+k-am).
k=0 k=0

m—+1 _ m+1 m+1
S{V(I) = ("), By ().

Now we check that o+ and E(™+1) satisfy (4.8). Let vy, = (J,J'), J,J' € au,.
It follows from (4.5) that the arrow &, (v, 9+k-am), 9 € Hypy1, 0 <k <71, —2,
joins the vertices &,(J,g + k - an) and &, (J', 9 + k - am + d(vy,)). Of course
En(J.g+ k- anm) € gtka,, (J). We will check that &,(J', g+ k- am + d(v)) €
Qg (k+1)-a (J). We use the equality d(v,,) — d(Py) = d(P,,,). We have

&g+ k- am+dvy)) =E(J g+ (k+ 1am +d(Pyy))
(48)(©) () (43)(d) (m)
Vgt Dam+dn ) = Vi), ()-
This means that the arrow &, (J, g + k - a,,) joins the subgraphs S(+k o, (J) and
(m) _
Sy etyan, (1) k=0, — 2.
Each Sémﬂ)(J), g € Hp,41 is an acyclic, connected subgraph of (a, X

G, V;_\/XG) For any J” € o, we define SY™" ™ (J") by (4.8)(d). Tt is not hard
to see that the family {Séerl)(J”)}, g € H,,+1 satisfies the conditions (4.8) for
every J' € a,.

4.4.2. A spanning tree of (o, x G, V;_\/XG) We finish the construction
of the families {S’E(,m)(J)}7 g € Hy,, J € ap, when m = s + 1. Then we have an

acyclic, connected subgraph S(gsﬂ)(J) of (ay, X G, Vf;/G)
To prove that S, SH)( J) is a spanning tree, we use (F2). Of course, |E£(,1)(J)|
= |ay| — 1. Assume that

BT o (D =10l 0 ()] =1 =[al™ ()] -1,

forge Hypy1,k=0,...,7, — 1. We have

B )] = 1B 0 (D) o+ 7 — 1= 0™ ()] = 1 = [ D ()] - 1.
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In this way it holds |E_((,m)(J)| = |a(gm)(J)| —1forevery m =1,...,s+ 1 and
g € H,,,. In particular

EFH ()] =l ()]~ 1= lan x G| - 1.

Therefore, because of (F2), S(()s+1)(J) = (an x G, E]) is a spanning tree of
(an X G,V, x Q).

4.5. A group extension of the Chacon flow. Consider a Chacon se-
quence w over two symbols 0,1 (we replace the symbol “s” by “1”) treated as
the elements of the group Zs = {0, 1,2}. Define a cocycle ¢: X = O(w) — Zs as
follows: ¢(z) := z[0], z € X. We have V,, = {00,01, 10,11} (see Subsection 3.1).
Then,

rn—1

d(00) = Z Bulil=1,  d(01)=d(11) =1+ Y Byli] =
1=0

for every n > 1. To find the homomorphism F!, from ZV»*%s — 7Vn*Zs let us
note that

€00, 9) =n"™(00,9) Un™ (01,9 + 1) Un™ (10, g),
¢ (10, 9) =™ (10,9) Un™ (01,9 + 1) Un™ (10, g),
(01, 9) = n™e(00,9) Un™ (01,9 + 1) Un'™(11,g),
(1, 9) = n(")(lo 9)Un™(01,9+ 1) Un™(11,g),

for g € Zs. So F), is given by the matrix

00x0 00x1 00x2 O01x0 01x1 01x2 10x0 10x1 10x2 11x0 11x1 11x2

ooxo [ 1 0 0 0 1 0 1 0 0 0 0 0 7
oox1 | O 1 0 0 0 1 0 1 0 0 0 0
oox2 | O 0 1 1 0 0 0 0 1 0 0 0
o1xo | 1 0 0 0 1 0 0 0 0 1 0 0
o1x1| O 1 0 0 0 1 0 0 0 0 1 0
oix2 | O 0 1 1 0 0 0 0 0 0 0 1
w0x0 [ 0 0 0 0 1 0 2 0 0 0 0 0
w0x1 [ 0 0 0 0 0 1 0 2 0 0 0 0
wox2 | 0 0 0 1 0 0 0 0 2 0 0 0
1xo | 0 0 0 0 1 0 1 0 0 1 0 0
1xt| 0 0 0 0 0 1 0 1 0 0 1 0
uxz | 0 0 0 1 0 0 0 0 1 0 0 1

According to (4.5) the graph («, X Zg,Vn/>\</Zg) (see Figure 4.4) has the
following arrows

(01) Xg = ((leg) - (J27g+2))7 (10) Xg = ((J27g) - (J17g+ 1))7

(00) x g = ((J1.9) = (Ji,9+ 1)),  (11) x g = ((J2,9) = (J2,9 +2)),
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g € Zs, Jy = {00,01}, J, = {10, 11}.

To calculate I,,, we find a spanning tree using (4.4.1) and (4.4.2). We select
the same spanning tree (o, E) E = E,, = {01} as in Subsection 3.1. According
to (4.6) we have agg = d(Pyo) = 1, a11 = d(P11) = 2, a19 = d(Pyp) = 0.

Next, we have
PJ1J1 = PJ2J2 - PJ_lJz P};Jl = {@} and P};Jz J2J1 - {01}

Thus, (4.7) gives d(Py, s,) = d(Py,5,) =0, d(Py, 5,) = 2, d(Py,,) = 1.

Now, we apply the procedures 4.4.1 and 4.4.2. Because agp = 1 generates
Zs, we have s = 1, v; = (00), Zs = Hy; D Hy = {0}, r1 = 3, oSV(J1) =
{(71:9). (2.9 + D}, By (1) = 01 x g = {((1:9) = (/2.9 + 2)}. The graphs
Sél)(Jl) = (o él (J1), E ( 1)) are marked in Figure 4.4 with thick lines.

FIGURE 4.4

Next, we have
a@ (1) = V() ual)i () ually(n) =axV, V=1,
E, =E =E®(J)
= B (1) UEEL (1) U Bgy(J1) U {(00 x 0)} U {(00 x 1)}

for every g € Zs, E], = E' = {01 x Z3,00 x 0,00 x 1}. The tree (o x G, E’) is
presented on Figure 4.5.
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00x2 11x0
FIGURE 4.5

Next, we have In = I(£OO><O7 N ,J,'11><2> = <y00><2, ce ,y11><2>, where
Yoox2 = Toox2 + Tooxo + Toox1,
Y10x0 = 10x0 + To1x1,
Y10x1 = T10x1 + To1x2,
Y10x2 = T10x2 + T01x0,
Y11x0 = Z11x0 + Toox0 — To1x0 + Toix1,
Y11x1 = Z11x1 + Toox1 — Toix1 + Toix2,
Y11x2 = T11x2 — Lo0x0 — L00x1 T L01x0 — L01x2-

Thus, the homomorphisms @n are given by the matrices B = B,,

00x2 10x0 10x1 10x2 11x0 11x1 11x2

oox2 [ 1
10x0
10x1

11x0

11x1

0
1
10%2 0
0
1
1

11x2 L—

1 1 1 0 0 0 7
2 0 0 0 1 0
0 2 0 0 0 1
0 0 2 1 0 0
2 0 0 0 1 0
0 2 0 0 0 1
-1 -1 1 1 0 0 |

The determinant of the matrix is 0. To find K°(X xZ3, T..), we apply the Stage II
of the algorithm. In this case rank(G?) = rank(G?) = 4. We have y11x0 = Y10x0,

Y11x2 = Y10x25 Y11x2 = Y10x2 — Yoox2-
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We come to the homomorphisms G, = G’ given by the matrix

00x2 10x0 10x1 10x2

00x2 1 1 1 1
10x0 | 0O 2 1 0
10x1 0 0 2 1
1o0x2 L 0 1 0 2

Since det(G,) =9, K%(X,T) = U;—(G')"™(Z*). In a sequel, we replace 00 x 2
by 1, 10 x 0 by 2, 10 x 1 by 3 and 10 x 2 by 4. By a similar reasoning as in
Subsection 4.3 we find Inf(X,T) = {¥ = (y1,v2,v3,v1) € K*(X,T) : y2 + y3 +
ya = 0}.

To describe the cone K°(X,T)*, we must find the images w, of the vectors
e, € Z'2, v €V, x Z3 via I, and via G2 to G2 (Z'2) ~ Z*. We find

Wooxo = <170303 1>, Woox1 = <1717030>,
Woox2 = <17051;0>7 Wi1x0 = <070a0a 1>>
W11x1 :<071a070>7 W11x2 :<070a170>

The matrix G’ has the eigenvalue A = 3 with the eigenvector T3 = (3/2,1,1,1).

Let IT C R* be the subspace defined by IT = {7 = (y1,y2,y3,y4) : Y2 + Y3 +
ys = 0}. Then every § € Z* has the unique decomposition § = a - 73 + %, u € II,
a = (y2 + y3 + y4)/3. In particular W, = T3/3 + Uy, v = 00 x 0, 00 x 1, 00 x 2,
11 x 0,1 x 1, 11 x 2. We have

o= (L 112 = (L2 _ 11
Uoox0 = 27 3a 373 ’ Uoox1 = 2737 37 3 ’
_ 1 12 1 _ 1 1 12
Uoox2 = <27_3a 35_3>7 U11x0 = <_ 57_57_55 3>7
_ 12 1 1 _ 1 12 1
Ul1x1 = _5757_57_§ ) Ui1x2 = _57_5757_§ .

The subspace II is isomorphic to R3 = {Z = (z1, 29, 23), z; € R} by the mapping
Y1 = 21, Y2 = 22, Y3 = 23, Y4 = —(z1 + 23). Then the homomorphism G'|II =
F:73 — 73 is defined by the matrix

w W
[

N O N
— = O w
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The matrix F has the eigenvalues A\; = 1, Ao = (3 +iv/3)/2, A3 = (3 —iv/3)/2,
with the eigenvectors (1,0,0), (0,1, (iv3 — 1)/2), (0,1, (=1 —iv/3)/2). Then,

1 0 0
Lok, V3 i3 e
k|0 5()‘1k+/\2 )*70\ - A7), T(AQk*)‘lk)
j _ _ _3+iVv3 _LiV3—3
0 3 k- A% A EEE  \kis
2 6 6
for k=0,1,... Taking k = 12] and k = 12 + 6 we get
10 0 1 0 0
1 1
g2 |0 367 0 , p-12i-6 _ |0 RS
1 1
00 o 0 0

Next, we have

(G") =" (Woox0) = 3121+1$3 + <;’ 36041 _3611+1’ 3612+1>
(G") P (Woox1) = 3121+1 3+ <; 36l+1’_36l+1’_3611+1>’
(G~ 12l(w00><2) = 3121+1x3 + <;, 361+1, 361+1’_3611+1 >,
(G (Wrix0) = 312l+1 +< %’ 361+1 ; _36l1+1 ’ 36l2+1 >’
(G’)—lzz(mllxl) = 312l+1 3+ < %, 361+1,—3611+1,—36[1+1 >,
(G")~ 121(wllx2) = 3121+1x3 + < %’ 36l+1’ 3612+1’_36l1+1 >

Then, the vectors

A=(1,0,0,0) = lim 2(G")~ 2 (@Woox0)

l—o0
and
A =(-1,0,0,0) = Jim 2(G") 2 (W11 %0)

are some elements of the cone K°(X,T)*. At the same time the vectors

B, = (0,0,-3,3) = lhm 36l+1[ ) 12l(woo><0 +(G ) !
—00

(G ) (Woox1)
+ (G Woox2) + 2(G) T (Wr1x0) + (G) T (Wr1x1)],
6 <O 3 0 3> _ hm 361+1[(G/) 12l(w00 O) _|_( ) 2l( )

N ) )

+(G") 7 (Woox2) + 2(G



DIMENSION AND INFINITESIMAL GROUPS OF CANTOR MINIMAL SYSTEMS 199

are elements of K°(X,T)*. Then, the vectors
3°(G") "2 (By) = (0,0,—1,1) = B, 3°(G")"**(C;) =(0,-1,0,1) =C

are elements of K°(X,T)*. Next, we take the images of B, C via (G')~!%. We
get

33(0/)_6(§) = <0705 L, _1> = _E» 33(G/)_6(§) = <0, 1,0, —1> =-C.

Because the vectors A, B, C form a base of the group I, = II NZ* and £A,
+B, £C are elements of the cone K°(X,T)", then the set of all elements of
KX, T)* is

(@) (ine) = {7 = (1, 2, y3,94) € K(X,T) : y2 + y3 + ya = 0}.

n=0

In this way, we proved that
KX, T)" ={y = (y1,¥2,y3,y4) € K(X,T) : y2 + y3 + ya > 0}.

4.6. Orbit equivalence and strong orbit equivalence. Now, we can ex-
amine the topological orbit equivalence and the topological strong orbit equiv-
alence of the topological flows from the Section 4. For the Cantor minimal
systems, there are known complete invariants of the above orbit equivalences
([5]). We will use the following theorems for Cantor minimal systems (X,T") and
(¥, 5).

THEOREM 4.1. The following statements are equivalent:
(a) (X,T) and (Y,S) are strong orbit equivalent.

(b) K°(X,T) is order isomorphic to K°(Y,S) by a map preserving the dis-
tinguished order units.

Now let (X, T) and (Y, S) be strictly ergodic.

THEOREM 4.2. The following are equivalent:
(a) (X,T) and (Y, S) are orbit equivalent.
(b) I?O(X, T) is order isomorphic to I?O(Y, S) by a map preserving the dis-
tinguished order units.
(¢) The set of the values {u(U) : U is a clopen set of X'} is equal to the set
of values {v(U) : V is a clopen set of Y}, where p and v are the unique

T-invariant and S-invariant measures.

The dimension group C(X,Z)/Br of each example of the Section 4 is of the
form (J2, F~™(Z*) C QF, where F: Z¥ — Z* is a homomorphism given by a ma-
trix F with non-negative integer entries and | det(F")| > 1. The natural question
arises when two groups of such kind are isomorphic. The group Jo—, F~"(Z")
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is an union of increasing chain of groups F~"(Z*), n € N, each of them is a
free abelian group of rank k. Thus, two groups of such kind J;_, F~"(Z*) and
() G~"(Z') are not isomorphic if k # 1. It is easy to give a necessary con-
dition for two groups |, F~"(Z*) and |J,—, G~"(Z*) to be isomorphic. Let
Pr be the set of prime numbers appearing in the decomposition of det(F) into
a product of primes.

FAcT 4.3. If the group -y F~"(Z*) and \J;_, G~"(Z*) are isomorphic,
where F', G are matrices with non-negative integers such that |det(F)| > 1 and
|det(G)| > 1, then Pr = Pqg.

PROOF. It is enough to analyze the groups F~"(ZF)/ZF and G—"(Z*)/Z*,
n = 1,2,... The quotient group F~"(Z*)/ZF is a finite abelian group of the
order | det(F)|™ and it is a direct product of some p-groups G,(n), p € Pp. It is
evident that if V: U, F~"(Z*) — U;_, G~ "(Z") is a group isomorphism then

the quotient groups F~"(ZF)/Z* and G="(Z*)/Z* contains the same quantity
of p-groups. Thus Pr = Pg. a
REMARK 4.4. Observe that by the general theory of free abelian groups, a

structure of all F(Z*) groups is known. Of course F"(Z") is a free subgroup of
a rank k of Z*.

(4.9) Then, there is a base u1, ... ,uj of 7ZF and positive integers dy, ... ,d; such
that vy = dy - u1,... ,v% = dy, - ug is a base of F(ZF) and d; is a divisor of
d;qq foreach i =1,...  k—1. Moreover, the numbers d, . .. ,d; are unique
(see [6]).

The quotient group Z*/F(Z*) is isomorphic to the group Zg, x ...x Zg, . Of
course dy - ... dp = |det(F)|.
A procedure of effective finding the numbers dy, ... ,d; consists of using the

elementary transformations of two types:

— adding linear combinations of some rows (columns) with integer coeffi-
cients to the other ones,
— changing rows (columns).
We demonstrate this procedure on the matrix F' = [? ;] from the Subsection 3.1.

The successive steps of the procedure we mark by the sign “—”. We have

[2 1] ( subtracting the second > [ 1 1} <adding the first row)
—

1 2 column from the first one -1 2 to the second one

11 subtracting the first 1 0
— — .
0 3 column from the second one 0 3

Then dy =1, dy = 3 and Pp = {3}.
Proceeding in the same way we find:
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EXAMPLE 4.5. Teoplitz flow:
(3 2] (1 0]

B 3_—>_0 plr =1l , Pr={5}
Teoplitz-Morse flow:

(3 2] [1 0]

Lol o 4l dy =1, do =4, Pr={2}.

EXAMPLE 4.6.

0 1 1 0

EXAMPLE 4.7.

3 -1 1 -1 1 0 0 O
0 3 —4 -1 01 0 O
—
-1 2 -3 0 0 01 0f"
5 -3 3 -2 0 0 0 4
d1:17d2:17d3:17d4:47PF:{2}'
EXAMPLE 4.8.
1 1 1 1 1 0 0 O
0 2 1 0 01 0 O
_ ,
0 0 2 1 0 0 1 0
01 0 2 00 0 9

d1:17d2:17d3:13d4:97PF:{3}'

Using the Theorem 4.2 and the Fact 4.3 we can answer which of the topolog-
ical flows described in Subsection 3.1 and Examples 4.1, 4.2 and 4.5 are strong
orbit equivalent.

COROLLARY 4.9. The Teoplitz—Morse flow from Subsection 4.1 and the Mor-
se flow from Subsection 4.2 are strong orbitally equivalent. The topological flows

from the remaining examples are not strong orbitally equivalent.

To describe which of the topological flows are orbitally equivalent, we use
the Theorem 4.1. It follows from our previous computations:

EXAMPLE (from Subsection 3.1). K9(X,T) ~ {a/3", a € Z, n=0,1,...}.
EXAMPLE 4.5.

K%X,T) ~{a/5", a € Z, n=0,1,...} (Teoplitz flow),
KX, T) ~{a/2", a€Z, n=0,1,...} (Teoplitz—Morse flow).
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EXAMPLE 4.6. KO(X,T)~ {a/2", a € Z, n=0,1,...}.
EXAMPLE 4.7. KO(X,T) ~ {a/2", a € Z, n=0,1,...}.
EXAMPLE 4.8. K*(X,T) ~ {a/3", a € Z, n=0,1,...}.

COROLLARY 4.10. The Chacon flow is orbitally equivalent to the topological

flow in Subsection 4.5. The Teoplitz—Morse flow from the Example 4.6 and the
topological flows from Subsection 4.2 are orbitally equivalent.

2]
(3]
(4]
[5]

[6]
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