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MULTIPLE PERIODIC SOLUTIONS
OF ASYMPTOTICALLY LINEAR HAMILTONIAN SYSTEMS
VIA CONLEY INDEX THEORY

GuinvuA FEI

ABSTRACT. In this paper we study the existence of periodic solutions
of asymptotically linear Hamiltonian systems which may not satisfy the
Palais-Smale condition. By using the Conley index theory and the Galerkin
approximation methods, we establish the existence of at least two nontrivial
periodic solutions for the corresponding systems.

1. Introduction
In this paper we study the following Hamiltonian system
(1.1) 2= JH'(t,z2)

where H'(t,z) denotes the gradient of H(t,z) with respect to the z variable,
J = (I?V 7(1)N) is the standard 2NV x 2N symplectic matrix, and N is a positive
integer. Denote by (z,y) and |z| the usual inner product and norm in RV,
respectively. We assume the system (1.1) is asymptotically linear both at the

origin and at infinity, i.e.

(1.2) |H'(t,z) — Bo(t)z| = o(|z]), as|z] — 0,
(1.3) |H'(t,z) — Boo(t)2]

o(lz]), as|z] — oo,
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where By(t) and By (t) are 2N X 2N symmetric matrices, continuous and 1-
periodic in t. Obviously, 0 is a trivial solution. We are interested in the nontrivial
1-periodic solutions.

The existence of periodic solutions of asymptotically linear Hamiltonian sys-
tems was first studied by H. Amann and E. Zehnder ([3], [4]). They considered
the case that By(t) and Boo(t) are constant matrices and Boo(t) is nondegener-
ate. Later, for nonconstant matrices By(t) and By (t), C. Conley and E. Zehnder
in [10] studied the problem with nondegenerate By(t) and B (t). After then,
many works have been done about this problem (see [1], [5], [6], [8], [11]-[15],
[18]-[21], [25]-[27]. Bo(t) and Buo(t) are allowed to be degenerate and non-
constant, and the Landesman—Lazer type condition and the strong resonance
condition are often used (see [8], [14]). Since the corresponding functional is
strongly indefinite, many variational methods have been developed to handle it
(12, [7], [17), [22), [23))-

The goal of this paper is to establish the existence of multiple periodic so-
lutions of the system (1.1). We combine Conley index theory with the Galerkin
approximation procedure to show that the system (1.1) possesses at least two
nontrivial 1-periodic solutions if the “twist” between the origin and the infinity
is large enough. From now on, denote
5 (Boc(t)2,2),
2
Go(t,z) = H(t,z) — %(Bo(lf)z7 z).

Gool(t,z) = H(t,2) —

We assume the following conditions for H.
(H1) H € C2([0,1] x R2N_ R) is a 1-periodic function in ¢, and satisfies
|H"(t,2)| < a1|z|® + a2, for all (t,2) € R x R*N, where s € (1,00),a;,az > 0.
(H2%) There exist 2 < ag < 26 and ¢y, c2, Lo > 0 such that
+(Gy(t, 2),2) > cr]z|*  for all |z| < Lo,
|Gy (t,2)] < calz]®  forall 2] < L.
(H3%) There exist 3, ¢4, ¢5 > 0, Log > 0 and § > 0 such that

(1.4)

(G (t,2),2) = E |5 IGI(t,2) < ¢ forall |2] > Le,
Gt 2)ll2] < eal(GLo(t, 2), 2)] for all |z| > L

According to [10], [19], [21], for a given continuous 1-periodic and symmetric
matrix function B(t), one can assign a pair of integers (i,n) € Z x {0,...,2N}
to it, which is called the Maslov-type index of B(t). Let (ig,n0) and (iso, o)
be the Maslov-type indices of By(t) and Bu(t), respectively. Our first result
reads as:
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THEOREM 1.1. Suppose that H satisfies (H1). Then the system (1.1) pos-
sesses a nontrivial 1-periodic solution if one of the following four cases occurs:

(a) (H2T) and (H3%) hold, iso + Moo # io + Mo,
(b) (H2%) and (H3™) hold, is # ig + no,

(c) (H27) and (H3%) hold, iso + Noo # o0,

(d) (H27) and (H37) hold, i # io.

Moreover, the system (1.1) possesses at least two nontrivial 1-periodic solutions

if one of the following four cases occurs:

(e) (H2%) and (H3T) hold, |ico + Noo — G0 — no| > 2N + 1,
(f) (H27%) and (H37) hold, |ico — 19 — ng| > 2N + 1,

(g) (H27) and (H3") hold, |ico + noo — 0| > 2N + 1,

(h) (H27) and (H3™) hold, |is —io| > 2N + 1.

REMARK 1.2. (a) It is easy to show that (H2¥) and (H3%) imply (1.2) and
(1.3), respectively. Under (H3%), the Palais—Smale condition may not hold and
the strong resonance method ([8], [14]) may not work here, too. See Example 3.6
for more details.

(b) Conditions (b) and (c) of Theorem 1.1 include a special case that By(t) =
By (t), i.e. the system (1.1) may be resonance at 0 and at oo with the same
asymptotical matrix. As far as I know, this case has been studied only in [14],
[15], [25], where the Palais—-Smale condition is always required.

(c) In order to get the second nontrivial solution, one usually assumes that the
first obtained one is nondegenerate (see [18]). Here in (e)—(h), we do not require
any condition on the first obtained solution. Conditions (e)—(h) of Theorem 1.1
are a kind of generalization of the corresponding results in [19], [20], where B (t)
is assumed to be nondegenerate.

(d) To prove Theorem 1.1, we first apply the Galerkin approximation pro-
cedure to consider functions {f,,} defined on finite dimensional spaces {E,,}.
Then we construct the isolating blocks Dy, at oo and D,, at 0 in a way that
{Doom} are uniformly bounded. This allows us to avoid the Palais-Smale condi-
tion. The different Conley indices of Dy, and D,, give us the critical point z,,
of fm, which converges to the first nontrivial solution. The Morse type inequality
of Conley index theory gives us the second nontrivial solution.

(e) Special attention is paid on the control of the small eigenvalues of P, (A—
B)P,. (See Theorem 2.3 and Remark 2.4.) This is a very important part in
building the uniformly bounded isolating blocks.

Now we consider the case with unbounded |G (¢, z)|. Assume
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(H4%) There exist 1 < o < 2, 0 < Boo < @oo/2 and cg, 7, Lo > 0 such that

(1 5) i(Ggo(tvz)7Z) > 06|Z|Oéoo for all ‘Z| > L007
' |G (t,2)| < er|z|P=  for all 2| > L.

THEOREM 1.3. Suppose that H satisfies (H1). Then the same conclusions
as those in Theorem 1.1 hold if we replace (H3T) by (H4T).

REMARK 1.4. (a) It is easy to see that (H4%) implies (1.3). The Palais—
Smale condition does hold under (H4%). But we do not need it in our approach.

(b) [25, Theorem 1.3] is a special case of our Theorem 1.3(a)—(d), where
B (t) and By(t) are required to be finitely degenerate and the conditions about
Goo(t, z) and Gy(t, z) are special cases of (H4%).

(c) In [15], under different conditions about G (t, z) and Gy(t, z), they got
a result similar to Theorem 1.3(a)—(d) by computing the critical groups C.(f,0)
and C,(f, 00).

This paper is organized as follows. In Section 2, we introduce the Galerkin
approximation scheme and Conley index theory. In Section 3, we construct the
isolating blocks and prove our results.

2. Conley index and Galerkin approximation

First of all, we recall some results about the Conley index. Let 7: (R™ x
R) — R” be the flow on R". Let D C R™ be a closed set and = € 9D be
a boundary point. Then z is called a strict egress (strict ingress, bounce-off,
respectively) point of D, if there are ¢,d > 0 such that for 0 < ¢t < ¢: n(x,t) ¢ D
(n(z,t) € int(D), n(x,t) ¢ D, respectively) and for 0 < —t < d: n(x,t) € int(D)
(n(z,t) ¢ D, n(z,t) ¢ D, respectively). We use D¢ (D%, Db, respectively) to
denote the set of strict egress (strict ingress, bounce-off) points of the closed
set D. Let D~ = D°U DP.

A closed set D C R™ is called an isolating block if 9D = D¢ U DU D’ and
D~ = D°U DY is closed.

Let D C R™ be a bounded isolating block under the flow 7. We define

(2.1) I(n,D)=> r¥(D, D7)t
k>0

where 7%(D, D™) = rank(Hy(D, D~)) is the rank of the k-th homology group
Hy(D, D).
Let h:R™ — R € C2. 7 is the gradient flow generated by

dx(t)
dt

= 1/ (x(1)).
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Let Dy, Dy C R™ be two bounded isolating blocks under the flow n such that
Dy C int(Ds). Using the results in [9], [10], [24], one can prove the following
theorem.

THEOREM 2.1.

(a) If 0 € Dy is the only critical point of h in Do,
I(n, Do) = I1(n, Dy).

(b) Suppose 0 is the only critical point of h in Dy and all critical points
of h in D \ Do, say {x1,...,2m}, are nondegenerate with the Morse
indices {i1,...,im} respectively. Then

> 9 +1(n, Do) = I(n, Dsc) + (1 4+ D)Q(1),
j=1
where Q(t) is a polynomial with nonnegative integer coefficients.
PROOF. (a) The conclusion comes from the fact that the Conley homotopy

index is independent of the choice of index pairs (see [24]).

(b) Obviously, there is an admissible Morse decomposition of Do, with Morse

sets {0,x1,...,2,} (see Salamon [24]). The conclusion comes directly from
the Morse type inequality for {0, z1,...,2.} (see [9], [10], [20]). We omit the
details. O

Now we focus on the Galerkin approximation. We would rather work in
an abstract framework. Let E be a seperable Hilbert space with inner product
(-, ) and norm || - ||. Assume

(A) A is a bounded selfadjoint operator with a finite dimensional kernel,
and its zero eigenvalue is isolated in the spectrum of A.

Note that the restriction Alpy(a) is invertible.
The following definition of a Galerkin approximation procedure is due to [8].

DEFINITION 2.2. Let I' = {P,, : m = 1,2,...} be a sequence of orthogonal
projections. We call I" an approzimation scheme with respect to A, if the following
properties hold:

(a) En = P, F is finite dimensional, for all n > 1,
(b) P,, — I strongly as n — oo,
(¢) [Pm,A] = PwA— AP,, — 0 in the operator norm.

For a self adjoint bounded operator T', denote T# = (TIm(T))’l, and denote
by MT(T), M—(T) and M°(T) the positive definite, negative definite and null
subspaces of T, respectively. For d > 0, we also use M (T), M (T) and M3(T)
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to denote the eigenspaces corresponding to the eigenvalues A belonging to [d, 00),
(—o0, —d] and (—d, d), respectively.
For a linear symmetric compact operator B, it is easy to show that
dimker(A — B) < o0, and
(2.2) Tm = ||(I = Pp)B|| + [|BI — Pp)|| = 0 as m — oo,
where I' = {P,, : m = 1,2,...} is an approximation scheme with respect to

A. Let Pg: E — ker(A — B) be the orthogonal projection. Obviously, Pg is
compact. Then by (2.2) and Definition 2.2(c),

(2.3) e = [|PnA— AP, ||+ 7+ (I = P)Pe||(1+||A—BJ|)) — 0 as m — oo.

THEOREM 2.3. Let B be a linear symmetric compact operator. For any fized
constant 0 < d < ||[(A — B)#||71/4, there exists m* > 0 such that for m > m*
we have

(a) dim M3, (Pn(A— B)P,,) = dimker(A— B),
(b) E, = M;(Pm(A*B)Pm)@Md_(Pm(A*B)Pm)@Mgsm (Pm(A*B)Pm);

where £, is given by (2.3), and 2e,, < min(1,d).

PROOF. Step 1. Set E° = PgE = ker(A — B). Then there exists mg > 0
such that for m > my,

(2.4) dim P,,, E° = dim E°.

For otherwise, there exist {my} such that dim P,,, E° < dim E°. This implies
that there exist {x;} C EY such that

Since dim E° < oo, passing to a subsequence if necessary, xj — x* as k — oo.
By (2.5) we have

1= ffea]l = Jim (| Pye” = Pyl < lim [Jo” — 2 =0,

a contradiction. Therefore (2.4) holds. Moreover, for any = € P, E°, there is a
unique 7 € EY such that x = P,,z. By (2.3), for m large enough,

x=Ppz=2— (I —P,)Pgx and |z|>(1—¢en)|Z|.
Therefore we have

P.(A— B)P,x = P,(A— B)P,Z = P,,(A— B)(P,, — I)P3Z,
~ Em
1P (A = B) Przl| < eml|z]] < 3=zl

m
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By (2.3), there exists mj > my such that for m > m,
4
(2.6) | Pr(A — B)Ppx|| < §6m||1:|\ for all x € P, E°.

Step 2. For m > myq, let Yy, be the orthogonal complement of P,,E? in E,,,
ie. B, =Y, ® P,EY. Then there exists mo > m; such that for m > ma,

(2.7) | Pr(A — B)Ppyl|l > 2d|ly|| for all y € Yy,,.
In fact, for all y € Y,,, and for all z € E°, we have

0= (y, Pnz) = (Pny, x) = (y, ).
By Step 1, we know that y L E°, i.e. y € Im(A — B). Moreover,

Po(A = B)Pyy = (A= Bly + (Pp — I)(A - B) Py
=(A-—B)y+ (P, —1)AP,y — (P, — I)By.

By (2.2) and Definition 2.2(c),
|(Pm, — AP, + ||(Pn —I)B|| — 0 as m — oo.

This means that there exists ma > m; such that (2.7) holds.

Step 3. There exists m* > mgy such that for m > m*, we have 2¢,, < d and
(2.8) dim MJ. (P,,(A— B)P,,) = dim P, E.

In fact, if dim M3, (Pn(A — B)P,) > dim P, E°, there must exist y # 0 and
y € Mj. (Pn(A— B)P,)NY,,. This implies that

HPm(A - B)Pmy” < 25m||y||a
[Pn(A— B)Pnyll = 2d|ly|  (by (2.7)).

We get a contradiction. If dim Mg, (Pn(A — B)P,,) < dim P,, E°, there must
exist y # 0 and y € P, E® N (M3 (Pp(A = B)Py) ® My (Pn(A — B)Pp)).
This implies that

4
1P (A = B)Pmyll < gemllyll - (by (2.6)),
HPm(A - B)Pmy” > 25m||y||a

and we get a contradiction again. Thus (2.8) holds. By (2.4) we have (a).

Step 4. For m > m™*, we have

(2.9) dim M} (P,,(A = B)P,,) & M (P(A = B)P,,) = dimY,,.
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In fact, if dim M (P, (A — B)Py,) & M (P, (A — B)P,,) > dim Y,,, there must
exist y # 0 and y € (M,] (P (A — B)Py,) ® M (P,(A — B)P,,)) N P, E°. This
implies

[P (A= B) Pyl = dllyl|,
4
1P (A = B) Pyl < gemllyll - (by (2.6)).

We get a contradicton. If dim(M [ (P, (A — B)Py,) & M, (Pn(A — B)Py)) <
dimY,,,, there must exist y € Y;;, N MJ(Pp, (A — B)P,, and y # 0. This implies

[P (A = B) Pyl = 2d]ly|| - (by (2.7)),
1P (A = B)PrY || <dljy].-

We get a contradiction again. Therefore (2.9) holds. By (2.8), (2.9) and the fact
E, =Y, @ P, E°, we have (b). O

REMARK 2.4. (a) Since A — B may not commute with P,,, how to compute
the Morse index of P,,(A — B)P,, becomes a very difficult part in applications.
Theorem 2.3 shows a way to describe the behavior of the operator P, (A— B)P,,.

(b) All eigenvalues of P, (A — B)P,, split into two parts for m large enough.
One part falls into (—oo, —d]U[d, 00) and they will stay there as m — oo. Another
part falls into (—2¢,,,2¢,,) and they will go to 0 as m — co.

(c) There is no eigenvalues of P, (A — B)P,, in (—d, —2¢,,] U [2&,,,d) and
em — 0 as m — oo.

REMARK 2.5. The idea in Theorem 2.3 and Remark 2.4 is very close to
the idea of the L-index of a compact selfadjoint operator given by M. Izydorek
in [16]. The author wants to thank the referee for pointing out this.

3. Periodic solutions of Hamiltonian systems

Let S' =R/Z, E = W/22(S',R?N). Then E is a Hilbert space with norm
|| || and inner product (-, -), and E consists of those z(¢) in L?(S*, R*) whose

Fourier series

z(t) =ag+ Z(an cos(2mnt) + by, sin(27wnt))

n=1

satisfies
oo

1
||Z||2 = |(lo|2 + 3 ;n(|an|2 + |bn|2) < o0,
where a;,b; € R2N. For a given continuous l-periodic and symmetric matrix

function B(t), we define

1 1
(3.1) (Azx,y) :/0 (=Jz,y)dt, <Bx,y>:/0 (B(t)x,y)dt
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on E. Then A satisfies (A) in Section 2 with ker A = R* | and B is a linear
symmetric compact operator ([21]). For B(t), by [10], [19], [21], we can define its
Maslov-type index as a pair of integers (i(B),n(B)) € Z x {0,...,2N}. Using
the Floquet theory, we have

n(B) = dimker(A — B).

Let By(t) and Boo(t) be the matrix functions in (1.2) and (1.3) with the
Maslov-type index (ig,no) and (io0, Moo ), respectively. Let By and Bo, be oper-
ators, defined by (3.1), corresponding to By(t) and By (t). Then we have

ng = dimker(A — By), ne = dimker(4A — By).

Let ... <A, <A <0< A\ <)X <... be the eigenvalues of A — By, and
Let {e;} and {e;} be the eigenvectors of A— By corresponding to {A}} and {A;},
respectively. For m > 0, set

Eo :keI'(A—Bo),
E,, = Ey ®span{ey,...,en} ®span{e),... e}

and let P, be the orthogonal projection from E to F,,. Then I'y = {P,, : m =
1,2,...} is an approximation scheme with respect to A. Moreover,

(A — Bo)Pm = Pm(A - Bo) for all m > 0.
The following result was proved in [14].

THEOREM 3.1 ([14]). For any continuous 1-periodic and symmetric matriz
function B(t) with the Maslov-type index (i, Noo), there exists a m* > 0 such
that for m > m* we have

dim M} (P (A — B)Py) =m +ig — s + Mo — Mo,
(3.2) dim M (P, (A — B)Pp) =m —ig + i,
dim MY(P,,(A — B)P,,) = N,

where d = ||(A—B)#||=1/4, and B is the operator, defined by (3.1), corresponding
to B(t).

For any z € E, we define
1 1
go(z) = / Go(t,z)dt, goo(z) = / Go(t, 2) dt,
0 0

F(2) = 3 (A~ Bo)2,2) — g(2) = 5{(A — Bo)z,2) — go2).

Then (H1) implies that f(z) € C?(E,R). Looking for 1-periodic solutions of
(1.1) is equivalent to looking for the critical points of f (see [23]).
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For m> 1, let f,, be the restriction of f to the subspace E,,. Then
(3.3) f1.(2) = (A= By)z — Pngy(z) forall z € E,,.

LEMMA 3.2. Assume (H1), (1.3) and (H2%) (or (H27)). Then there exist
my > 0 and rq > 0 independent of m such that for m > mgy, 0 is the only critical
point of fn, inside Q@ ={z € E,, : ||z|| < ro}.

PROOF. Suppose the conclusion is not true. Then for any k > 1, there exists
2k € By, such that

(3.4) Jon(z6) =0, 2, #0, and 2z — 0 ask — oo.

Without lossing generality, suppose ||zx|| < 1 for & > 1. By the special structure
of To={Pn:m=1,2,...},

Em = ker(A - Bo) &b (Im(A - Bo) N Em)

Write z, = 2z + yi € ker(A — By) @ (Im(A — By) N E,y,,, ). Then 2, — 0, y, — 0
as k — oo, and by (3.3)

(3.5) (A — Bo)yr = Pmgy(zr).
By (1.3) and (1.4), we have a7 > 0 such that
|Gy (t,2)] < arz]|? for all (t,2) € [0,1] x R*Y.
This implies that there exists as > 0 such that
(3.6) lgb(2)|| < azlz||® for all z € E.
By (3.5) and (3.6), we have ag > 0 such that
lyell < as(llzxll + llyxl)*.
This implies that for k large enough
(3.7) ol <zl Nlell < as2%[fog ).
By (3.5)—(3.7),
(3.8) [g0(2k), 2)| = (g0 (1), yk)| < azllzell®llye]] < apas2®® ||y
On the other hand, for Ly > 0 given in (H2%), denote
Q={tc0,1]:]z(t)] < Lo}, QF=1[0,1]\ Q.

Then for ag given in (H2%),

1
ag| 2] > /O |z |20 dt > /QL 2 (t) 20 dt > L2*°meas(Q1).
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This implies
(3.9 meas(QF) < as| 2?0,

where a5 > 0. By (H2%), we have
1
(3.10) |<gs<zk>7z;f>:\ / i(G'o(t,zk),zk)dt]
0
z’/i(ag(t,zk),zk)dt‘—’/ Gl (2, 20) | 26 dt
Q QL
> / 1] (£)] 0 dt / Gt 22 [y dt
Q QL
- [ 1@t )l .

Using the same argument as (3.6) and (3.8), we have

1
iy [ (Gt lnlde < [ ol d
Q 0

1 1/2 1 1/2
<a1</ ‘Zk|2ﬁo dt) (/ |yk|2dt>
0 0

<agllze ™yl < arllzkl?*.

Notice that there exist A1, A2 > 0 such that for any z € ker(A — By),
(3.12) Allz]] < |z(t)] < Ag||lz]|  for all ¢ € ]0,1].
By (1.3) and the fact that o > 2, we have

|Gy (t, 2)| < ag + ag|z|®, for all (t,2) € [0,1] x R?Y,

Combining this with (3.7), (3.9) and (3.12) yields
(3.13) / G (8, 2 e d < / ag\xk|dt—|—/ o) 26|04 | dt
QL QL oL

1
§a8)\2||xk||meas(QJ‘)+/ ag|zk|*° |z | dt
0

|20¢0+1 |a0+1 |a0+1.

<ageas||zk| + aol|zr] < aylwg

By (3.7) and (3.12), we have

/(zk,xk)dt:/ |xk|2dt+/(yk,xk)dt
Q Q Q

1
> Ao Pmeas(2) ~ [l
0

> Al [*meas(2) — arzfJax ]+
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Since Bp+1 > 2 and ||zx|| — 0 as k — oo, by (3.9) there exists k* > 0 such that
for k > k*

meas(Q1) < 1 [|z]|Po~t < )\—%
-2’ ~ 4daqo
This implies that
)\2
(3.14) /(Zk,xk)dt > jllxk||2~
Q

Since ag > 1, we have

1/ao (ao—1)/co
/(Zk7xk) dt < (/ | 2| dt> </ |$k|ao/(aofl) dt)
Q Q Q
1/0(()
<an( [lapmd) ol

Combing this with (3.14), we have

(3.15) /ﬁ%wwﬁzaMMA%.
Q
By (3.8), (3.10), (3.11), (3.13) and (3.15), we have
(3.16) crana| oy ]| < azaz2 (|2 |27 + ar ekl + any |yt

Since all the constants ¢y, a1,...,a14 are independent of k, ag < 26y and x —
0 as k — oo, we get a contradiction from (3.16). Therefore the conclusion
of Lemma 3.2 is true. O

For m > 1, let 7, be the gradient flow generated by

d
(3.17) d% = —(A— Bg)z+ Pugh(z) on En.

LEMMA 3.3. Assume (H1), (1.3) and (H2%). Then there exists mg > 0 such
that for m > ma, there exists an isolating block D,,, of n,, satisfying the following
properties

(a) 0 is the only critical point of fn, inside Dy,
(b) I(n, Dy) = t™ if (H2™) holds,
(c) I(n, Dy,) = t™*m0 4f (H2T) holds.

ProOOF. By Lemma 3.2, for m > my, f,, has only one critical point 0 in-
side @, where Q@ = {z € E,, : ||z|| <7o}. Set

Vi =1{y™ € PuM*(A~ Bo) : ly*| < rs},
W ={xec M°(A—By):|z|] <rw}
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We want to show that there are r,r_,r, > 0, which do not depend on m, such
that D,, = V;& x V.- x W C Q is an isolating block of the gradient flow 7,
generated by (3.17). Denote

pr = inf [y (A= Boy®)l, y* €M (A~ By),
(3.18) ly=l=1

p = min(p4,p-) > 0.
For z= 2"+ 27 +2°€0V.F x V- x W, by (3.6) and (3.17),

(3.19) <fl“:,z+>

t=0 = _<(A - BO)Z+7 Z+> + <96(2)7 Z+>

< —pllzF |7 + azllz]| 7127

as
— ol (||z+|| - () |z||ﬁ°)
p
a2 Bo
S —pry (e — N (ry +r-+7w)
1
< —pry (7’+ - <(;2)3’B°7"5;°> < —pry <2T+) <0,

3.20 ryL =7r_ S Tw ry = 2 as 3[3071[30.
( + ) + p w

provided

Similarly, for z =2+t + 27 + 2 € V,F x V- x W
dz

3.21 —, 2"

a2y (G)

provided (3.20) holds.

For 2 =2t +27+2° € VI x Vo x OW, denote Q = {t € [0,1] : |2(¢)| < Lo},
Qt =101\ Q.

Similar to the proof of (3.9), we have

L = —<(A — Bo)Z_,Z_> + <96('Z>7z_>

> plle”|? = az|ll|® (|27 = pr-(r—/2) > 0,

(3.22) meas(Q1) < as||z[>*°.

Case 1. (H2%) holds. By (3.20) and the same arguments as those in the
proof (3.10), (3.11), (3.13) and (3.15), we have

(3.23) <Zl;,z0> = /()1(G6(t,z),zo) dt

t=0

_ /(Gg(t,z),z)—/(Gg(t,z)7z++z_)dt
Q Q
+ [ (Gita) ) ar
QL
1
z/clm% dt—/ |Go(t,2)||zF + 27| dt
Q 0



102 G. FEI

—/ G (¢, 2)12°) dt
QL
> by 20170 — by} 2025 — b0+

1
:’I“go (b1 — bQT?UBO_ao — bg’l“w) > 5()17”3}0 >0
provided
(3.24) by > 2(b2riﬁo—a0 + b3ry).

Notice that all constants ag,b1,b2,b3 > 0 in (3.20) and (3.24) are independent
of m. Since By > 1 and «ag < 20y, we can choose r4,r_,r, > 0 such that (3.20)
and (3.24) holds, and D,, C int(Q). By (3.19), (3.21) and (3.23), D,, is an
isolating block with D, =V, x 9V, x W UV,} x V.~ x OW. Therefore

m

(3.25) I(Nm, D) = 4dim (P M~ (A=Bo)®M°(A=Bo)) _ ym+no_
Case 2. (H27) holds. Using the same arguments as (3.23), we have

dz
()

_ /1(Gg(t,z),z0)dt
0

t=0

IN

1
—/c1|z\“° dt+/ (Gl (t, )|+ + 2~ | dt
Q 0
O RCACRIIET
QL

1
< — 7120 (by — bor2Pom0 _pap,) < —5hiry? <0

provided (3.24) holds. Therefore we can choose r4,r_,r, > 0 such that D,, C Q
is an islating block with D, = V,;© x 9V, x W. Then we have

(3.26) I(1hn, D) = ¢4 P M7(A=Bo)) — ym. 0

LEMMA 3.4. Assume (H1) and (H3%). Then there exists mg > 0 such that,
for m > mg, there exists an isolating block Doom of N satisfying the following
properties:

(a) Doom is uniformly bounded by a constant independent of m,
(b) I(Nm, Doom) = t™ 0t if (H37) holds,
(¢) I(Nm, Doom) = tM~ioFiectno if (H3F) holds.

ProOF. By Theorem 3.1 and Theorem 2.3, there exists m* > 0 such that
for m > m* and d = ||(A — Bso)#||71/4, the relation (3.2) holds and

En = M;_(Pm(A - BOO)Pm) e9]\4¢1_(Pm(14_ BOO)Pm) ® Mgam (Pm(A - BOO)Pm)7
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where &, is given by (2.3) for B = By, and &, — 0 as m — oo. Denote

Upm = {y* € My (Po(A = Boo)Pn) : |y < Re},
Wo ={z € MY. (Pn(A— Bx)Py): ||lz]| € Ru}-
We want to show that there are Ry, R_, R,, > 0, which do not depend on m,

such that Doy = U} x U, x W is an isolating block of the gradient 7,,
generated by (3.17), which is the same as

(3.27) % = —Ppn(A— By)Pnz+ Ppng. (2) on E,,.

By (H3%), there exist M > 0 such that

(3.28) |G (t,2)] < M for all (t,2) € [0,1] x R?V.

This implies

(3.29) lghe(2)|| < M for all z € E.
For A\g > 2, let

Ao M
(3.30) R, =R_= Od > 0.

For z = 2zt + 27 + 20 € OU} x U, x W, by (3.27), (3.29) and (3.30),

(3.31) <‘j;, z+> = —(Pp(A = Boo)Przt, 2%) + (gl (2), 27)

t=0
< —d||zt | + M||2"|| = —dR} + MR,
—AM? + Ao M?
d
Similarly, for z = 2T + 27 + 20 € U, x 9U,,, x W,
AZM? — N\ M2

(3.32) <‘Z,z>
d

Notice that there exist A3 > 0, A4 > 0 such that for any x € ker(A — By)

< < 0.

0 = 7<Pm(A - Boo)sziazi> + <g(/>o(z),zi>

>dR®> — MR_ > > 0.
(3.33) Asllz|| < |z(t)] < Aaljz|| for all ¢t € [0, 1].

For any 2° € M3, (Pp(A — Bo)Pp,), according to Step 2 in the proof of Theo-
rem 2.3, we can write 2 =y + P,z € E,, = Y,, ® Py, (ker(A — By,)). By (2.6)
and (2.7), we have

[P (A — BOO)PmZOH < 25m||zo||a
| P (A — BOO)PmZOH > [P (A = Boo) Pyl — [[Prn(A — Boo) Pt ||

4 4
> 24yl — Seml| Pzl 2 2dlyll - Semll2°).
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This implies that
be
34 g i 0
a3y < (5210,
el 2 1Pl > 1200 loll = (1= 222 )20,
- - 3d

(3.35)
1220 = [Pzl > Nlzll = (I = Pr) Ppzll > (1 —em)].

Since €, — 0 as m — 00, there exists m} > m* such that for m > mfj,

1 9Em 1
3.36 l—en>=-, 1- > 2.
(3.36) fm =5 3d =2

For m > m} and 2% € OW,, set
A
Ay ={t:]2°(t)| < fHZOH}, Ay = {t:[2°(t)] = 4\a|2°II},
(3.37) A=[0,1]\ (A1 UA).
By (3.33)—(3.36), we have

[ 1201a < 22 (),

1

[t = [ty Pasldi= [ ety (1= Pajelds
Aq A1 Ay

> /A ()| dt — [yl — (I — Po) P2

5m,

> Aglz|[meas(Ar) — |2 — 2em]|2°]
A
> 572" lmeas(Ay) - <35d +2>{—:m||zo||.
Therefore
(3.38) (A < (242 b
. meas — | = Em = 04Em -
Y= \3d !

By (3.33)—(3.36), we also have

/ 129 dt > 40g]|2°|meas(Ay),
Ao

/\z°|dt§/ @ty — (I — Py)a|dt
AQ AQ

g/ 2(6) dt + |yl + 1T = Pr)z]

Ao

< Agf|z[meas(Az) + [yl + [[(I — Prn) Pa|[[1]]

OEm
< 2)04]|2Y|meas(Ag) + (3Ed + 25m) 112°].
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This implies

1 5
(3.39) meas(As) < ™ (3d + 2) Em = bsEm.

For 2zt + 2~ e US xU,,, 3>1and k > 0, let
(3.40) Qe ={te0,1]:[z"+27| <k}, Q =1[0,1]\ Q.
Then we have
1
/ |zt 427 1Pdt > / |2t 4 27|P dt > kEPmeas(Qf),
0 QF
1
[ 1P <callat 4271 < oy + R,
0

where cg is the embedding constant for £ C LA(S*, R?Y). This implies

chlRy +R_|°

(3.41) meas(Q) < 5

Case 1. (H31) holds, i.e. for |z| > Lo,

C3

(Ggo(t7 Z)? Z) > Wﬂ |G:>o(t7 Z)Hz| < 04‘(G/oo(t7 Z),Z)‘
Choose
(3.42) R, — At 1),
A3

with k > 0 being determined later.
For z =2t +27 +20 € U}l x U, x OW,, Let A and Q be given by (3.37)
and (3.40). For any t € ANy and k > Lo /(2¢4), we have

(3.43) l2(t)] > [2°(8)] — |2 (8) + 2~ (t)| > %HZOH —k
- %Rw ~ k= desk > 2eak > Lo,
(3.44) 12(8)] < |2008)] + |2 + 27| < 4ha|l20] + K
_ (16A4(ic4 1, 1)k — bek.
3

By (3.37)—(3.41), we can choose kg > Loo/(2¢4) and m3 > mj such that for
k> ko and m > mj3,

(3.45) meas(Q; NA) > 1/2.



106 G. FEI

Now by (H3T), (3.27), (3.28) and (3.37)—(3.45), we have

(3.46) <f;,z0> )

1
:/ (G'(t, 2), %) dt — (Po(A — By) Py, 2°)
t=0 0
> / (Ggo(t,z),zo)dt—/ M2 dt — 2e,,]|2°|
A A1UAS

z/ (G’Oo(t,z),zo)dt—/ M2 dt
ANy

ANQE
— M||2°||(meas(A; U Ap)) /2 — 2, [12°)12
> [ (Gt 2) - HGL ) de
ANQ
— M4),||2°||meas(QF)
— M (ba + bs)"?e3/?(|2°]| — 2eml|2°|I?

> / s (1 kc‘*)dt—bmwmeas(a,g)
A

||

N W
— bgRyel/? — 2¢,, R?,
1
> (bcl?;)‘s : §meaS(A N Q) — by Rymeas(Q)
6
- bnge,ln/2 - 2€mRﬁ,
b b
> k% - kﬁli)l — bgRyel/? — 26, R?,
b
> % — bgli’/we,lﬂ/2 — 25mR12U
provided
(347) B=0+2 and k> 2b10/b9 + ko.

In the above arguments, all the constants M, kg, b; are independent of m. There-
fore Ry, R_ and R, are independent of m. Since &,, — 0 as m — oo, there
exists ms > m3 such that for m > mg

dz
()
Combining this with (3.31) and (3.32) yields that Deoy = Ut X U, X Wy, is

an isolating block with DL, = Ut x OU,, X W UUY x U, X OWoo. Deop is
uniformly bounded by Ry + R_ 4+ R,,, which is independent of m. Moreover, by

bo . bo
> = bgR,el/?2 —2¢,R: > — > 0.
T2k hwEan T 2l = g 2

t

Theorem 3.1, we have

I(Dm, Doom) = Aim(My (P (A= Boo) Pm) &My, (Pm(A=Boo)Prm)) _ gm—io+ico+1es
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Case 2. (H37) holds. By using similar arguments as in the proof of Case 1, we
can choose Ry, as in (3.42) and show that for 2 = 2t +2742° € U} x U, x OW 4,

dz 20 - Lo 2). 29 dt — — 29,20
< ’ >t_0 JRCACS RS CAVE ST
< / (Gt 2), 2) + k|G, 2))) dt
ANQy

+ b7 Rymeas(QF) + bsRyel/? + 26, R,
— by /(2k%) + by Ryel/? + 26,, R2 < —bg/(4k°) < 0

IN

provided m > mg. Therefore Du,, is an isolating block with D, = U} x
oU,, x Wy, and

I(0ns Doo) = t4mMg (P (A=B)Pm) _ ym—ioios
{Doom} are uniformly bounded by Ry + R_ + R,,, which is independent of m.[]

REMARK 3.5. (a) If we increase the constants Ag in (3.30) and & in (3.47),
we will get bigger R, R_ and R,,. This allows us to choose the size of Do, as
large as we want.

(b) Since A — By, does not commute with P,,, we have to control P, (A —
B.o) Py, over the possible resonance part M3, (Pp,(A— Boo)Py,). All the special
arguments in the proof of Lemma 3.4 are used to make sure that R, R_ and
R,, are independent of m.

PrOOF OF THEOREM 1.1. Part 1. Let m* > 0 be large enough such that
for m > m*, the conclusions in Lemmas 3.2-3.4 hold. Let 7,, be the gradient
flow of f,, generated by (3.17). Then we have isolating blocks D,, and Dsgp,.
By Remark 3.5(a), we can adjust the size of Dy, such that D, C int(Deom).

(a) (H2T) and (H3™%) hold and ip + ng # foo + Noo-

In this case, Lemmas 3.3 and 3.4 implies that

I(nm’ Dm) = tm+no # I(nﬂ’u Doom) = tm_i0+ioo+noo.

By Theorem 2.1(a), there is a critical point z,, of fi,, in Do \ Dy By Lemma 3.2
and the fact z,, € Deom, we have 1o < ||zpm|| < Ry + R— 4+ Ry, ie. {2} are
bounded. By standard arguments and passing to a subsequence if necessary, z,,
converges to a critical point z* of f. Moreover,

ro < ||2*]| < R+ + R— + Ry

This completes the proof of (a). Cases (b)-(d) follow the same arguments as (a).

Part 2. We only prove (e). Cases (f)—(h) follow the same arguments as (e).
Notice that the conditions of (e) implies the conditions of (a). According to the
proof of Lemma 3.3, we can have D,,, C int(Q), where Q = {z € E,,, : ||z|| < ro}.
By Part 1, for m > m*, there is a cirtical point z* of f with [|z*| > ro.
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Let B*(t) = H"(t,z*(t)) and B* be the operator, defined by (3.1), corre-
sponding to B*(¢). Let (i*,n*) be the Maslov-type index of B*(t). It is easy to
show that

1f"(z) =(A=B")[| =0 as|z—z"] —0.
Let d* = ||[(A — B*)#||~! /4. Then there exists r > 0 such that

* 1 *
(349 IS - (A- B < 5,
forall z € Q. (2*) = {2z € E: ||z — z*|*> < 4r}.
This implies that
(3.49) dim M*(f},(2)) > dim Mz (P (A — B*)P),

for all z € Q,(2*) N Ep,. For d* = ||[(A— B*)#||~1/4, there exists m} > m* such
that for m > m7, the conclusions of Theorems 3.1 and 2.3 hold. Since ||z*| > ro,
we can choose r > 0 small enough such that

(3.50) Qr(z")N Dy, = ¢ for m > mj.
By Remark 3.5(a), we can adjust the size of Dy, such that
Qr(z*)NE, Cint(Deoyn) for m > mi > mj.

If there exists another critical point of f in @,.(z*), we already have two nontrivial
solutions of (1.1) and the proof is complete. Suppose z* is the only critical point
of fin Q,(z*). For m > m}, Set

Co(r) ={2 € Ep:7 < |z — Pnz*|? <21},
Vin(r) ={2 € B, : ||z — Pp2*||? < r}.

Then there exist mj > mj such that for m > mj, we have

(3.51) Con(r) C Q2" )N Ey, Viu(r) CQp(2") N E,y,,
(3.52) Ifl. ()| > p forall z € Cp(r),

where p > 0 is a constant independent of m.

For otherwise, there exists 2z,,, € Cyy,,, (7) such that f;, (zm,) — 0as k — oo,
Since {z,, } are bounded, by standard arguments and passing to a subsequence
if necessary, z,,, converges to a critical point z** of f, z** € Q,(z*) and ||z** —
2*||? > r. This is a contradiction to the assumption that 2* is the only critical
point of f in @, (z*). Thus (3.52) holds.

Let a € E,, with ||a]| < p/34. Define

gm(2) = fm(2) + (a, 2 — Ppz*Vh(||z — Pz ||?) on E,,,



MULTIPLE PERIODIC SOLUTIONS 109

where h:[0,00) — [0, 1] is a smooth function satisfies

|h/(s)| < 4/r for all s € [0,00),
h(s)=0 fors>2r, h(s)=1 fors<3r/2.
Then we have

(3.53) g (2)=fl(2)+a, gl(z)=fl(z) forallzeV,(r).

(3:54) llgm ()l > 1£7]l = llall = 2]z = Prz*|*lall4/r > p/2 > 0
for all z € C, (7).

(3.55) gm(2) = fm(2) for all ||z — P, z*|> > 2r.

By Sard’s Lemma, we can choose the vector a in such a way that g,,(z) has only
finite number of nondegenerate critical points in V,,(r), say {z1,...,2,}. By
(3.49), (3.51), (3.53) and Theorem 3.1, we have

(3.56) dim M~ (gy,(x;)) = dim M~ (f,,(x;)) € [m —io +i*,m —ig +i* +n*],

for j = 1,...,n. Now (3.50), (3.51) and (3.55) imply that Dy, and D,, are
also isolating blocks of the gradient flow ,, for g,, generated by

d

£ =—g,,(2) on E,,.
If {0,21,...,z,} are all critical points of g, in Dogm, by Theorem 2.1(b) we
have

(357) Y M nD) 4 (w0, D) = I, Doom) + (1 +1)Q(E).

j=1
Notice that

I('/va Dm) = I(nma Dm) = thrno,

I(ﬂ-rru Doom) = I(Um, Doom) - tm_io+ioo+noc .
By (3.56) and (3.57), we must have
m— g+ ico + Noo € [M—ig+i*,m—ig+4i" +n"],

m+ng+1€€lm—ig+i*,m—ig+i"+n*], or

m+ng—1€[m—ig+i*,m—ig+i" +n"].
This imply that |ig + 19 — teo — Moo < n*+ 1 < 2N 4 1. This contradicts to the
conditions of (e). Therefore g,, must have at least one critical point y,, inside

Do, other than {0, z1,...,2,}. By (3.54) and (3.55), y., is also a critical point
of fn,, and

ro < ||ym|| §R++R—+Rw> Hym_PmZ*||2 > 2r.
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By standard arguments and passing to a subsequence if necessary, y,, converges
to a critical point y* of f. Moreover,

ly* = 21 > 27, [ly*[| > 7o,
i.e. y* is another nontrivial 1-periodic solution of (1.1). O
PrOOF OF THEOREM 1.3. By Theorems 3.1 and 2.3, there exists m* > 0
such that for m > m* and d = ||(A — Buo)*| ! /4, the relation (3.2) holds and
Em = MdJr(Pm(A - BOO)Pm) ® M(;(Pm(A - BOO)Pm) ® Mgem (Pm(A - BOO)Pm)v
where €,, is given by (2.3) for B = By, and &, — 0 as m — co. Denote

U ={y* € Mz (Po(A = Bo)P) : |y*|| < Ru},
Wo ={z € MY. (Pn(A— Bx)Py) : [|lz]| € Ru}-
According to the proof of Theorem 1.1, all we need to do is to show that there are

Ri,R_, R, > 0, which do not depend on m, such that Do, = U5, x U, x W,
is an isolating block of the gradient 7,, generated by

% = —Ppn(A— By)Pnz+ Ppng. (2) on E,,.

In the following, {a;} are suitable positive constants independent of m. By
(H4%), we have
(3.58) g%l < arllz)|P= for |[z[| > Leo.

For z =2zt 427 +2Y € 90U}, x U,,, x W,

<dz’z+> = —<Pm(A—BOO)sz+,Z+>—|—<g;n(z),z+>
dt ‘=0

< —d|lzH[P + ar |27 ||z < —dRY + 37~ a1 Ry~ Ry
= —dRy(R; —asRP>) < —dR% /2 <0,

provided
(3.59) Lo <R,=R_<R,, R,=2aR’.
Similarly, for z = 2T + 27 +2° € U}t x 90U, x W,
dz _
()

provided (3.59) holds.
Case 1. (H4") holds. Then we have

> d|[z" | = anll2l|*< =7 | > dR% /2> 0
t=0

(3.60) (G (t,2),2) > as|z|* —ay for all (¢, 2) € [0,1] x R?V,
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For z = 2T + 27 +2° € U} x U,,, x OW,, (3.33)—(3.39) still hold. Recall that
a={repa: 2ol <10l < Rl at = paa.

By (3.37)—(3.39), there exists mj > m* such that for m > mj,

meas(AT) < (by +bs)em, meas(A) > 1/2.
Notice that (3.59) implies [[2* + 27| < as)|2°||%>~. We have

e = [ 0Pt )0
A A

> (A3/4)]12°|Pmeas(A) — ag|| 2| 7=+

> (Na/8)[12°17 — ag|2°]17=*1 > (A3/16)|12°||?,
provided
(3.61) Ry > (16ag/A3)RP=.

On the other hand, if ay, > 1,

1/
/(z,zo)dt§a7</ FES dt) 129
A A

If aso = 1, we have
/(z,zo) dt < (/ z|dt>4)\4||zo.
A A

Therefore for oo > 1,

(3.62) / |2|%= dt > ag||2°]|*==.
A

Now, by (3.58)-(3.62), we have

@ZO _ L 2). 20 di — _ L0 .0
363 (G2) = [ (Gt b= (A~ BP0

t=0

1
> / as|2|* dt — ay — 2] 7= |2 + 27| - 2em 1207
0

Z/a3|z\°‘°° dt—|—/ as|z|®= dt — ay — agR2P> — 2¢,, R?,
A AL

> azagl|2°]|>= — ayo]z]|*>= (measA+)1/2

—ay — agR?P>~ — 2¢,,R?
> asagRe> — agR*P~ — ay — a; RO~¢e/? — 2¢,,R?,
> (azag/2)RE> — aj  RE=el/? — 2¢, R?

m

provided

(364) a3a8Ri°° > Q(GQR?UB‘X’ + a4).
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Since S < 1 and an > 20, there exist Ry ,R_ and R, such that (3.59),
(3.61) and (3.64) hold. Moreover, R4 ,R_ and R,, are independent of m. Since
em — 0 as m — oo, by (3.63), there exists m3 > m7 such that for m > m3,

4 o > (2398 ) pase .
dt R R

This implies that Deoy, = Ul x U, x W, is an isolating block with

D, =Ul x0U, x We UUE x U,, x OW.

Moreover, by Theorem 3.1, we have

I(Nms Doom) = tdim(Md’(Pm(Ame)Pm)eaMgsm(Pm(AfBOQ)Pm)) — gm—iotico e

Case 2. (H47) holds. Similar to Case 1, we can choose Ri,R_ and R,
independent of m such that Do, = U} x U, X W, is an isolating block with

Dz, =Ub x0U, x Wy,
Iy Doop) = $9mMG (Pr(A=B)Pm) _ ym—ioico
We omit the details of this part. The proof is complete. O
EXAMPLE 3.6. Let H(t,z) € C2([0,1] x R2¥ R) be 1-periodic in ¢ such that
H(t,z) = —1+7(z,2) + |2|* for |z] <1,
H(t,z) =7 — 2arctan(|z|?) — 7(z,2) for |z| > 100.
Then By(t) = 2mlan, Boo(t) = —2wlon and
Goo(t,2) =7 — 2arctan(|z[?), Go(t,2z) = =1+ |2|*.
By direct computation, we have the Maslov-type indices
(i0,m0) = (N,2N), (ioo,Noo) = (—N,2N).

(a) It is easy to see that the Palais—Smale condition fails at level ¢ = 0.
(b) One can easily verify that the strong resonance condition holds, i.e.

Goo(t,2) = 0, G (t,z) =0 as|z| — oo.
Notice that fol H(t,0)dt < 0 and
foo + Moo = N € [N,?)N] = [io,io —‘rno].

If we apply the strong resonance results [8], [14] here, we can not get any con-
clusion.
(c) By direct computation, Go(t,z) satisfies (H2") and G (t,2) satisfies
(H37).
ig+ng —leo = 4N > 2N + 1.
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Theorem 1.1(f) implies that the system (1.1) possesses at least two nontrivial

1-periodic solutions. It seems that this example can not be solved by previous

results in the references.
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