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Abstract. Let (X, d) be a nonempty metric space, and let (2X , Hd) be

the hyperspace of all nonempty compact subsets of X with the Hausdorff
metric. Let F : X → 2X be an ε-contractive map. A general condition is

given that guarantees the existence of a periodic point of F (the theorem

extends a result of Edelstein to multi-valued maps). The condition holds
when X is compact; hence, F has a periodic point when X is compact. It

is shown that F has a fixed point (a point p ∈ F (p)) if X is a continuum.

Applications to single-valued ε-expansive maps are given.

1. Introduction

Edelstein in [2] proved the following two results (definitions are in Section 2):
Let (X, d) be a metric space, and let f :X → X be a map such that for some
point x ∈ X, some subsequence of the sequence {fn(x)}∞n=1 of iterates converges
to a point p ∈ X. If f is contractive, then p is a fixed point of f ; if f is
ε-contractive, then p is a periodic point of f .

Edelstein’s fixed point result for contractive maps was extended to multi-
valued maps in [4, p. 664]; however, Edelstein’s periodic point result for ε-
contractive maps was not extended to multi-valued maps in [4]. As a co-author
of [4], I can affirm that Edelstein’s result for ε-contractive maps was not ex-
tended to multi-valued maps for the simple reason that we could not prove the
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extended version. In this paper we prove the generalization to multi-valued ε-
contractive maps of Edelstein’s result for single-valued ε-contractive maps; we
also prove a fixed point theorem for multi-valued ε-contractive maps, and we
give applications to single-valued ε-expansive maps. Our main results are The-
orem 3.2, Corollary 3.3 and Theorem 4.3; our applications are in Theorem 5.2
and Theorem 5.3.

Theorem 3.2 is for multi-valued maps whose values are nonempty compact
sets; we will show at the end of Section 3 that the theorem does not generalize
to maps whose values are nonempty, closed and bounded sets.

2. Definitions and preliminary results

We present the basic terminology and notation; we then include a few minor
results that we use several times.

Throughout the paper, X denotes a nonempty metric space with a given
metric d. For a point x ∈ X and a nonempty subset A of X,

d(x,A) = inf
a∈A

d(x, a)

A continuum is a nonempty compact connected metric space. A map is a con-
tinuous function.

The hyperspaces CB(X) and 2X are the spaces

CB(X) = {A ⊂ X : A is nonempty, closed and bounded}

and
2X = {A ⊂ X : A is nonempty and compact}

with the Hausdorff metric Hd induced by the metric d, defined by

Hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}.

This definition of Hd is equivalent to another frequently given definition [5, p. 11]
(also, 2.7 of [5, p. 14]).

For any map F :X → 2X , there is a natural induced map F̂ defined on 2X as
follows: For each A ∈ 2X ,

F̂ (A) =
⋃
a∈A

F (a) =
⋃

F (A)

(see Proposition 2.2).
Let ε > 0. A map f :X → X is said to be contractive (ε-contractive) provided

that for all x, y ∈ X with x 6= y (and d(x, y) < ε, respectively), d(f(x), f(y)) <

d(x, y) (see [2]). A multi-valued contractive (ε-contractive) map is a map F :X →
CB(X) such that for all x, y ∈ X with x 6= y (and d(x, y) < ε, respectively),
Hd(F (x), F (y)) < d(x, y).
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Confusion between the single-valued and multi-valued notions we just defined
could occur in connection with the induced map F̂ since F̂ maps to a hyperspace.
When we say F̂ is contractive or ε-contractive, we always mean in the single-
valued sense. We remind the reader of this in two ways: we always include the
modifier multi-valued when referring to a multi-valued map, and we often include
the domain and range of a map to emphasize the type of map being considered.
The distinction between multi-valued maps to hyperspaces and single-valued
maps of hyperspaces to hyperspaces is important when it comes to considering
fixed points and periodic points (defined below).

Let Z be a set, let f :Z → Z be a function, and let n ≥ 1 be an integer.
Then fn denotes the n-th iterate of f (i.e. the composition f ◦ . . . ◦ f of f with
itself n− 1 times).

A periodic point of a (single-valued) map f :X → X is a point p ∈ X such
that fn(p) = p for some integer n ≥ 1.

A fixed point of a multi-valued map F :X → CB(X) is a point p ∈ X such
that p ∈ F (p).

A periodic point of a multi-valued map F :X → 2X is a point p ∈ X such that
p ∈ F̂n({p}) for some integer n ≥ 1. When F maps X to CB(X), the definition of
a periodic point must be done more carefully since the analogue of F̂ for CB(X)
may not map to CB(X): p is a periodic point of F :X → CB(X) provided that
there are finitely many points p0 = p, p1, . . . , pn such that pi ∈ F (pi−1) for each
i = 1, . . . , n and p ∈ F (pn).

We often use one or another of the four propositions below. For a proof of
the following result, see 3.5 of [5, p. 18] or 4.13 of [7, p. 59].

Proposition 2.1. If Z is a compact metric space, then 2Z is compact.

Proposition 2.2. If F :X → 2X is a map, then F̂ maps 2X back into 2X

and is continuous.

Proof. Since F is continuous, F̂ maps 2X back into 2X because the union of
a compact subset of 2X is compact [5, 11.5(1), p. 91]. Since F and the union map
∪: 22X → 2X are continuous [5, 11.5(2), p. 91]), we see that F̂ is continuous. �

Proposition 2.3. Let Y ∈ 2X . If F :X → 2X is a map such that F̂m(Y ) ⊂
Y for some integer m ≥ 1, then F̂m|2Y maps 2Y to 2Y .

Proof. We prove the result for the case when m = 1; the result for any m

then follows using Proposition 2.2 (with X = Y ).
For any A ∈ 2Y , F̂ (A) =

⋃
a∈A F (a) ⊂

⋃
y∈Y F (y) = F̂ (Y ); thus, since

F̂ (Y ) ⊂ Y by assumption, F̂ (A) ⊂ Y . Therefore, since F̂ (A) ∈ 2X by Proposi-
tion 2.2, F̂ (A) ∈ 2Y . �
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Proposition 2.4. If F :X → 2X is a multi-valued ε-contractive map, then
F̂m: 2X → 2X is an ε-contractive map for each integer m ≥ 1.

Proof. First note that F̂m does map 2X to 2X by Proposition 2.2.
We prove that F̂m is ε-contractive when m = 1; the proof for any m is then

an easy induction which we omit.
Let A,B ∈ 2X such that A 6= B and Hd(A,B) < ε. By the symmetry in the

definition of Hd, we need only prove that

(∗) sup
x∈ bF (A)

d(x, F̂ (B)) < Hd(A,B).

Let x ∈ F̂ (A). Then x ∈ F (a0) for some a0 ∈ A. Hence,

(1) d(x, F (b0)) ≤ Hd(F (a0), F (b0)).

Since a0 ∈ A, d(a0, B) ≤ Hd(A,B). Let b0 ∈ B such that d(a0, b0) = d(a0, B).
Then d(a0, b0) ≤ Hd(A,B). Hence, d(a0, b0) < ε. Thus, considering the cases
when a0 6= b0 and when a0 = b0 separately, we have that

(2) Hd(F (a0), F (b0)) < Hd(A,B).

Since b0 ∈ B, F (b0) ⊂ F̂ (B); hence, clearly, d(x, F̂ (B)) ≤ d(x, F (b0)). Thus,
by (1) and (2), we have

(3) d(x, F̂ (B)) < Hd(A,B).

Finally, note that F̂ (A) is compact by Proposition 2.2; therefore, having
proved (3) for all x ∈ F̂ (A), (∗) follows from the compactness of F̂ (A). �

3. Existence of periodic points

The following lemma is elementary; nevertheless, it is a key observation for
the proof of our main theorem (Theorem 3.2).

Lemma 3.1. If X is compact and f :X → X is an ε-contractive map, then
f has only finitely many periodic points.

Proof. Assume that p and q are periodic points of f with p 6= q such that
d(p, q) < ε. Let k, ` ≥ 1 be integers such that fk(p) = p and f `(q) = q. Note
that p = fk`(p) and q = fk`(q). Thus, since fk` is ε-contractive,

d(p, q) = d(fk`(p), fk`(q)) < d(p, q),

which is impossible. Therefore, we have proved that any two periodic points of f

must be at least ε apart. The lemma now follows from the compactness of X.�

Theorem 3.2. Let F :X → 2X be a multi-valued ε-contractive map. Assume
that for some A ∈ 2X , a subsequence {F̂ni(A)}∞i=1 of {F̂n(A)}∞n=1 converges to
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a point B ∈ 2X . Then there is a point b0 ∈ B such that b0 is a periodic point
of F .

Proof. By Proposition 2.4, F̂ : 2X → 2X is an ε-contractive map. Hence,
by Theorem 2 of [2], B is a periodic point of F̂ , say F̂ k(B) = B (k a positive
integer).

Since B ∈ 2X and F̂ k(B) = B, we see by Proposition 2.3 that F̂ k|2B maps
2B to 2B ; furthermore, by Proposition 2.4, F̂ k|2B : 2B → 2B is ε-contractive.
Thus, since 2B is compact (Proposition 2.1), we see from Lemma 3.1 that F̂ k|2B

has only finitely many periodic points, say B1 = B,B2, . . . , Bn. At least one of
the sets B1, . . . , Bn does not contain any of the others. Since we will have no
further use for the assumption in our theorem that {F̂ni(A)}∞i=1 → B, we can
assume without loss of generality that B itself is such a minimal set; that is, no
compact proper subset of B is a periodic point of F̂ k.

Let p ∈ B. Note that F̂ kn(B) = B for each integer n ≥ 1; hence, by
Proposition 2.3, F̂ kn({p}) ∈ 2B for each integer n ≥ 1. Thus, since 2B is
compact (by Proposition 2.1), the sequence {F̂ kn({p})}∞n=1 has a convergent
subsequence {F̂ kni({p})}∞i=1, say

{F̂ kni({p})}∞i=1 → C ∈ 2B .

Then, since F̂ k|2B : 2B → 2B is ε-contractive, Theorem 2 of [2] gives us that C

is a periodic point of F̂ k. Therefore, since C is a compact subset of B, C = B

by the minimality of B. Hence,

{F̂ kni({p})}∞i=1 → B.

Therefore, there is an integer ` ≥ 1 such that d(p, F̂ kn`({p})) < ε.
Since we will use the map F̂ kn` |2B many times throughout the rest of the

proof, let us denote F̂ kn` |2B by G and list three relevant properties of G that
we already know:

(1) G maps 2B to 2B (by Proposition 2.3 since F̂ k(B) = B),
(2) G is ε-contractive (by Proposition 2.4),
(3) d(p, G({p})) < ε (by our choice of `).

Now, let r = infb∈B d(b, G({b})). Note from (3) the following important
fact:

(4) r < ε.

Since B is compact and G is continuous, we see that

(5) r = d(b0, G({b0})) for some point b0 ∈ B.

We show that the point b0 in (5) satisfies the conclusion of our theorem. Since
we already know that b0 ∈ B (by (5)), we are left to show that b0 is a periodic
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point of F . We show this by proving that

(∗) r = 0.

Since G({b0}) is nonempty and compact (by (1)), we see from (5) that

(6) r = d(b0, y) for some point y ∈ G({b0}).

Proof of (∗). Now, suppose by way of contradiction that (∗) is false, i.e.
r > 0. Then, by (6), b0 6= y; in addition, d(b0, y) < ε by (4) and (6). Hence,
by (2) and (6), we have that

(7) Hd(G({b0}), G({y})) < d(b0, y) = r.

Since y ∈ G({b0}) (by (6)), it follows from the definition of Hd that

d(y, G({y})) ≤ Hd(G({b0}), G({y})),

hence, by (7), we have that

(8) d(y, G({y})) < r.

Now, note that y ∈ B (since y ∈ G({b0}) ⊂ B by (6) and (1)). Thus, (8)
contradicts the fact that r = infb∈B d(b, G({b})). Therefore, we have proved (∗).

Finally, since r = 0, we see from (5) that b0 ∈ G({b0}) = F̂ kn`({b0}), which
proves that b0 is a periodic point of F . �

Corollary 3.3. If X is compact and F :X → 2X is a multi-valued ε-
contractive map, then F has a periodic point.

Proof. There exists A ∈ 2X (recall from section 2 that X 6= ∅). Therefore,
since 2X is compact (Proposition 2.1), the corollary follows from Theorem 3.2.�

We prove in the next section that the map F in Corollary 3.3 has a fixed
point when X is a continuum.

The generalization of the Banach Contraction Mapping Theorem to multi-
valued maps with values in the general space CB(X) was proved in Theorem 5
of [8, p. 479]. However, our Theorem 3.2 would be false for maps with values
in CB(X).

Example 3.4. The map F :X → CB(X) in the example in [4, p. 665] is
contractive (hence ε-contractive for any ε > 0). For a particular point, denoted
by y in [4], the sequence {F̂n({y})}∞n=1 of iterates in CB(X) is constant, hence
convergent. However, it is easy to see that the map F has no periodic point.

4. A Fixed Point Theorem

In Corollary 3.3 we proved that if X is compact and F :X → 2X is a multi-
valued ε-contractive map, then F has a periodic point. Simple examples show
that even single-valued ε-contractive selfmaps of compact metric spaces may
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not have fixed points (e.g. the fixed point free map of {0, 1} onto {0, 1} is
1-contractive). Nevertheless, we prove in Theorem 4.3 that when X is a con-
tinuum, a multi-valued ε-contractive map F :X → 2X must have a fixed point.
Theorem 4.3 for single-valued ε-contractive maps follows from 6.2 of [2, p. 78].

We have tried, but failed, to obtain Theorem 4.3 directly from Theorem 3.2
and Corollary 3.3. The proof we give is based on combining a few facts and
techniques in the literature. In essence, the proof is a matter of adjusting part
of the proof of Theorem 6 of [8]; the adjustment is made possible by a fact from
a proof in [9, p. 216].

We often consider another metric on X along with the original metric d. For
clarity (in this section only), we write (X, d) to remind the reader that d denotes
the original metric.

We need a definition and some notation.
Let x, y ∈ X. An δ-chain in X from x to y is a finite indexed set of points

x0 = x, x1, . . . , xn = y of X such that d(xi, xi+1) ≤ δ for all i = 0, . . . , n − 1
(the usual condition is d(xi, xi+1) < δ, but the last part of Lemma 4.1 is easier
to state if we allow d(xi, xi+1) to be δ). We denote the collection of all δ-chains
in X from x to y by Cδ(x, y).

Let (X, d) be a continuum, and let δ > 0. Define dδ:X ×X → R1 as follows:

dδ(x, y) = inf
{ n−1∑

i=0

d(xi, xi+1) : {x0, . . . , xn} ∈ Cδ(x, y)
}

.

The idea of using dδ in connection with changing local Lipschitz maps to
global Lipschitz maps seems to have originated in 2.34 of [3, p. 691] (although
the germ of the idea is apparent in the proof of the Proposition in [1, p. 8]). The
idea was used in [8, p. 481] and then in [9, p. 216].

The lemma below summarizes the general properties of dδ, its relation to d,
and the relation of Hdδ

to Hd. For a proof of the parts of the lemma not
involving the Hausdorff metrics, see [9, pp. 216–217]; the part involving the
Hausdorff metrics is easy (as was noted in the proof of Theorem 6 of [4]).

Lemma 4.1. Let (X, d) be a continuum, and let δ > 0. Then dδ is a met-
ric giving the topology on X, d ≤ dδ, d(x, y) = dδ(x, y) if d(x, y) < δ, and
Hdδ

(A,B) = Hd(A,B) for all A,B ∈ 2X such that Hd(A,B) < δ. Further-
more, for any points x, y ∈ X, there exists {x0, . . . , xn} ∈ Cδ(x, y) such that
dδ(x, y) =

∑n−1
i=0 d(xi, xi+1).

The following theorem is the multi-valued analogue of Theorem 2.1 of [9]
(in the presence of compactness, locally contractive as defined in [9] is the same
as ε-contractive for some ε > 0, as is readily seen using Lebesgue numbers of
covers [6, p. 24]).
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Theorem 4.2. Let (X, d) be a continuum, and let F :X → 2X be a multi-
valued ε-contractive map with respect to Hd and d. Then, for any δ such that
0 < δ < ε, F is a multi-valued contractive map with respect to the metrics Hdδ

and dδ.

Proof. Fix δ such that 0 < δ < ε. Let x, y ∈ X such that x 6= y. By
Lemma 4.1, there exists {x0, . . . , xn} ∈ Cδ(x, y) with xi 6= xi+1 for each i ≤ n−1
such that

(1) dδ(x, y) = Σn−1
i=0 d(xi, xi+1).

Since d(xi, xi+1) < ε and xi 6= xi+1 for each i, and since F :X → 2X is
a multi-valued ε-contractive map with respect to Hd and d, we have

(2) Hd(F (xi), F (xi+1)) < d(xi, xi+1) for each i ≤ n− 1.

Since d(xi, xi+1) ≤ δ for each i, (2) gives us that Hd(F (xi), F (xi+1)) < δ for
each i; hence, by Lemma 4.1, we have

(3) Hdδ
(F (xi), F (xi+1)) = Hd(F (xi), F (xi+1)) for each i ≤ n− 1.

Now, using the triangle inequality, then using (3), (2) and (1) in turn,

Hdδ
(F (x), F (y)) ≤

n−1∑
i=0

Hdδ
(F (xi), F (xi+1))

=
n−1∑
i=0

Hd(F (xi), F (xi+1)) <
n−1∑
i=0

d(xi, xi+1) = dδ(x, y). �

Theorem 4.3. If X is a continuum and F :X → 2X is a multi-valued ε-
contractive map, then F has a fixed point.

Proof. Fix δ such that 0 < δ < ε. Since X with its original metric d is
compact, (X, dδ) is compact by Lemma 4.1. Hence, (2X ,Hdδ

) is compact by
Proposition 2.1. Therefore, the theorem follows from Theorem 4.2 and Theo-
rem 4 of [4]. �

5. Applications to single-valued ε-expansive maps

Let Y ⊂ X, and let ε > 0. A map f :Y → X is said to be ε-expansive provided
that for all y1, y2 ∈ Y such that y1 6= y2 and d(y1, y2) < ε, d(f(y1), f(y2)) >

d(y1, y2).
An open map of a space Y onto a space X is a continuous function that takes

open sets in Y onto open sets in X.
Using Corollary 3.3 and Theorem 4.3, we prove theorems about the existence

of periodic points and fixed points of ε-expansive open maps. The theorems are
related to Theorems 7 and 8 of [8] and to Theorem 3.0 of Rosenholtz (see [9]).
We state Rosenholtz’s theorem and make specific comments about its relation
to our theorems after the proof of Theorem 5.2.
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Lemma 5.1. Let X be compact, let Y be a nonempty compact subset of X,
and let p ∈ X. If f :Y → X is a map of Y onto X, then fn[f̂−1

n
({p})] = p for

each integer n ≥ 1.

Proof. The proof is by induction. For n = 1, f̂−1({p}) =
⋃

a∈{p} f−1(a) =

f−1(p); therefore, f [f̂−1({p})] = p.
Now, assume inductively that fn[f̂−1

n
({p})] = p for some integer n ≥ 1.

Note that

f̂−1
n+1

({p}) = f̂−1[f̂−1
n
({p})] =

⋃
a∈df−1

n
({p})

f−1(a).

Hence, if x ∈ f̂−1
n+1

({p}), then x ∈ f−1(a0) for some a0 ∈ f̂−1
n
({p}). Thus,

f(x) = a0 and, by our inductive assumption, fn(a0) = p; therefore, fn+1(x) = p.

This proves that fn+1[f̂−1
n+1

({p})] = p. �

Theorem 5.2. Let X be compact, and let Y be a nonempty compact subset
of X. If f :Y → X is an ε-expansive open map of Y onto X, then f has a periodic
point.

Proof. Since f :Y → X is an open map of Y onto X, f−1:X → 2Y is
continuous [7, p. 280]. Thus, since X is compact, f−1 is uniformly continuous.
Hence, there exists δ > 0 such that

(1) Hd(f−1(x1), f−1(x2)) < ε for all x1, x2 ∈ X such that d(x1, x2) < δ.

We show that f−1:X → 2Y is a multi-valued δ-contractive map. Fix points
x1, x2 ∈ X such that x1 6= x2 and d(x1, x2) < δ. It follows from the definition of
the Hausdorff metric that there are points y1 ∈ f−1(x1) and y2 ∈ f−1(x2) such
that

(2) Hd(f−1(x1), f−1(x2)) = d(y1, y2).

Since d(x1, x2) < δ, we see from (1) and (2) that d(y1, y2) < ε; also, y1 6=
y2 since x1 6= x2. Thus, since f is ε-expansive, d(f(y1), f(y2)) > d(y1, y2).
Therefore, since f(yi) = xi, we see from (2) that

Hd(f−1(x1), f−1(x2)) < d(f(y1), f(y2)) = d(x1, x2).

This proves that f−1 is a multi-valued δ-contractive map.
We can now apply Corollary 3.3 to see that f−1 has a periodic point p. This

means that for some integer n ≥ 1,

p ∈ f̂−1
n
({p}).

Therefore, fn(p) = p by Lemma 5.1. �

Rosenholtz [9, p. 217] proved the following result: An ε-expansive open map
of a continuum onto itself has a fixed point. (Rosenholtz’s theorem is stated for
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locally expansive maps; however, for compact spaces, locally expansive as defined
in [9] is equivalent to ε-expansive for some ε > 0, as is seen using Lebesgue
numbers of covers [6, p. 24].)

In comparing Theorem 5.2 with Rosenholtz’s theorem, we find it particularly
interesting that when connectedness is dropped from Rosenholtz’s theorem, the
first cousins of fixed points – periodic points – still exist, and this happens even
when the map f is not defined on all of X.

Our next theorem shows that Rosenholtz’s theorem can be extended to the
situation when the map is not defined on the entire continuum; in fact, we do
not even require the domain of the map to be a continuum (see the last comment
below).

Theorem 5.3. Let X be continuum, and let Y be a nonempty compact subset
of X. If f :Y → X is an ε-expansive open map of Y onto X, then f has a fixed
point.

Proof. As in the proof of Theorem 5.2, there exists δ > 0 such that
f−1:X → 2Y is a multi-valued δ-contractive map. Therefore, by Theorem 4.3,
f−1 has a fixed point p. Obviously, p is a fixed point of f . �

Theorems 5.2 and 5.3 have applications to n-manifolds that are similar to but
more general than the results in [10, p. 3]. The statements of the applications
we have in mind are straightforward adjustments of the results in [10, p. 3], so
we do not state them here.

It is necessary for f to be open in Theorem 5.3, as is seen from the example
in [10, p. 4]. However, we do not know if it is necessary for f to be open
in Theorem 5.2.

Note that even though we do not require Y in Theorem 5.3 to be a contin-
uum, there must be a component C of Y that maps onto X (by 13.14 of [7,
p. 284]); however, f |C may not be an open map. Thus, recalling that Theo-
rem 5.3 would be false without requiring f to be open, Theorem 5.3 is of interest
in the generality stated.
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