
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 23, 2004, 89–114

MULTIPLE PERIODIC SOLUTIONS
OF ASYMPTOTICALLY LINEAR HAMILTONIAN SYSTEMS

VIA CONLEY INDEX THEORY

Guihua Fei

Abstract. In this paper we study the existence of periodic solutions
of asymptotically linear Hamiltonian systems which may not satisfy the

Palais-Smale condition. By using the Conley index theory and the Galerkin

approximation methods, we establish the existence of at least two nontrivial
periodic solutions for the corresponding systems.

1. Introduction

In this paper we study the following Hamiltonian system

(1.1) ż = JH ′(t, z)

where H ′(t, z) denotes the gradient of H(t, z) with respect to the z variable,
J =

(
0 −IN

IN 0

)
is the standard 2N × 2N symplectic matrix, and N is a positive

integer. Denote by (x, y) and |x| the usual inner product and norm in R2N ,
respectively. We assume the system (1.1) is asymptotically linear both at the
origin and at infinity, i.e.

|H ′(t, z)−B0(t)z| = o(|z|), as |z| → 0,(1.2)

|H ′(t, z)−B∞(t)z| = o(|z|), as |z| → ∞,(1.3)
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where B0(t) and B∞(t) are 2N × 2N symmetric matrices, continuous and 1-
periodic in t. Obviously, 0 is a trivial solution. We are interested in the nontrivial
1-periodic solutions.

The existence of periodic solutions of asymptotically linear Hamiltonian sys-
tems was first studied by H. Amann and E. Zehnder ([3], [4]). They considered
the case that B0(t) and B∞(t) are constant matrices and B∞(t) is nondegener-
ate. Later, for nonconstant matrices B0(t) and B∞(t), C. Conley and E. Zehnder
in [10] studied the problem with nondegenerate B0(t) and B∞(t). After then,
many works have been done about this problem (see [1], [5], [6], [8], [11]–[15],
[18]–[21], [25]–[27]. B0(t) and B∞(t) are allowed to be degenerate and non-
constant, and the Landesman–Lazer type condition and the strong resonance
condition are often used (see [8], [14]). Since the corresponding functional is
strongly indefinite, many variational methods have been developed to handle it
([2], [7], [17], [22], [23]).

The goal of this paper is to establish the existence of multiple periodic so-
lutions of the system (1.1). We combine Conley index theory with the Galerkin
approximation procedure to show that the system (1.1) possesses at least two
nontrivial 1-periodic solutions if the “twist” between the origin and the infinity
is large enough. From now on, denote

G∞(t, z) = H(t, z)− 1
2
(B∞(t)z, z),

G0(t, z) = H(t, z)− 1
2
(B0(t)z, z).

We assume the following conditions for H.

(H1) H ∈ C2([0, 1]× R2N , R) is a 1-periodic function in t, and satisfies

|H ′′(t, z)| ≤ a1|z|s + a2, for all (t, z) ∈ R× R2N , where s ∈ (1,∞), a1, a2 > 0.

(H2±) There exist 2 < α0 < 2β0 and c1, c2, L0 > 0 such that

(1.4)
±(G′0(t, z), z) ≥ c1|z|α0 for all |z| ≤ L0,

|G′0(t, z)| ≤ c2|z|β0 for all |z| ≤ L0.

(H3±) There exist c3, c4, c5 > 0, L∞ > 0 and δ > 0 such that

±(G′∞(t, z), z) ≥ c3

|z|δ
|G′∞(t, z)| ≤ c5 for all |z| ≥ L∞,

|G′∞(t, z)||z| ≤ c4|(G′∞(t, z), z)| for all |z| ≥ L∞.

According to [10], [19], [21], for a given continuous 1-periodic and symmetric
matrix function B(t), one can assign a pair of integers (i, n) ∈ Z × {0, . . . , 2N}
to it, which is called the Maslov-type index of B(t). Let (i0, n0) and (i∞, n∞)
be the Maslov-type indices of B0(t) and B∞(t), respectively. Our first result
reads as:
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Theorem 1.1. Suppose that H satisfies (H1). Then the system (1.1) pos-
sesses a nontrivial 1-periodic solution if one of the following four cases occurs:

(a) (H2+) and (H3+) hold, i∞ + n∞ 6= i0 + n0,
(b) (H2+) and (H3−) hold, i∞ 6= i0 + n0,
(c) (H2−) and (H3+) hold, i∞ + n∞ 6= i0,
(d) (H2−) and (H3−) hold, i∞ 6= i0.

Moreover, the system (1.1) possesses at least two nontrivial 1-periodic solutions
if one of the following four cases occurs:

(e) (H2+) and (H3+) hold, |i∞ + n∞ − i0 − n0| > 2N + 1,
(f) (H2+) and (H3−) hold, |i∞ − i0 − n0| > 2N + 1,
(g) (H2−) and (H3+) hold, |i∞ + n∞ − i0| > 2N + 1,
(h) (H2−) and (H3−) hold, |i∞ − i0| > 2N + 1.

Remark 1.2. (a) It is easy to show that (H2±) and (H3±) imply (1.2) and
(1.3), respectively. Under (H3±), the Palais–Smale condition may not hold and
the strong resonance method ([8], [14]) may not work here, too. See Example 3.6
for more details.

(b) Conditions (b) and (c) of Theorem 1.1 include a special case that B0(t) =
B∞(t), i.e. the system (1.1) may be resonance at 0 and at ∞ with the same
asymptotical matrix. As far as I know, this case has been studied only in [14],
[15], [25], where the Palais–Smale condition is always required.

(c) In order to get the second nontrivial solution, one usually assumes that the
first obtained one is nondegenerate (see [18]). Here in (e)–(h), we do not require
any condition on the first obtained solution. Conditions (e)–(h) of Theorem 1.1
are a kind of generalization of the corresponding results in [19], [20], where B∞(t)
is assumed to be nondegenerate.

(d) To prove Theorem 1.1, we first apply the Galerkin approximation pro-
cedure to consider functions {fm} defined on finite dimensional spaces {Em}.
Then we construct the isolating blocks D∞m at ∞ and Dm at 0 in a way that
{D∞m} are uniformly bounded. This allows us to avoid the Palais–Smale condi-
tion. The different Conley indices of D∞m and Dm give us the critical point zm

of fm, which converges to the first nontrivial solution. The Morse type inequality
of Conley index theory gives us the second nontrivial solution.

(e) Special attention is paid on the control of the small eigenvalues of Pn(A−
B)Pn. (See Theorem 2.3 and Remark 2.4.) This is a very important part in
building the uniformly bounded isolating blocks.

Now we consider the case with unbounded |G′∞(t, z)|. Assume
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(H4±) There exist 1 ≤ α∞ < 2, 0 < β∞ < α∞/2 and c6, c7, L∞ > 0 such that

(1.5)
±(G′∞(t, z), z) ≥ c6|z|α∞ for all |z| ≥ L∞,

|G′∞(t, z)| ≤ c7|z|β∞ for all |z| ≥ L∞.

Theorem 1.3. Suppose that H satisfies (H1). Then the same conclusions
as those in Theorem 1.1 hold if we replace (H3±) by (H4±).

Remark 1.4. (a) It is easy to see that (H4±) implies (1.3). The Palais–
Smale condition does hold under (H4±). But we do not need it in our approach.

(b) [25, Theorem 1.3] is a special case of our Theorem 1.3(a)–(d), where
B∞(t) and B0(t) are required to be finitely degenerate and the conditions about
G∞(t, z) and G0(t, z) are special cases of (H4±).

(c) In [15], under different conditions about G∞(t, z) and G0(t, z), they got
a result similar to Theorem 1.3(a)–(d) by computing the critical groups C∗(f, 0)
and C∗(f,∞).

This paper is organized as follows. In Section 2, we introduce the Galerkin
approximation scheme and Conley index theory. In Section 3, we construct the
isolating blocks and prove our results.

2. Conley index and Galerkin approximation

First of all, we recall some results about the Conley index. Let η: (Rn ×
R) → Rn be the flow on Rn. Let D ⊂ Rn be a closed set and x ∈ ∂D be
a boundary point. Then x is called a strict egress (strict ingress, bounce-off,
respectively) point of D, if there are c, d > 0 such that for 0 < t ≤ c: η(x, t) /∈ D

(η(x, t) ∈ int(D), η(x, t) /∈ D, respectively) and for 0 < −t ≤ d: η(x, t) ∈ int(D)
(η(x, t) /∈ D, η(x, t) /∈ D, respectively). We use De (Di, Db, respectively) to
denote the set of strict egress (strict ingress, bounce-off) points of the closed
set D. Let D− = De∪ Db.

A closed set D ⊂ Rn is called an isolating block if ∂D = De ∪Di∪ Db and
D− = De ∪Db is closed.

Let D ⊂ Rn be a bounded isolating block under the flow η. We define

(2.1) I(η, D) =
∑
k≥0

rk(D,D−)tk,

where rk(D,D−) = rank(Hk(D,D−)) is the rank of the k-th homology group
Hk(D,D−).

Let h: Rn → R ∈ C2. η is the gradient flow generated by

dx(t)
dt

= −h′(x(t)).
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Let D∞, D0 ⊂ Rn be two bounded isolating blocks under the flow η such that
D0 ⊂ int(D∞). Using the results in [9], [10], [24], one can prove the following
theorem.

Theorem 2.1.

(a) If θ ∈ D0 is the only critical point of h in D∞,

I(η, D∞) = I(η, D0).

(b) Suppose θ is the only critical point of h in D0 and all critical points
of h in D∞ \D0, say {x1, . . . , xm}, are nondegenerate with the Morse
indices {i1, . . . , im} respectively. Then

m∑
j=1

tij + I(η, D0) = I(η, D∞) + (1 + t)Q(t),

where Q(t) is a polynomial with nonnegative integer coefficients.

Proof. (a) The conclusion comes from the fact that the Conley homotopy
index is independent of the choice of index pairs (see [24]).

(b) Obviously, there is an admissible Morse decomposition of D∞ with Morse
sets {θ, x1, . . . , xm} (see Salamon [24]). The conclusion comes directly from
the Morse type inequality for {θ, x1, . . . , xm} (see [9], [10], [20]). We omit the
details. �

Now we focus on the Galerkin approximation. We would rather work in
an abstract framework. Let E be a seperable Hilbert space with inner product
〈 · , · 〉 and norm ‖ · ‖. Assume

(A) A is a bounded selfadjoint operator with a finite dimensional kernel,
and its zero eigenvalue is isolated in the spectrum of A.

Note that the restriction A|Im(A) is invertible.
The following definition of a Galerkin approximation procedure is due to [8].

Definition 2.2. Let Γ = {Pm : m = 1, 2, . . . } be a sequence of orthogonal
projections. We call Γ an approximation scheme with respect to A, if the following
properties hold:

(a) Em = PmE is finite dimensional, for all n ≥ 1,
(b) Pm → I strongly as n →∞,
(c) [Pm, A] = PmA−APm → 0 in the operator norm.

For a self adjoint bounded operator T , denote T# = (TIm(T ))−1, and denote
by M+(T ), M−(T ) and M0(T ) the positive definite, negative definite and null
subspaces of T , respectively. For d > 0, we also use M+

d (T ), M−
d (T ) and M0

d (T )
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to denote the eigenspaces corresponding to the eigenvalues λ belonging to [d,∞),
(−∞,−d] and (−d, d), respectively.

For a linear symmetric compact operator B, it is easy to show that

dim ker(A−B) < ∞, and

τm = ‖(I − Pm)B‖+ ‖B(I − Pm)‖ → 0 as m →∞,(2.2)

where Γ = {Pm : m = 1, 2, . . . } is an approximation scheme with respect to
A. Let PB :E → ker(A − B) be the orthogonal projection. Obviously, PB is
compact. Then by (2.2) and Definition 2.2(c),

(2.3) εm = ‖PmA−APm‖+τm +‖(I−Pm)PB‖(1+‖A−B‖) → 0 as m →∞.

Theorem 2.3. Let B be a linear symmetric compact operator. For any fixed
constant 0 < d ≤ ‖(A − B)#‖−1/4, there exists m∗ > 0 such that for m ≥ m∗

we have

(a) dim M0
2εm

(Pm(A−B)Pm) = dimker(A−B),
(b) Em = M+

d (Pm(A−B)Pm)⊕M−
d (Pm(A−B)Pm)⊕M0

2εm
(Pm(A−B)Pm),

where εm is given by (2.3), and 2εm < min(1, d).

Proof. Step 1. Set E0 = PBE = ker(A − B). Then there exists m0 > 0
such that for m ≥ m0,

(2.4) dim PmE0 = dim E0.

For otherwise, there exist {mk} such that dim Pmk
E0 < dim E0. This implies

that there exist {xk} ⊆ E0 such that

(2.5) Pmk
xk = 0, ‖xk‖ = 1.

Since dim E0 < ∞, passing to a subsequence if necessary, xk → x∗ as k → ∞.
By (2.5) we have

1 = ‖x∗‖ = lim
k→∞

‖Pmk
x∗ − Pmk

xk‖ ≤ lim
k→∞

‖x∗ − xk‖ = 0,

a contradiction. Therefore (2.4) holds. Moreover, for any x ∈ PmE0, there is a
unique x̃ ∈ E0 such that x = Pmx̃. By (2.3), for m large enough,

x = Pmx̃ = x̃− (I − Pm)PBx̃ and ‖x‖ ≥ (1− εm)‖x̃‖.

Therefore we have

Pm(A−B)Pmx = Pm(A−B)Pmx̃ = Pm(A−B)(Pm − I)PBx̃,

‖Pm(A−B)Pmx‖ ≤ εm‖x̃‖ ≤
εm

1− εm
‖x‖.
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By (2.3), there exists m1 ≥ m0 such that for m ≥ m1

(2.6) ‖Pm(A−B)Pmx‖ ≤ 4
3
εm‖x‖ for all x ∈ PmE0.

Step 2. For m ≥ m1, let Ym be the orthogonal complement of PmE0 in Em,
i.e. Em = Ym ⊕ PmE0. Then there exists m2 ≥ m1 such that for m ≥ m2,

(2.7) ‖Pm(A−B)Pmy‖ ≥ 2d‖y‖ for all y ∈ Ym.

In fact, for all y ∈ Ym and for all x ∈ E0, we have

0 = 〈y, Pmx〉 = 〈Pmy, x〉 = 〈y, x〉.

By Step 1, we know that y ⊥ E0, i.e. y ∈ Im(A−B). Moreover,

Pm(A−B)Pmy = (A−B)y + (Pm − I)(A−B)Pmy

= (A−B)y + (Pm − I)APmy − (Pm − I)By.

By (2.2) and Definition 2.2(c),

‖(Pm − I)APm‖+ ‖(Pm − I)B‖ → 0 as m →∞.

This means that there exists m2 ≥ m1 such that (2.7) holds.
Step 3. There exists m∗ ≥ m2 such that for m ≥ m∗, we have 2εm < d and

(2.8) dim M0
2εm

(Pm(A−B)Pm) = dim PmE0.

In fact, if dim M0
2εm

(Pm(A − B)Pm) > dim PmE0, there must exist y 6= 0 and
y ∈ M0

2εm
(Pm(A−B)Pm) ∩ Ym. This implies that

‖Pm(A−B)Pmy‖ ≤ 2εm‖y‖,
‖Pm(A−B)Pmy‖ ≥ 2d‖y‖ (by (2.7)).

We get a contradiction. If dim M0
2εm

(Pm(A − B)Pm) < dim PmE0, there must
exist y 6= 0 and y ∈ PmE0 ∩ (M+

2εm
(Pm(A − B)Pm) ⊕ M−

2εm
(Pm(A − B)Pm)).

This implies that

‖Pm(A−B)Pmy‖ ≤ 4
3
εm‖y‖ (by (2.6)),

‖Pm(A−B)Pmy‖ ≥ 2εm‖y‖,

and we get a contradiction again. Thus (2.8) holds. By (2.4) we have (a).
Step 4. For m ≥ m∗, we have

(2.9) dim M+
d (Pm(A−B)Pm)⊕M−

d (Pm(A−B)Pm) = dim Ym.
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In fact, if dim M+
d (Pm(A−B)Pm)⊕M−

d (Pm(A−B)Pm) > dim Ym, there must
exist y 6= 0 and y ∈ (M+

d (Pm(A−B)Pm)⊕M−
d (Pm(A−B)Pm)) ∩ PmE0. This

implies

‖Pm(A−B)Pmy‖ ≥ d‖y‖,

‖Pm(A−B)Pmy‖ ≤ 4
3
εm‖y‖ (by (2.6)).

We get a contradicton. If dim(M+
d (Pm(A − B)Pm) ⊕ M−

d (Pm(A − B)Pm)) <

dim Ym, there must exist y ∈ Ym ∩M0
d (Pm(A−B)Pm and y 6= 0. This implies

‖Pm(A−B)Pmy‖ ≥ 2d‖y‖ (by (2.7)),

‖Pm(A−B)PmY ‖ ≤ d‖y‖.

We get a contradiction again. Therefore (2.9) holds. By (2.8), (2.9) and the fact
Em = Ym ⊕ PmE0, we have (b). �

Remark 2.4. (a) Since A−B may not commute with Pm, how to compute
the Morse index of Pm(A−B)Pm becomes a very difficult part in applications.
Theorem 2.3 shows a way to describe the behavior of the operator Pm(A−B)Pm.

(b) All eigenvalues of Pm(A−B)Pm split into two parts for m large enough.
One part falls into (−∞,−d]∪[d,∞) and they will stay there as m →∞. Another
part falls into (−2εm, 2εm) and they will go to 0 as m →∞.

(c) There is no eigenvalues of Pm(A − B)Pm in (−d,−2εm] ∪ [2εm, d) and
εm → 0 as m →∞.

Remark 2.5. The idea in Theorem 2.3 and Remark 2.4 is very close to
the idea of the L-index of a compact selfadjoint operator given by M. Izydorek
in [16]. The author wants to thank the referee for pointing out this.

3. Periodic solutions of Hamiltonian systems

Let S1 = R/Z, E = W 1/2,2(S1, R2N ). Then E is a Hilbert space with norm
‖ · ‖ and inner product 〈 ·, · 〉, and E consists of those z(t) in L2(S1, R2N ) whose
Fourier series

z(t) = a0 +
∞∑

n=1

(an cos(2πnt) + bn sin(2πnt))

satisfies

‖z‖2 = |a0|2 +
1
2

∞∑
n=1

n(|an|2 + |bn|2) < ∞,

where aj , bj ∈ R2N . For a given continuous 1-periodic and symmetric matrix
function B(t), we define

(3.1) 〈Ax, y〉 =
∫ 1

0

(−Jẋ, y) dt, 〈Bx, y〉 =
∫ 1

0

(B(t)x, y) dt
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on E. Then A satisfies (A) in Section 2 with kerA = R2N , and B is a linear
symmetric compact operator ([21]). For B(t), by [10], [19], [21], we can define its
Maslov-type index as a pair of integers (i(B), n(B)) ∈ Z × {0, . . . , 2N}. Using
the Floquet theory, we have

n(B) = dim ker(A−B).

Let B0(t) and B∞(t) be the matrix functions in (1.2) and (1.3) with the
Maslov-type index (i0, n0) and (i∞, n∞), respectively. Let B0 and B∞ be oper-
ators, defined by (3.1), corresponding to B0(t) and B∞(t). Then we have

n0 = dim ker(A−B0), n∞ = dim ker(A−B∞).

Let . . . ≤ λ′2 ≤ λ′1 < 0 < λ1 ≤ λ2 ≤ . . . be the eigenvalues of A − B0, and
Let {e′j} and {ej} be the eigenvectors of A−B0 corresponding to {λ′j} and {λj},
respectively. For m ≥ 0, set

E0 = ker(A−B0),

Em = E0 ⊕ span{e1, . . . , em} ⊕ span{e′1, . . . , e′m}

and let Pm be the orthogonal projection from E to Em. Then Γ0 = {Pm : m =
1, 2, . . . } is an approximation scheme with respect to A. Moreover,

(A−B0)Pm = Pm(A−B0) for all m ≥ 0.

The following result was proved in [14].

Theorem 3.1 ([14]). For any continuous 1-periodic and symmetric matrix
function B(t) with the Maslov-type index (i∞, n∞), there exists a m∗ > 0 such
that for m ≥ m∗ we have

(3.2)

dim M+
d (Pm(A−B)Pm) = m + i0 − i∞ + n0 − n∞,

dim M−
d (Pm(A−B)Pm) = m− i0 + i∞,

dim M0
d (Pm(A−B)Pm) = n∞,

where d = ‖(A−B)#‖−1/4, and B is the operator, defined by (3.1), corresponding
to B(t).

For any z ∈ E, we define

g0(z) =
∫ 1

0

G0(t, z) dt, g∞(z) =
∫ 1

0

G∞(t, z) dt,

f(z) =
1
2
〈(A−B∞)z, z〉 − g∞(z) =

1
2
〈(A−B0)z, z〉 − g0(z).

Then (H1) implies that f(z) ∈ C2(E,R). Looking for 1-periodic solutions of
(1.1) is equivalent to looking for the critical points of f (see [23]).
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For m≥ 1, let fm be the restriction of f to the subspace Em. Then

(3.3) f ′m(z) = (A−B0)z − Pmg′0(z) for all z ∈ Em.

Lemma 3.2. Assume (H1), (1.3) and (H2+) (or (H2−)). Then there exist
m1 > 0 and r0 > 0 independent of m such that for m ≥ m1, 0 is the only critical
point of fm inside Q = {z ∈ Em : ‖z‖ ≤ r0}.

Proof. Suppose the conclusion is not true. Then for any k ≥ 1, there exists
zk ∈ Emk

such that

(3.4) f ′mk
(zk) = 0, zk 6= 0, and zk → 0 as k →∞.

Without lossing generality, suppose ‖zk‖ ≤ 1 for k ≥ 1. By the special structure
of Γ0 = {Pm : m = 1, 2, . . . },

Em = ker(A−B0)⊕ (Im(A−B0) ∩ Em).

Write zk = xk + yk ∈ ker(A−B0)⊕ (Im(A−B0)∩Emk
). Then xk → 0, yk → 0

as k →∞, and by (3.3)

(3.5) (A−B0)yk = Pmg′0(zk).

By (1.3) and (1.4), we have a1 > 0 such that

|G′0(t, z)| ≤ a1‖z‖β0 for all (t, z) ∈ [0, 1]× R2N .

This implies that there exists a2 > 0 such that

(3.6) ‖g′0(z)‖ ≤ a2‖z‖β0 for all z ∈ E.

By (3.5) and (3.6), we have a3 > 0 such that

‖yk‖ ≤ a3(‖xk‖+ ‖yk‖)β0 .

This implies that for k large enough

(3.7) ‖yk‖ ≤ ‖xk‖, ‖yk‖ ≤ a32β0‖xk‖β0 .

By (3.5)–(3.7),

(3.8) |〈g′0(zk), zk〉| = |〈g′0(zk), yk〉| ≤ a2‖zk‖β0‖yk‖ ≤ a2a322β0‖xk‖2β0 .

On the other hand, for L0 > 0 given in (H2±), denote

Ω = {t ∈ [0, 1] : |zk(t)| ≤ L0}, Ω⊥ = [0, 1] \ Ω.

Then for α0 given in (H2±),

a4‖zk‖2α0 ≥
∫ 1

0

|zk|2α0 dt ≥
∫

Ω⊥
|zk(t)|2α0 dt ≥ L2α0

0 meas(Ω⊥).
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This implies

(3.9) meas(Ω⊥) ≤ a5‖zk‖2α0 ,

where a5 > 0. By (H2±), we have

(3.10) |〈g′0(zk), zk〉| =
∣∣∣∣ ∫ 1

0

±(G′0(t, zk), zk) dt

∣∣∣∣
≥

∣∣∣∣ ∫
Ω

±(G′0(t, zk), zk) dt

∣∣∣∣− ∣∣∣∣ ∫
Ω⊥

|G′0(t, zk)||zk| dt

∣∣∣∣
≥

∫
Ω

c1|zk(t)|α0 dt−
∫

Ω⊥
|G′0(t, zk)||yk| dt

−
∫

Ω⊥
|G′0(t, zk)||xk| dt.

Using the same argument as (3.6) and (3.8), we have

(3.11)
∫

Ω⊥
|G′0(t, zk)||yk| dt ≤

∫ 1

0

a1|zk|β0 |yk| dt

≤ a1

( ∫ 1

0

|zk|2β0 dt

)1/2( ∫ 1

0

|yk|2 dt

)1/2

≤ a6‖zk‖β0‖yk‖ ≤ a7‖xk‖2β0 .

Notice that there exist λ1, λ2 > 0 such that for any x ∈ ker(A−B0),

(3.12) λ1‖x‖ ≤ |x(t)| ≤ λ2‖x‖ for all t ∈ [0, 1].

By (1.3) and the fact that α0 > 2, we have

|G′0(t, z)| ≤ a8 + a9|z|α0 , for all (t, z) ∈ [0, 1]× R2N .

Combining this with (3.7), (3.9) and (3.12) yields

(3.13)
∫

Ω⊥
|G′0(t, zk)||xk| dt ≤

∫
Ω⊥

a8|xk| dt +
∫

Ω⊥
a9|zk|α0 |xk| dt

≤ a8λ2‖xk‖meas(Ω⊥) +
∫ 1

0

a9|zk|α0 |xk| dt

≤ a8λ2a5‖xk‖2α0+1 + a10‖xk‖α0+1 ≤ a11‖xk‖α0+1.

By (3.7) and (3.12), we have∫
Ω

(zk, xk) dt =
∫

Ω

|xk|2 dt +
∫

Ω

(yk, xk) dt

≥ λ2
1‖xk‖2meas(Ω)−

∫ 1

0

|yk||xk| dt

≥ λ2
1‖xk‖2meas(Ω)− a12‖xk‖β0+1.
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Since β0 + 1 > 2 and ‖zk‖ → 0 as k →∞, by (3.9) there exists k∗ > 0 such that
for k ≥ k∗

meas(Ω⊥) ≤ 1
2
, ‖xk‖β0−1 ≤ λ2

1

4a12
.

This implies that

(3.14)
∫

Ω

(zk, xk) dt ≥ λ2
1

4
‖xk‖2.

Since α0 > 1, we have∫
Ω

(zk, xk) dt ≤
( ∫

Ω

|zk|α0 dt

)1/α0
( ∫

Ω

|xk|α0/(α0−1) dt

)(α0−1)/α0

≤ a13

( ∫
Ω

|zk|α0 dt

)1/α0

‖xk‖.

Combing this with (3.14), we have

(3.15)
∫

Ω

|zk|α0 dt ≥ a14‖xk‖α0 .

By (3.8), (3.10), (3.11), (3.13) and (3.15), we have

(3.16) c1a14‖xk‖α0 ≤ a2a322β0
‖xk‖2β0 + a7‖xk‖2β0 + a11‖xk‖α0+1.

Since all the constants c1, a1, . . . , a14 are independent of k, α0 < 2β0 and xk →
0 as k → ∞, we get a contradiction from (3.16). Therefore the conclusion
of Lemma 3.2 is true. �

For m ≥ 1, let ηm be the gradient flow generated by

(3.17)
dz

dt
= −(A−B0)z + Pmg′0(z) on Em.

Lemma 3.3. Assume (H1), (1.3) and (H2±). Then there exists m2 > 0 such
that for m ≥ m2, there exists an isolating block Dm of ηm satisfying the following
properties

(a) 0 is the only critical point of fm inside Dm,
(b) I(η, Dm) = tm if (H2−) holds,
(c) I(η, Dm) = tm+n0 if (H2+) holds.

Proof. By Lemma 3.2, for m ≥ m1, fm has only one critical point 0 in-
side Q, where Q = {z ∈ Em : ‖z‖ ≤ r0}. Set

V ±
m = {y± ∈ PmM±(A−B0) : ‖y±‖ ≤ r±},
W = {x ∈ M0(A−B0) : ‖x‖ ≤ rw}.
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We want to show that there are r+, r−, rw > 0, which do not depend on m, such
that Dm = V +

m × V −
m × W ⊂ Q is an isolating block of the gradient flow ηm

generated by (3.17). Denote

(3.18)
ρ± = inf

‖y±‖=1
|〈y±, (A−B0)y±〉|, y± ∈ M±(A−B0),

ρ = min(ρ+, ρ−) > 0.

For z = z+ + z− + z0 ∈ ∂V +
m × V −

m ×W , by (3.6) and (3.17),

(3.19)
〈

dz

dt
, z+

〉∣∣∣∣
t=0

= −〈(A−B0)z+, z+〉+ 〈g′0(z), z+〉

≤ −ρ‖z+‖2 + a2‖z‖β0‖z+‖

= −ρ‖z+‖
(
‖z+‖ −

(
a2

ρ

)
‖z‖β0

)
≤ −ρr+

(
r+ −

(
a2

ρ

)
(r+ + r− + rw)β0

)
≤ −ρr+

(
r+ −

(
a2

ρ

)
3β0rβ0

w

)
≤ −ρr+

(
1
2
r+

)
< 0,

provided

(3.20) r+ = r− ≤ rw, r+ = 2(a2/ρ)3β0rβ0
w .

Similarly, for z = z+ + z− + z0 ∈ V +
m × ∂V −

m ×W

(3.21)
〈

dz

dt
, z−

〉∣∣∣∣
t=0

= −〈(A−B0)z−, z−〉+ 〈g′0(z), z−〉

≥ ρ‖z−‖2 − a2‖z‖β0‖z−‖ ≥ ρr−(r−/2) > 0,

provided (3.20) holds.
For z = z+ + z−+ z0 ∈ V +

m ×V −
m ×∂W , denote Ω = {t ∈ [0, 1] : |z(t)| ≤ L0},

Ω⊥ = [0, 1] \ Ω.
Similar to the proof of (3.9), we have

(3.22) meas(Ω⊥) ≤ a5‖z‖2α0 .

Case 1. (H2+) holds. By (3.20) and the same arguments as those in the
proof (3.10), (3.11), (3.13) and (3.15), we have

(3.23)
〈

dz

dt
, z0

〉∣∣∣∣
t=0

=
∫ 1

0

(G′0(t, z), z0) dt

=
∫

Ω

(G′0(t, z), z)−
∫

Ω

(G′0(t, z), z+ + z−) dt

+
∫

Ω⊥
(G′0(t, z), z0) dt

≥
∫

Ω

c1|z|α0 dt−
∫ 1

0

|G′0(t, z)||z+ + z−| dt
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−
∫

Ω⊥
|G′0(t, z)||z0| dt

≥ b1‖z0‖α0 − b2‖z0‖2β0 − b3‖z0‖α0+1

= rα0
w (b1 − b2r

2β0−α0
w − b3rw) ≥ 1

2
b1r

α0
w > 0

provided

(3.24) b1 ≥ 2(b2r
2β0−α0
w + b3rw).

Notice that all constants a2, b1, b2, b3 > 0 in (3.20) and (3.24) are independent
of m. Since β0 > 1 and α0 < 2β0, we can choose r+, r−, rw > 0 such that (3.20)
and (3.24) holds, and Dm ⊂ int(Q). By (3.19), (3.21) and (3.23), Dm is an
isolating block with D−

m = V +
m × ∂V −

m ×W ∪ V +
m × V −

m × ∂W . Therefore

(3.25) I(ηm, Dm) = tdim(PmM−(A−B0)⊕M0(A−B0)) = tm+n0 .

Case 2. (H2−) holds. Using the same arguments as (3.23), we have〈
dz

dt
, z0

〉∣∣∣∣
t=0

=
∫ 1

0

(G′0(t, z), z0) dt

≤ −
∫

Ω

c1|z|α0 dt +
∫ 1

0

|G′0(t, z)||z+ + z−| dt

+
∫

Ω⊥
|G′0(t, z)||z0| dt

≤ − rα0
w (b1 − b2r

2β0−α0
w − b3rw) ≤ −1

2
b1r

α0
w < 0

provided (3.24) holds. Therefore we can choose r+, r−, rw > 0 such that Dm ⊂ Q

is an islating block with D−
m = V +

m × ∂V −
m ×W . Then we have

(3.26) I(ηm, Dm) = tdim(PmM−(A−B0)) = tm. �

Lemma 3.4. Assume (H1) and (H3±). Then there exists m3 > 0 such that,
for m ≥ m3, there exists an isolating block D∞m of ηm satisfying the following
properties:

(a) D∞m is uniformly bounded by a constant independent of m,
(b) I(ηm, D∞m) = tm−i0+i∞ if (H3−) holds,
(c) I(ηm, D∞m) = tm−i0+i∞+n∞ if (H3+) holds.

Proof. By Theorem 3.1 and Theorem 2.3, there exists m∗ > 0 such that
for m ≥ m∗ and d = ‖(A−B∞)#‖−1/4, the relation (3.2) holds and

Em = M+
d (Pm(A−B∞)Pm)⊕M−

d (Pm(A−B∞)Pm)⊕M0
2εm

(Pm(A−B∞)Pm),
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where εm is given by (2.3) for B = B∞, and εm → 0 as m →∞. Denote

U±m = {y± ∈ M±
d (Pm(A−B∞)Pm) : ‖y±‖ ≤ R±},

W∞ = {x ∈ M0
2εm

(Pm(A−B∞)Pm) : ‖x‖ ≤ Rw}.

We want to show that there are R+, R−, Rw > 0, which do not depend on m,
such that D∞m = U+

m × U−m × W∞ is an isolating block of the gradient ηm

generated by (3.17), which is the same as

(3.27)
dz

dt
= −Pm(A−B∞)Pmz + Pmg′∞(z) on Em.

By (H3±), there exist M > 0 such that

(3.28) |G′∞(t, z)| ≤ M for all (t, z) ∈ [0, 1]× R2N .

This implies

(3.29) ‖g′∞(z)‖ ≤ M for all z ∈ E.

For λ0 ≥ 2, let

(3.30) R+ = R− =
λ0M

d
> 0.

For z = z+ + z− + z0 ∈ ∂U+
m × U−m ×W∞, by (3.27), (3.29) and (3.30),

(3.31)
〈

dz

dt
, z+

〉∣∣∣∣
t=0

= −〈Pm(A−B∞)Pmz+, z+〉+ 〈g′∞(z), z+〉

≤ −d‖z+‖2 + M‖z+‖ = −dR2
+ + MR+

≤ −λ2
0M

2 + λ0M
2

d
< 0.

Similarly, for z = z+ + z− + z0 ∈ U+
m × ∂U−m ×W∞,

(3.32)
〈

dz

dt
, z−

〉∣∣∣∣
t=0

= −〈Pm(A−B∞)Pmz−, z−〉+ 〈g′∞(z), z−〉

≥ dR2
− −MR− ≥

λ2
0M

2 − λ0M
2

d
> 0.

Notice that there exist λ3 > 0, λ4 > 0 such that for any x ∈ ker(A−B∞)

(3.33) λ3‖x‖ ≤ |x(t)| ≤ λ4‖x‖ for all t ∈ [0, 1].

For any z0 ∈ M0
2εm

(Pm(A−B∞)Pm), according to Step 2 in the proof of Theo-
rem 2.3, we can write z0 = y + Pmx ∈ Em = Ym ⊕ Pm(ker(A− B∞)). By (2.6)
and (2.7), we have

‖Pm(A−B∞)Pmz0‖ ≤ 2εm‖z0‖,
‖Pm(A−B∞)Pmz0‖ ≥ ‖Pm(A−B∞)Pmy‖ − ‖Pm(A−B∞)Pmx‖

≥ 2d‖y‖ − 4
3
εm‖Pmx‖ ≥ 2d‖y‖ − 4

3
εm‖z0‖.
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This implies that

‖y‖ ≤
(

5εm

3d

)
‖z0‖,(3.34)

‖x‖ ≥ ‖Pmx‖ ≥ ‖z0‖ − ‖y‖ =
(

1− 5εm

3d

)
‖z0‖,

‖z0‖ ≥ ‖Pmx‖ ≥ ‖x‖ − ‖(I − Pm)PB∞x‖ ≥ (1− εm)‖x‖.
(3.35)

Since εm → 0 as m →∞, there exists m∗
1 ≥ m∗ such that for m ≥ m∗

1,

(3.36) 1− εm ≥ 1
2
, 1− 5εm

3d
≥ 1

2
.

For m ≥ m∗
1 and z0 ∈ ∂W∞, set

∆1 = {t : |z0(t)| ≤ λ3

4
‖z0‖}, ∆2 = {t : |z0(t)| ≥ 4λ4‖z0‖},

∆ = [0, 1] \ (∆1 ∪∆2).(3.37)

By (3.33)–(3.36), we have∫
∆1

|z0| dt ≤ λ3

4
‖z0‖meas(∆1),∫

∆1

|z0| dt =
∫

∆1

|y + Pmx| dt =
∫

∆1

|x + y − (I − Pm)x| dt

≥
∫

∆1

|x(t)| dt− ‖y‖ − ‖(I − Pm)PB∞x‖

≥ λ3‖x‖meas(∆1)−
5εm

3d
‖z0‖ − 2εm‖z0‖

≥ λ3

2
‖z0‖meas(∆1)−

(
5
3d

+ 2
)

εm‖z0‖.

Therefore

(3.38) meas(∆1) ≤
4
λ3

(
5
3d

+ 2
)

εm = b4εm.

By (3.33)–(3.36), we also have∫
∆2

|z0| dt ≥ 4λ4‖z0‖meas(∆2),∫
∆2

|z0| dt ≤
∫

∆2

|x + y − (I − Pm)x| dt

≤
∫

∆2

|x(t)| dt + ‖y‖+ ‖(I − Pm)x‖

≤ λ4‖x‖meas(∆2) + ‖y‖+ ‖(I − Pm)PB∞‖‖x‖

≤ 2λ4‖z0‖meas(∆2) +
(

5εm

3d
+ 2εm

)
‖z0‖.
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This implies

(3.39) meas(∆2) ≤
1

2λ4

(
5
3d

+ 2
)

εm = b5εm.

For z+ + z− ∈ U+
m × U−m, β > 1 and k > 0, let

(3.40) Ωk = {t ∈ [0, 1] : |z+ + z−| ≤ k}, Ω⊥k = [0, 1] \ Ωk.

Then we have∫ 1

0

|z+ + z−|β dt ≥
∫

Ω⊥k

|z+ + z−|β dt ≥ kβmeas(Ω⊥k ),∫ 1

0

|z+ + z−|β dt ≤ cβ‖z+ + z−‖β ≤ cβ(R+ + R−)β ,

where cβ is the embedding constant for E ⊂ Lβ(S1, R2N ). This implies

(3.41) meas(Ω⊥k ) ≤
cβ
β |R+ + R−|β

kβ
.

Case 1. (H3+) holds, i.e. for |z| ≥ L∞,

(G′∞(t, z), z) ≥ c3

|z|δ
, |G′∞(t, z)||z| ≤ c4|(G′∞(t, z), z)|.

Choose

(3.42) Rw =
4(4c4 + 1)

λ3
k

with k > 0 being determined later.
For z = z+ + z− + z0 ∈ U+

m × U−m × ∂W∞, Let ∆ and Ωk be given by (3.37)
and (3.40). For any t ∈ ∆ ∩ Ωk and k ≥ L∞/(2c4), we have

|z(t)| ≥ |z0(t)| − |z+(t) + z−(t)| ≥ λ3

4
‖z0‖ − k(3.43)

=
λ3

4
Rw − k = 4c4k > 2c4k ≥ L∞,

|z(t)| ≤ |z0(t)|+ |z+ + z−| ≤ 4λ4‖z0‖+ k(3.44)

=
(

16λ4(4c4 + 1)
λ3

+ 1
)

k = b6k.

By (3.37)–(3.41), we can choose k0 ≥ L∞/(2c4) and m∗
2 ≥ m∗

1 such that for
k≥ k0 and m ≥ m∗

2,

(3.45) meas(Ωk ∩∆) ≥ 1/2.
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Now by (H3+), (3.27), (3.28) and (3.37)–(3.45), we have

(3.46)
〈

dz

dt
, z0

〉∣∣∣∣
t=0

=
∫ 1

0

(G′∞(t, z), z0) dt− 〈Pm(A−B∞)Pmz0, z0〉

≥
∫

∆

(G′∞(t, z), z0) dt−
∫

∆1∪∆2

M |z0| dt− 2εm‖z0‖2

≥
∫

∆∩Ωk

(G′∞(t, z), z0) dt−
∫

∆∩Ω⊥k

M |z0| dt

−M‖z0‖(meas(∆1 ∪∆2))1/2 − 2εm‖z0‖2

≥
∫

∆∩Ωk

((G′∞(t, z), z)− k|G′∞(t, z)|) dt

−M4λ4‖z0‖meas(Ω⊥k )

−M(b4 + b5)1/2ε1/2
m ‖z0‖ − 2εm‖z0‖2

≥
∫

∆∩Ωk

c3

|z|δ

(
1− kc4

|z|

)
dt− b7Rwmeas(Ω⊥k )

− b8Rwε1/2
m − 2εmR2

w

≥ c3

(b6k)δ
· 1
2
meas(∆ ∩ Ωk)− b7Rwmeas(Ω⊥k )

− b8Rwε1/2
m − 2εmR2

w

≥ b9

kδ
− b10

kβ−1
− b8Rwε1/2

m − 2εmR2
w

≥ b9

2kδ
− b8Rwε1/2

m − 2εmR2
w

provided

(3.47) β = δ + 2 and k ≥ 2b10/b9 + k0.

In the above arguments, all the constants M,k0, bi are independent of m. There-
fore R+, R− and Rw are independent of m. Since εm → 0 as m → ∞, there
exists m3 ≥ m∗

2 such that for m ≥ m3〈
dz

dt
, z0

〉∣∣∣∣
t=0

≥ b9

2kδ
− b8Rwε1/2

m − 2εmR2
w ≥ b9

4kδ
> 0.

Combining this with (3.31) and (3.32) yields that D∞m = U+
m × U−m × W∞ is

an isolating block with D−
∞m = U+

m × ∂U−m ×W∞ ∪ U+
m × U−m × ∂W∞. D∞m is

uniformly bounded by R+ +R−+Rw, which is independent of m. Moreover, by
Theorem 3.1, we have

I(ηm, D∞m) = tdim(M−
d (Pm(A−B∞)Pm)⊕M0

2εm
(Pm(A−B∞)Pm)) = tm−i0+i∞+n∞ .
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Case 2. (H3−) holds. By using similar arguments as in the proof of Case 1, we
can choose Rw as in (3.42) and show that for z = z++z−+z0 ∈ U+

m×U−m×∂W∞,〈
dz

dt
, z0

〉∣∣∣∣
t=0

=
∫ 1

0

(G′∞(t, z), z0) dt− 〈Pm(A−B∞)Pmz0, z0〉

≤
∫

∆∩Ωk

((G′∞(t, z), z) + k|G′∞(t, z)|) dt

+ b7Rwmeas(Ω⊥k ) + b8Rwε1/2
m + 2εmR2

w

≤ − b9/(2kδ) + b8Rwε1/2
m + 2εmR2

w ≤ −b9/(4kδ) < 0

provided m ≥ m3. Therefore D∞m is an isolating block with D−
∞m = U+

m ×
∂U−m ×W∞, and

I(ηm, D∞m) = tdim(M−
d (Pm(A−B)Pm) = tm−i0+i∞ .

{D∞m} are uniformly bounded by R+ +R−+Rw, which is independent of m.�

Remark 3.5. (a) If we increase the constants λ0 in (3.30) and k in (3.47),
we will get bigger R+, R− and Rw. This allows us to choose the size of D∞m as
large as we want.

(b) Since A − B∞ does not commute with Pm, we have to control Pm(A −
B∞)Pm over the possible resonance part M0

2εm
(Pm(A−B∞)Pm). All the special

arguments in the proof of Lemma 3.4 are used to make sure that R+, R− and
Rw are independent of m.

Proof of Theorem 1.1. Part 1. Let m∗ > 0 be large enough such that
for m ≥ m∗, the conclusions in Lemmas 3.2–3.4 hold. Let ηm be the gradient
flow of fm generated by (3.17). Then we have isolating blocks Dm and D∞m.
By Remark 3.5(a), we can adjust the size of D∞m such that Dm ⊂ int(D∞m).

(a) (H2+) and (H3+) hold and i0 + n0 6= i∞ + n∞.
In this case, Lemmas 3.3 and 3.4 implies that

I(ηm, Dm) = tm+n0 6= I(ηm, D∞m) = tm−i0+i∞+n∞ .

By Theorem 2.1(a), there is a critical point zm of fm in D∞m\Dm. By Lemma 3.2
and the fact zm ∈ D∞m, we have r0 ≤ ‖zm‖ ≤ R+ + R− + Rw, i.e. {zm} are
bounded. By standard arguments and passing to a subsequence if necessary, zm

converges to a critical point z∗ of f . Moreover,

r0 ≤ ‖z∗‖ ≤ R+ + R− + Rw.

This completes the proof of (a). Cases (b)-(d) follow the same arguments as (a).
Part 2. We only prove (e). Cases (f)–(h) follow the same arguments as (e).

Notice that the conditions of (e) implies the conditions of (a). According to the
proof of Lemma 3.3, we can have Dm ⊂ int(Q), where Q = {z ∈ Em : ‖z‖ ≤ r0}.
By Part 1, for m ≥ m∗, there is a cirtical point z∗ of f with ‖z∗‖ ≥ r0.
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Let B∗(t) = H ′′(t, z∗(t)) and B∗ be the operator, defined by (3.1), corre-
sponding to B∗(t). Let (i∗, n∗) be the Maslov-type index of B∗(t). It is easy to
show that

‖f ′′(z)− (A−B∗)‖ → 0 as ‖z − z∗‖ → 0.

Let d∗ = ‖(A−B∗)#‖−1/4. Then there exists r > 0 such that

(3.48) ‖f ′′(z)− (A−B∗)‖ <
1
2
d∗,

for all z ∈ Qr(z∗) = {z ∈ E : ‖z − z∗‖2 ≤ 4r}.

This implies that

(3.49) dim M±(f ′′m(z)) ≥ dim M±
d∗(Pm(A−B∗)Pm),

for all z ∈ Qr(z∗)∩Em. For d∗ = ‖(A−B∗)#‖−1/4, there exists m∗
1 ≥ m∗ such

that for m ≥ m∗
1, the conclusions of Theorems 3.1 and 2.3 hold. Since ‖z∗‖ ≥ r0,

we can choose r > 0 small enough such that

(3.50) Qr(z∗) ∩Dm = φ for m ≥ m∗
1.

By Remark 3.5(a), we can adjust the size of D∞m such that

Qr(z∗) ∩ Em ⊂ int(D∞m) for m ≥ m∗
2 ≥ m∗

1.

If there exists another critical point of f in Qr(z∗), we already have two nontrivial
solutions of (1.1) and the proof is complete. Suppose z∗ is the only critical point
of f in Qr(z∗). For m ≥ m∗

2, Set

Cm(r) = {z ∈ Em : r < ‖z − Pmz∗‖2 ≤ 2r},
Vm(r) = {z ∈ Em : ‖z − Pmz∗‖2 ≤ r}.

Then there exist m∗
3 ≥ m∗

2 such that for m ≥ m∗
3, we have

Cm(r) ⊆ Qr(z∗) ∩ Em, Vm(r) ⊆ Qr(z∗) ∩ Em,(3.51)

‖f ′m(z)‖ ≥ ρ for all z ∈ Cm(r),(3.52)

where ρ > 0 is a constant independent of m.
For otherwise, there exists zmk

∈ Cmk
(r) such that f ′mk

(zmk
) → 0 as k →∞.

Since {zmk
} are bounded, by standard arguments and passing to a subsequence

if necessary, zmk
converges to a critical point z∗∗ of f , z∗∗ ∈ Qr(z∗) and ‖z∗∗ −

z∗‖2 ≥ r. This is a contradiction to the assumption that z∗ is the only critical
point of f in Qr(z∗). Thus (3.52) holds.

Let a ∈ Em with ‖a‖ < ρ/34. Define

gm(z) = fm(z) + 〈a, z − Pmz∗〉h(‖z − Pmz∗‖2) on Em,
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where h: [0,∞) → [0, 1] is a smooth function satisfies

|h′(s)| ≤ 4/r for all s ∈ [0,∞),

h(s) = 0 for s ≥ 2r, h(s) = 1 for s ≤ 3r/2.

Then we have

(3.53) g′m(z) = f ′m(z) + a, g′′m(z) = f ′′m(z) for all z ∈ Vm(r).

(3.54) ‖g′m(z)‖ ≥ ‖f ′m‖ − ‖a‖ − 2‖z − Pmz∗‖2‖a‖4/r ≥ ρ/2 > 0

for all z ∈ Cm(r).

(3.55) gm(z) = fm(z) for all ‖z − Pmz∗‖2 ≥ 2r.

By Sard’s Lemma, we can choose the vector a in such a way that gm(z) has only
finite number of nondegenerate critical points in Vm(r), say {x1, . . . , xn}. By
(3.49), (3.51), (3.53) and Theorem 3.1, we have

(3.56) dim M−(g′′m(xj)) = dim M−(f ′′m(xj)) ∈ [m− i0 + i∗,m− i0 + i∗ + n∗],

for j = 1, . . . , n. Now (3.50), (3.51) and (3.55) imply that D∞m and Dm are
also isolating blocks of the gradient flow πm for gm generated by

dz

dt
= −g′m(z) on Em.

If {0, x1, . . . , xn} are all critical points of gm in D∞m, by Theorem 2.1(b) we
have

(3.57)
n∑

j=1

tdim M−(g′′m(xj)) + I(πm, Dm) = I(πm, D∞m) + (1 + t)Q(t).

Notice that

I(πm, Dm) = I(ηm, Dm) = tm+n0 ,

I(πm, D∞m) = I(ηm, D∞m) = tm−i0+i∞+n∞ .

By (3.56) and (3.57), we must have

m− i0 + i∞ + n∞ ∈ [m− i0 + i∗,m− i0 + i∗ + n∗],

m + n0 + 1 ∈ [m− i0 + i∗,m− i0 + i∗ + n∗], or

m + n0 − 1 ∈ [m− i0 + i∗,m− i0 + i∗ + n∗].

This imply that |i0 + n0 − i∞ − n∞| ≤ n∗ + 1 ≤ 2N + 1. This contradicts to the
conditions of (e). Therefore gm must have at least one critical point ym inside
D∞m other than {0, x1, . . . , xn}. By (3.54) and (3.55), ym is also a critical point
of fm, and

r0 ≤ ‖ym‖ ≤ R+ + R− + Rw, ‖ym − Pmz∗‖2 ≥ 2r.
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By standard arguments and passing to a subsequence if necessary, ym converges
to a critical point y∗ of f . Moreover,

‖y∗ − z∗‖2 ≥ 2r, ‖y∗‖ ≥ r0,

i.e. y∗ is another nontrivial 1-periodic solution of (1.1). �

Proof of Theorem 1.3. By Theorems 3.1 and 2.3, there exists m∗ > 0
such that for m ≥ m∗ and d = ‖(A−B∞)#‖−1/4, the relation (3.2) holds and

Em = M+
d (Pm(A−B∞)Pm)⊕M−

d (Pm(A−B∞)Pm)⊕M0
2εm

(Pm(A−B∞)Pm),

where εm is given by (2.3) for B = B∞, and εm → 0 as m →∞. Denote

U±m = {y± ∈ M±
d (Pm(A−B∞)Pm) : ‖y±‖ ≤ R±},

W∞ = {x ∈ M0
2εm

(Pm(A−B∞)Pm) : ‖x‖ ≤ Rw}.

According to the proof of Theorem 1.1, all we need to do is to show that there are
R+, R−, Rw > 0, which do not depend on m, such that D∞m = U+

m ×U−m ×W∞

is an isolating block of the gradient ηm generated by

dz

dt
= −Pm(A−B∞)Pmz + Pmg′∞(z) on Em.

In the following, {aj} are suitable positive constants independent of m. By
(H4±), we have

(3.58) ‖g′∞‖ ≤ a1‖z‖β∞ for ‖z‖ ≥ L∞.

For z = z+ + z− + z0 ∈ ∂U+
m × U−m ×W∞,〈

dz

dt
, z+

〉∣∣∣∣
t=0

= −〈Pm(A−B∞)Pmz+, z+〉+ 〈g′m(z), z+〉

≤ −d‖z+‖2 + a1‖z‖β∞‖z+‖ ≤ −dR2
+ + 3β∞a1R

β∞
w R+

= −dR+(R+ − a2R
β∞
w ) ≤ −dR2

+/2 < 0,

provided

(3.59) L∞ ≤ R+ = R− ≤ Rw, R+ = 2a2R
β∞
w .

Similarly, for z = z+ + z− + z0 ∈ U+
m × ∂U−m ×W∞,〈

dz

dt
, z−

〉∣∣∣∣
t=0

≥ d‖z−‖2 − a1‖z‖β∞‖z−‖ ≥ dR2
−/2 > 0

provided (3.59) holds.
Case 1. (H4+) holds. Then we have

(3.60) 〈G′∞(t, z), z〉 ≥ a3|z|α∞ − a4 for all (t, z) ∈ [0, 1]× R2N .
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For z = z+ + z− + z0 ∈ U+
m × U−m × ∂W∞, (3.33)–(3.39) still hold. Recall that

∆ =
{

t ∈ [0, 1] :
λ3

4
‖z0‖ ≤ |z0(t)| ≤ 4λ4‖z0‖

}
, ∆⊥ = [0, 1] \∆.

By (3.37)–(3.39), there exists m∗
1 ≥ m∗ such that for m ≥ m∗

1,

meas(∆⊥) ≤ (b4 + b5)εm, meas(∆) ≥ 1/2.

Notice that (3.59) implies ‖z+ + z−‖ ≤ a5‖z0‖β∞ . We have∫
∆

(z, z0)dt ≥
∫

∆

|z0|2dt− ‖z+ + z−‖‖z0‖

≥ (λ3/4)‖z0‖2meas(∆)− a6‖z0‖β∞+1

≥ (λ3/8)‖z0‖2 − a6‖z0‖β∞+1 ≥ (λ3/16)‖z0‖2,

provided

(3.61) Rw ≥ (16a6/λ3)Rβ∞
w .

On the other hand, if α∞ > 1,∫
∆

(z, z0) dt ≤ a7

( ∫
∆

|z|α∞ dt

)1/α∞

‖z0‖.

If α∞ = 1, we have ∫
∆

(z, z0) dt ≤
( ∫

∆

|z| dt

)
4λ4‖z0‖.

Therefore for α∞ ≥ 1,

(3.62)
∫

∆

|z|α∞ dt ≥ a8‖z0‖α∞ .

Now, by (3.58)–(3.62), we have

(3.63)
〈

dz

dt
, z0

〉∣∣∣∣
t=0

=
∫ 1

0

(G′∞(t, z), z0) dt− 〈Pm(A−B∞)Pmz0, z0〉

≥
∫ 1

0

a3|z|α∞ dt− a4 − a1‖z‖β∞‖z+ + z−‖ − 2εm‖z0‖2

≥
∫

∆

a3|z|α∞ dt +
∫

∆⊥
a3|z|α∞ dt− a4 − a9R

2β∞
w − 2εmR2

w

≥ a3a8‖z0‖α∞ − a10‖z‖α∞(meas∆⊥)1/2

− a4 − a9R
2β∞
w − 2εmR2

w

≥ a3a8R
α∞
w − a9R

2β∞
w − a4 − a11R

α∞
w ε1/2

m − 2εmR2
w

≥ (a3a8/2)Rα∞
w − a11R

α∞
w ε1/2

m − 2εmR2
w,

provided

(3.64) a3a8R
α∞
w ≥ 2(a9R

2β∞
w + a4).
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Since β∞ < 1 and α∞ > 2β∞, there exist R+,R− and Rw such that (3.59),
(3.61) and (3.64) hold. Moreover, R+,R− and Rw are independent of m. Since
εm → 0 as m →∞, by (3.63), there exists m∗

2 ≥ m∗
1 such that for m ≥ m∗

2,〈
dz

dt
, z0

〉∣∣∣∣
t=0

≥
(

a3a8

4

)
Rα∞

w > 0.

This implies that D∞m = U+
m × U−m ×W∞ is an isolating block with

D−
∞m = U+

m × ∂U−m ×W∞ ∪ U+
m × U−m × ∂W∞.

Moreover, by Theorem 3.1, we have

I(ηm, D∞m) = tdim(M−
d (Pm(A−B∞)Pm)⊕M0

2εm
(Pm(A−B∞)Pm)) = tm−i0+i∞+n∞ .

Case 2. (H4−) holds. Similar to Case 1, we can choose R+,R− and Rw

independent of m such that D∞m = U+
m × U−m ×W∞ is an isolating block with

D−
∞m = U+

m × ∂U−m ×W∞,

I(ηm, D∞m) = tdim(M−
d (Pm(A−B)Pm) = tm−i0+i∞ .

We omit the details of this part. The proof is complete. �

Example 3.6. Let H(t, z) ∈ C2([0, 1]×R2N , R) be 1-periodic in t such that

H(t, z) = −1 + π(z, z) + |z|4 for |z| ≤ 1,

H(t, z) = π − 2 arctan(|z|2)− π(z, z) for |z| ≥ 100.

Then B0(t) = 2πI2N , B∞(t) = −2πI2N and

G∞(t, z) = π − 2 arctan(|z|2), G0(t, z) = −1 + |z|4.

By direct computation, we have the Maslov-type indices

(i0, n0) = (N, 2N), (i∞, n∞) = (−N, 2N).

(a) It is easy to see that the Palais–Smale condition fails at level c = 0.
(b) One can easily verify that the strong resonance condition holds, i.e.

G∞(t, z) → 0, G′∞(t, z) → 0 as |z| → ∞.

Notice that
∫ 1

0
H(t, 0) dt < 0 and

i∞ + n∞ = N ∈ [N, 3N ] = [i0, i0 + n0].

If we apply the strong resonance results [8], [14] here, we can not get any con-
clusion.

(c) By direct computation, G0(t, z) satisfies (H2+) and G∞(t, z) satisfies
(H3−).

i0 + n0 − i∞ = 4N > 2N + 1.
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Theorem 1.1(f) implies that the system (1.1) possesses at least two nontrivial
1-periodic solutions. It seems that this example can not be solved by previous
results in the references.

Acknowledgments. The author expresses his sincere thanks to the referee
for useful suggestions.
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103–117.

[9] C. C. Conley, Isolated invariant sets and the Morse index, CBMS Regional Conf. Ser.

in Math. 38 (1978).

[10] C. Conley and E. Zehnder, Morse type index theory for flows and periodic solutions

for Hamiltonian equations, Comm. Pure Appl. Math. 37 (1984), 207–253.

[11] D. Dong and Y. Long, The iteration formula of the Maslov-type index theory with

applications to nonlinear Hamiltonian systems, Trans. Amer. Math. Soc. 349 (1997),
2619–2661.

[12] G. Fei, Maslov-type index and periodic solution of asymptotically linear Hamiltonian

systems which are resonant at infinity, J. Differential Equations 121 (1995), 121–133.

[13] , Nontrivial periodic solutions of asymptotically linear Hamiltonian systems,

Electron. J. Differential Equations 69 (2001), 1–17.

[14] G. Fei and Q. Qiu, Periodic solutions of asymptotically linear Hamiltonian systems,

Chinese Ann. Math. Ser. B 18 (1997), 359–372.

[15] Y. Guo, Nontrivial periodic solutions for asymptotically linear Hamiltonian systems

with resonance, J. Differential Equations 175 (2001), 71–87.

[16] M. Izydorek, Bourgin–Yang type theorem and its application to Z2-equivariant Hamil-
tonian systems, Trans. Amer. Math. Soc. 351 (1999), 2807–2831.

[17] , A cohomological Conley index in Hilbert spaces and applications to strongly
indefinite problems, J. Differential Equations 170 (2001), 22–50.

[18] S. Li and J. Q. Liu, Morse theory and asymptotically linear Hamiltonian systems,
J. Differential Equations 78 (1989), 53–73.



114 G. Fei

[19] Y. Long, Maslov-type index, degenerate critical points and asymptotically linear Hamil-

tonian systems, Sci. China Ser. A 33 (1990), 1409–1419.

[20] , The Index Theory of Hamiltonian Systems with Applications, Science Press,

Beijing, 1993.

[21] Y. Long and E. Zehnder, Morse theory for forced oscillations of asymptotically lin-

ear Hamiltonian systems, Stochatic Processes, Physics and Geometry (S. Albeverio and
others, eds.), Proc. of Conf. in Asconal/Locarno, Switzerland, World Scientific, 1990,

pp. 528–563.

[22] J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems, Appl.

Math. Sci. 74 (1989).

[23] P. H. Rabinowitz, Minimax methods in critical point theory with applications to dif-

ferential equations, CBMS Regional Conf. Ser. in Math. 65 (1986).

[24] D. Salamon, Connected simple systems and the Conley index of isolated invariant sets,
Trans. Amer. Math. Soc. 291 (1985), 1–41.

[25] J. Su, Nontrivial periodic solutions for the asymptotically linear Hamiltonian systems
with resonance at infinity, J. Differential Equations 145 (1998), 252–273.

[26] A. Szulkin, Cohomology and Morse theory for strongly indefinite functionals, Math. Z.
209 (1992), 375–418.

[27] A. Szulkin and W. Zou, Infinite dimensional cohomology groups and periodic solutions
of asymptotically linear Hamiltonian systems, J. Differential Equations 174 (2001), 369–

391.

Manuscript received October 10, 2002

Guihua Fei

Department of Mathematics and Statistics
University of Minnesota

Duluth, MN 55812, USA

E-mail address: gfei@d.umn.edu

TMNA : Volume 23 – 2004 – No 1


