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ON A MULTIVALUED VERSION
OF THE SHARKOVSKII THEOREM

AND ITS APPLICATION TO DIFFERENTIAL INCLUSIONS, III

Jan Andres — Karel Pastor

Abstract. An extension of the celebrated Sharkovskĭı cycle coexisting

theorem (see [14]) is given for (strongly) admissible multivalued self-maps
in the sense of [8], on a Cartesian product of linear continua. Vectors of

admissible self-maps have a triangular structure as in [10]. Thus, we make
a joint generalization of the results in [2], [5], [6] (a multivalued case),

in [10] (a multidimensional case), and in [15] (a linear continuum case).
The obtained results can be applied, unlike in the single-valued case, to

differential equations and inclusions.

1. Introduction

The classical Sharkovskĭı cycle coexisting theorem ([14]) says that if a con-
tinuous function f : R → R has a point of period n with n � k, where n � k denotes
that n is greater than k in the Sharkovskĭı ordering of positive integers, namely

3 � 5 � 7 � . . . � 2 · 3 � 2 · 5 � 2 · 7 � . . . � 22 · 3 � 22 · 5 � 22 · 7 � . . .

. . . � 2n · 3 � 2n · 5 � 2n · 7 � . . . � 2n+1 · 3 � 2n+1 · 5 � 2n+1 · 7 � . . .

. . . � 2n+1 � 2n � . . . � 22 � 2 � 1,

then it has also a point of period k.
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By a point x0 ∈ R of period m ∈ N (shortly, an m-periodic point) to f we
mean the fixed-point of the m-th iterate fm of f (i.e. of the m-fold composition
of f with itself), but x0 �= fj(x0), for 1 ≤ j < m.

This deep result was extended in various directions (see e.g. [2], [5], [6],
[10], [15], and the references therein).

In [15], it was shown by H. Schirmer that R can be replaced by a linear
continuum L and that this replacement is in a certain sense the only possible
one.

Definition 1.1. We say that a (linearly) ordered set L with more than one
point is a linear continuum, whenever

(a) L has the least upper bound property,
(b) L is order dense, i.e. if x < y, then there exists z so that x < z < y,

and we endow L with the order topology, by which L becomes a topological
(Hausdorff) space.

The linear continuum is not a continuum as usual. As typical examples
of linear continua are usually mentioned the real line, any interval or the unit
square in the lexicographical order. We also recall that an ordered set in the
order topology is a linear continuum if and only if it is connected.

Theorem 1.2 ([15]). Let L be a linear continuum and let f : L → L be
a continuous function. If f has an n-periodic point, then f has also a k-periodic
point, for every k � n.

Because of well-known counter-examples (cf. [10]), R cannot be replaced
by R

N , where N > 1, in general. Nevertheless, for the maps f : R
N → R

N

having a special “triangular” structure, the following theorem was obtained by
P. E. Kloeden in [10].

Theorem 1.3 ([10, Section 3]). Let I be a compact subset of R
N of the form

I =
N∏

i=1

Ii,

where Ii ⊂ R is a compact interval, for i = 1, . . . , N , N ∈ N, and let f : I → I

be a continuous mapping of the form

fi(x1, . . . , xN) = fi(x1, . . . , xi),

for i = 1, 2, . . . , N , i.e. a mapping for which the i-th component fi depends only
on the first independent variables x1, . . . , xi. If f has an n-periodic point, then
f has also a k-periodic point, for every k � n.

Remark 1.4. By the same reasons as in R (see [13]), the assertion of The-
orem 1.3 holds, without any change, for f : R

n → R
n as well.
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In [2], [5], [6], a multivalued version of Sharkovskĭı’s theorem was presented
in terms of orbits for upper-semicontinuous maps whose sets of values are either
single points or closed intervals in R (i.e. in particular, compact and convex sets)
which we called as M -maps. Let us recall that a multivalued mapping ϕ: X �Y

(i.e. ϕ: X → 2Y \ {∅}) is upper-semicontinuous if ϕ−1(U) = {x ∈ X: ϕ(x) ⊂ U}
is open in X, for every open subset U of Y .

By an orbit of k-th order (shortly, a k-orbit) to an M -map ϕ, we mean
a sequence {xi}∞

i=0 such that

(a) xi+1 ∈ ϕ(xi), i = 0, 1, . . . ,
(b) xi = xi+k, i = 0, 1, . . . ,
(c) this orbit is not a product orbit formed by going p-times around a shorter

orbit of m-th order, where mp = k.

If still

(d) xi �= xj, for i �= j, i, j = 0, . . . , k − 1,

then we speak about a primary orbit of k-th order (shortly, a primary k-orbit).

Theorem 1.5 ([6, Corollary 7]). Let an M -map ϕ: R �R have an n-orbit,
where n = 2mq, m ∈ N0 = N ∪ {0}, and q is odd, and let n be maximal in the
Sharkovskĭı ordering.

(a) If q > 3, then ϕ has a k-orbit, for every k � n, except k = 2m+2.
(b) If q = 3, then ϕ has a k-orbit, for every k � n, except k = 2m+13, 2m+2,

2m+1.
(c) If q = 1, then ϕ has a k-orbit, for every k � n.

Corollary 1.6. Let an M -map ϕ: R �R have an n-orbit, n ∈ N. Then ϕ

has also a k-orbit, for every k � n, with the exception of at most three orbits.

Let us note that (at most three) exceptional orbits in Theorem 1.5 and Corol-
lary 1.6 are due to counter-examples (see [2], [6]) by which a full multivalued
analogy to classical (single-valued) Sharkovskĭı’s theorem fails, in general.

The aim of the present paper is to make a joint generalization of Theo-
rems 1.2, 1.3 and 1.5. The obtained results (Theorem 4.1 and Corollary 4.3) are
then applied to differential systems.

In the first stage, when replacing R by L in Theorem 1.5 (see Theorem 3.8
and Corollary 3.9), the notion of M -maps will be understood in a more general
setting.

Definition 1.7. An upper-semicontinuous mapping ϕ: L �L is called an
M -map, whenever the sets of values of ϕ are either single points or (nonempty)
closed intervals of L.

The generalized notion of convexity on L will be understood in a similar way,
namely it is nothing else than connectedness.
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On the other hand, on (finite) Cartesian products L × . . . × L of L, the most
natural extension of M -maps is, in view of applications to differential equations
in Chapter 5, the class of (strongly) admissible maps in the sense of L. Górniewicz
([3], [8]).

Definition 1.8. Assume that X, Y are topological Hausdorff spaces and
that ϕ: X �Y . We say that ϕ is admissible if there exists a topological Hausdorff
space Γ and two continuous (single-valued) mappings p: Γ ⇒ X, q: Γ → Y such
that:

(a) p is onto,
(b) p is perfect, i.e. p is closed and p−1(x) is compact for all x ∈ X,
(c) p−1(x) is acyclic, i.e. homologically the same as a one point space (for

more details, see [3], [8]),
(d) ϕ(x) = q(p−1(x)) for all x ∈ X.

Let us note that in [8], where the spaces X, Y were only metric, these maps
are called strongly admissible, while by admissible maps those having a (mul-
tivalued) strongly admissible selection (i.e. q(p−1(x)) ⊂ ϕ(x), for all x ∈ X, in
(d)) were understood. Moreover, in metric spaces, p can be only proper in (b)
(i.e. p−1(x) compact, for all x ∈ X), because the closedness of p follows there
automatically.

The closedness of p is essential, because it implies, jointly with (a), the upper-
semicontinuity of p−1, and subsequently (see (d)) of ϕ. Since the continuous
q-image of the compact and acyclic (i.e. in particular, connected) set p−1(x)
(see (b) and (c)) is compact and connected, the same must be true (see (d))
for ϕ. Thus, admissible maps are always upper-semicontinuous with nonempty,
compact and connected values.

There is still another remarkable property of admissible maps, namely that
their class is closed w.r.t. finite compositions. This follows from the following
commutative diagram:

X
ϕ1

�� Y
ϕ2

�� Z

p1

⇐
= ↗q1 p2

⇐
= ↗q2

Γ1 Γ2

p̃

⇐
= ↗̃q

Γ := {(u, v) ∈ Γ1 × Γ2 : q1(u) = p2(v)},

where p̃, q̃ are natural projections, because

q(p−1(x)) = ϕ2(ϕ1(x)) for all x ∈ X,

where p(u, v) = p1 ◦ p̃ (u, v) = p1(u) and q(u, v) = q2 ◦ q̃ (u, v) = q2(v). In other
words, a finite composition of admissible maps is also admissible.
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Since admissible maps ϕ: L �L reduce themselves on L obviously to M -maps
in the sense of Definition 1.7, and, vice versa, M -maps on L can be easily checked
to be admissible in the sense of Definition 1.8, we have an equivalence on L, and
so their class is again closed w.r.t. finite compositions and, in particular, w.r.t.
iterations.

Let us note that we could even consider the class of upper-semicontinuous
maps with compact connected values for the same aim. However, then we do
not have to our disposal any sufficient conditions guaranteing the existence of
the given n-orbit.

Let us finally point out that, in contrast to this, the existence of at least one
or several n-orbits to special (e.g. compact) admissible self-maps on ANR-spaces
can be guaranteed by the recent results in [4], obtained by means of the Lefschetz
and the Nielsen periodic-point theorems.

2. Alternative proof of an important statement

In this section, the alternative proof of Theorem 4 in [2] is mainly presented
which is also suitable for a linear continuum extension. Besides Theorem 4
(in [2]), three simple lemmas play a fundamental role in the proof of the above
Theorem 1.5. The first one (cf. [2, Lemma 1]) can be easily extended from a real
line to a linear continuum in the following way.

Lemma 2.1. Let ϕ: I � L be an M -map, where I = [a, b] ⊂ L is a closed
interval. If there are points A ∈ ϕ(a) and B ∈ ϕ(b) such that a < A, B < b or
a > A, B > b, then there exists a fixed-point of ϕ.

Proof. At first, we consider the case a < A, B < b. We define s :=
sup{t ∈ [a, b] : there exists T ∈ ϕ(t) such that T ≥ t}. Thanks to a < A, s is
well-defined. Assuming the existence of S1 ∈ ϕ(s), S1 > s, and the absence of
S2 ∈ ϕ(s), S2 ≤ s (what immediately implies s �= b), we obtain a contradiction
with the upper-semicontinuity of ϕ, because ϕ(s) is compact and ϕ(t) < t, for
every t > s.

Assuming the existence of S2 ∈ ϕ(s), S2 < s, and the absence of S1 ∈ ϕ(s),
S1 ≥ s (what immediately implies s �= a), we obtain again, in view of the
definition of s, a contradiction to the upper-semicontinuity of ϕ. Thus, s is a
fixed-point of ϕ.

Now, we consider the case a > A, B > b. We define r := inf{t ∈ [a, b] :
there exists T ∈ ϕ(t) such that T ≥ t}. Assuming the existence of R1 ∈ ϕ(r),
R1 > r, and the absence of R2 ∈ ϕ(r), R2 ≤ r (what immediately implies
r �= a), we obtain a contradiction to the upper-semicontinuity of ϕ, because ϕ(r)
is compact and ϕ(t) < t, for every t < r.

Assuming the existence of R2 ∈ ϕ(r), R2 < r, and the absence of R1 ∈
ϕ(r), R1 > r (what immediately implies r �= b), we obtain again, in view of
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the definition of r, a contradiction to the upper-semicontinuity of ϕ. Thus,
r ∈ ϕ(r). �

In the proof of two further lemmas, only standard properties of the reals,
whose analogies hold without any difference on a linear continuum as well, are
used (i.e. linear ordering, the density of ordering structure and the least upper
bound property). Therefore, we can immediately reformulate Lemma 2 in [2]
and Lemma 3 in [6] as follows.

Lemma 2.2. Let ϕ: L �L be an M -map. Assume that Ik ⊂ L, k = 0, . . . ,

n − 1, are closed intervals such that Ik+1 ⊂ ϕ(Ik), for k = 0, . . . , n − 1, which
we write as I0 → I1 → . . . → In = I0. Then the n-th iterate ϕn of ϕ has a
fixed-point x0 (i.e. x0 ∈ ϕn(x0)) with xk+1 ∈ ϕ(xk), xn = x0, where xk ∈ Ik, for
k = 0, . . . , n − 1.

Lemma 2.3. Let ϕ: L �L be an M -map and let there exist a, A, b, B ∈ L

such that A ∈ ϕ(a), B ∈ ϕ(b). If C ∈ [A, B], then there exists a point c ∈ [a, b]
such that C ∈ ϕ(c).

The proof of Theorem 4 in [2] (for its linear continuum version see Theo-
rem 2.7 below) is there based on the following approximation lemma, which is a
particular case of [7, Lemma 4.5], see also [7, Remark 4.6].

Lemma 2.4 ([2, Lemma 3]). Let ϕ: I � I be a composition of M -maps ϕi:
Ii−1 � Ii, i = 1, . . . , n, i.e. ϕ = ϕn ◦ . . . ◦ ϕ1, where I0 = In = I ⊂ R

and I, I1, . . . , In are closed intervals. Assume that ak are fixed-points of ϕ,
ak ∈ ϕ(ak), k = 1, . . . , m. Then, for every ε > 0, there exists a continuous
ε-approximation f = fn ◦ . . .◦ f1 of ϕ (on the graph of ϕ), namely Γf ⊂ Nε(Γϕ),
where Nε(Γ) denotes an open neighbourhood of Γ in R

2, such that fi are con-
tinuous δ(ε)-approximations of ϕi, for every i = 1, . . . , n, with limε→0 δ(ε) = 0
and ak = f(ak), k = 1, . . . , m. Moreover, there exists aik with aik ∈ ϕ(ai−1,k),
a0k = ak ∈ ϕn(an−1,k) such that aik = fi(ai−1,k), a0k = ak = fn(an−1,k), for
every i = 1, . . . , n − 1, and k = 1, . . . , m.

It is not quite clear to us, whether or not we can replace R by a linear
continuum in Lemma 2.4.

Nevertheless, below we give the alternative proof of Theorem 4 in [2] which
can be used for a linear continuum version, too.

The following proposition can be proved quite analogously (i.e. by means of
Lemmas 2.1–2.3) as in [6], where only M -maps on R were considered.

Proposition 2.5. Assume that an M -map ϕ: L �L has a primary p-orbit
{x1, . . . , xp}, where p is even and x1 ∈ ϕ(x1), but ϕ has no l-orbit with l �p+1.

Then ϕ admits a k-orbit, where k is even, k ≤ p, k �= 4.
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Although the proof of the following proposition is similar to the one of Propo-
sition 2.5, we give it, for the sake of completness.

Proposition 2.6. Assume that an M -map ϕ: L �L has a primary n-orbit
{x1, . . . , xn}, where n > 3 is odd and x1 ∈ ϕ(x1), but ϕ has no l-orbit with l � n.
Then ϕ admits a k-orbit, for every k � n, k �= 4.

Proof. Obviously, thanks to a fixed-point {x1} (see the hypothesis), ϕ ad-
mits a k-orbit, for every k ≥ n. So, it suffices to show the existence of a k-orbit,
where k is even, k ≤ n, k �= 4.

We can assume that x1 = 0 and x1 < x2 (the other cases can be obtained,
when translating and changing the orientation of axes, respectively). Further-
more, xi �∈ [x1, x2], for every i ∈ {4, . . . , n}, because otherwise we have either
an odd orbit {x1, xi, xi+1, . . . , xn} or an odd orbit {x1, x1, xi, xi+1, . . . , xn}, ac-
cordingly i is even or odd, but this is a contradiction with the assumption of the
maximality of n.

Moreover, we can also suppose that x3 �∈ [x1, x2], because otherwise, we
have an even orbit {x1, x3, . . . , xn} with x1 ∈ ϕ(x1), and it is possible to use
Proposition 2.5.

Now, it holds that sgn(xi) = sgn(xi+1) implies sgn(xi+2) = sgn(xi), for
every i ∈ {2, . . . , n − 2}. Indeed, suppose conversely that there exists an i ∈
{2, . . . , n − 2} with the property sgn(xi) = sgn(xi+1), and sgn(xi+2) �= sgn(xi).
Then we consider

[x1, x2] → [x2, x3] → . . . → [xi, xi+1] → [x1, x2],

if i is odd or, if i is even,

[x1, x2] → [x1, x2] → [x2, x3] → . . . → [xi, xi+1] → [x1, x2].

In the both cases, applying Lemma 2.2 and taking into account that

[xi, xi+1] ∩ [x1, x2] = ∅, for i ∈ {3, . . . , n − 2}

(we note that the case i = 2 must be treated separately), we obtain a shorter
odd orbit, which is a contradiction.

Now, the proof splits into the following cases:
Case 1. xi > x2, for every i ∈ {3, . . . , n}.
There are two possibilities:
(a) xn > xn−1. Since

[x1, xn−1] → [x1, xn−1] → [xn−1, xn] → [x1, xn−1],

we have by Lemma 2.2 either a 3-orbit of ϕ or xn−1 ∈ ϕ(xn−1). In the
second case, [xn−1, xn] ⊂ ϕ(xn−1), and Lemma 2.3 yields the existence of a
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b ∈ [xn−1, xn] such that x2 ∈ ϕ(b). Subsequently, there is an even (n − 1)-orbit
{xn−1, b, x2, x3, . . . , xn−2} with xn−1 ∈ ϕ(xn−1), and we can use Proposition 2.5.

(b) xn < xn−1. There exists j ∈ {2, . . . , n − 2} with the property xj < xn <

xj+1. Considering

[x1, xj] → [x1, xj] → [xj, xn] → [x1, xj],

we obtain by Lemma 2.3 either a 3-orbit of ϕ or xj ∈ ϕ(xj). In the second
case, the convexity of ϕ(xj) and xj+1 ∈ ϕ(xj) imply xn ∈ ϕ(xj), and so there
are the following possibilities. If j �= n − 2, then there is either an odd (j + 1)-
orbit {x1, . . . , xj, xn} or an odd (j +2)-orbit {x1, x1, x2, . . . , xj, xn}, accordingly
j is even or odd. Finally, if j = n − 2, then there is an even (n − 1)-orbit
{x1, . . . , xn−2, xn} with x1 ∈ ϕ(x1) and Proposition 2.5 completes the proof of
this case.

Case 2. xi < 0, for every i ∈ {3, . . . , n}.
If x3 < xn, then there exists ε ∈ (xn, x1) satisfying [ε, x1] ⊂ ϕ[x3, xn].

Considering

[x3, xn] → [ε, x1] → [x1, x2] → [x3, xn]

and applying Lemma 2.2, we obtain a 3-orbit. Otherwise, the following possibil-
ities can occur.

(a) xn < xn−1. We can proceed like in Case 1(a). So, since

[xn−1, x1] → [xn−1, x1] → [xn, xn−1] → [xn−1, x1],

we have, thanks to Lemma 2.2, either a 3-orbit of ϕ or xn−1 ∈ ϕ(xn−1). In
the second case, [xn, xn−1] ⊂ ϕ(xn−1) and Lemma 2.3 yields the existence of a
b ∈ [xn, xn−1] such that x3 ∈ ϕ(b). Subsequently, there is an odd (n − 2)-orbit
{xn−1, b, x3, . . . , xn−2}.

(b) xn > xn−1. We can proceed like in Case 1(b). So, it is obvious that there
exists a j ∈ {3, . . . , n − 2} with the property xj > xn > xj+1. Considering

[xj, x1] → [xj, x1] → [xn, xj] → [xj, x1],

we obtain by Lemma 2.2 either a 3-orbit of ϕ or xj ∈ ϕ(xj). In the second
case, the convexity of ϕ(xj) and xj+1 ∈ ϕ(xj) imply xn ∈ ϕ(xj), and there are
the following possibilities. If j �= n − 2, then there is either an odd (j + 1)-
orbit {x1, . . . , xj, xn} or an odd (j + 2)-orbit {x1, x1, x2, . . . , xj, xn} depending
whether j is even or odd. Finally, if j = n−2, then there is an even (n−1)-orbit
{x1, . . . , xn−2, xn} with x1 ∈ ϕ(x1) and Proposition 2.5 completes the proof of
this case.

Case 3. sgn(xi) = −sgn(xi+1), for every i ∈ {2, . . . , n − 1}.
We redenote the set {x1, . . . , xn} into {a1, . . . , an}, in order the set {a1, . . . ,

an} to be ordered as an < . . . < a3 < a1 < a2 < . . . < an−1, and we consider the
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map a: {x1, . . . , xn} → {a1, . . . , an} such that a(xi) = aj if and only if aj = xi,
where i, j ∈ {1, . . . , n}. By the hypothesis, we have a1 = x1, a2 = x2 and
al := a(xn) < x1. Now, there are two possibilities.

(a) l = 3. It can be readily checked that

[a5, a3] → [a1, a2] → [a1, a2] → [a5, a3],

so Lemma 2.2 completes the proof of this case.
(b) l > 3. Consider an am ∈ (al, x1) with the property

s(a−1(am)) = max{s(a−1(ai)) : i = 3, 5, 7, . . . , l − 2},

where s(xj) = xj+1, for every j = 1, . . . , n − 1. It can be readily checked that
[a1, ai+1] ⊂ ϕ[a1, ai], for i ∈ {2, . . . , n − 1}. Subsequently, it holds [al, am] ⊂
ϕ[a1, al−1], [a1, al−1] ⊂ ϕ[al, am], and [a1, al−1] ⊂ ϕ[al, am].

Now, if k = 2, then we consider

[al, am] → [a1, al−1] → [al, am].

If k ≥ 6 is even, k < n, k < m + 3, then we consider

[al, am] → [a1, al−1] → [as, a1] → [a1, as+1]

→ . . . → [am, a1] → [a1, al−1] → [al, am],

where s = m + 4 − k.
If k ≥ m + 3 is even, k < n, then we consider

[al, am] → [a1, a2] → . . . → [a1, a2]︸ ︷︷ ︸
(k−m)-times

→ [a3, a1] → [a1, a4]

→ . . . → [am, a1] → [a1, al−1] → [al, am].

In the previous cases, by Lemma 2.2, we obtain the existence of a k-orbit.
Summarizing the above conclusions, ϕ has a k-orbit, for every k � n, except

k = 4. �

Now, we are ready to formulate the linear continuum version of Theorem 4
in [2].

Teorem 2.7. Let L be a linear continuum. Assume that an M -map ϕ: L �L

has a primary n-orbit {x1, . . . , xn}, where n > 3 is odd, but ϕ has no l-orbit
with l � n. Then ϕ admits a k-orbit, for each k � n, k �= 4.

Proof. Assuming that xi �∈ ϕ(xi), for every i = 1, . . . , n, we can proceed
exactly as in [13, Proposition 1.7], which is based on [13, Lemma 1.6] (only,
instead of R, we take L, and, instead of a continuous function, we take an M -
map). If xi ∈ ϕ(xi), for some i = 1, . . . , n, then we could have a problem



378 J. Andres — K. Pastor

to define a in the proof of [13, Lemma 1.6], but this situation is covered by
Proposition 2.6. �

3. Extension for M-maps on linear continua

The purpose of this section is to prove the linear continuum extension of
Theorem 1.5.

Analysing the assertions leading to the proof of Theorem 1.5, one can see that
they are only based on three fundamental lemmas above (see Lemmas 2.1–2.3
for their linear continuum versions) and on some properties of R which hold for
linear continua as well. Hence, we can immediately state the series of results for
M -maps on linear continua which can be proved exactly as in their R-versions
(see [5] and [6]). In this series, ϕ and g denote M -maps from a linear continuum
into itself.

Lemma 3.1. Let ϕ has no primary 3-orbits. If ϕ has an n-orbit, where
n �= 1, then ϕ admits a 2-orbit.

Lemma 3.2. Assume the existence of a 3-orbit {a, b, c} of ϕ such that a <

minx∈ϕ(a) x ≤ maxy∈ϕ(b) y < miny∈ϕ(b) y or a > maxx∈ϕ(a) x ≥ minx∈ϕ(a) x >

maxy∈ϕ(b) y. Then ϕ has also a k-orbit, for every k ∈ N \ {4, 6}.

Lemma 3.3. If ϕ has a 3-orbit, then ϕ has also a k-orbit, for every k � n,
except k = 2, 4, 6.

Lemma 3.4. If ϕ has an n-orbit, where n is odd, then ϕ has also a k-orbit,
for every k � n, except k = 2, 4, 6.

Lemma 3.5. Let g = ϕl, where l = 2s, for some s ∈ N.

(a) If g has a q-orbit, where q is odd, then ϕ has also a q-orbit or an lq-orbit.
(b) If g has a q-orbit, where q = 2r, for some r ∈ N, then ϕ has a 2r+s-orbit.

Lemma 3.6. Let g = ϕl, where l ∈ N, and let q ∈ N. If ϕ has an lq-orbit,
then g has an m-orbit, where q is devided by m and m �= 1.

Lemma 3.7. Let g = ϕl, where l ∈ N, and let q be odd. If ϕ has an lq-orbit,
then g has a q-orbit.

Thanks to Theorem 2.7 and Lemmas 3.1–3.7, the following linear contin-
uum extension of Theorem 1.5 can now be completed as in [6] (see the proof of
Theorem 4 and Corollary 7 there).

Theorem 3.8. Let L be a linear continuum, let an M -map ϕ: L �L have an
n-orbit, where n = 2mq, m ∈ N0, q is odd, and n be maximal in the Sharkovskĭı
ordering.

(a) If q > 3, then ϕ has a k-orbit, for every k � n, except k = 2m+2.
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(b) If q = 3, then ϕ has a k-orbit, for every k � n, except k = 2m+13, 2m+2,
2m+1.

(c) If q = 1, then ϕ has a k-orbit, for every k � n.

Corollary 3.9. Let L be a linear continuum and let an M -map ϕ: L �L

have an n-orbit, n ∈ N. Then ϕ has also a k-orbit, for every k � n, with the
exception of at most three orbits.

We conclude this section by an almost evident, but useful fact.

Lemma 3.10. Let L be a linear continuum, I = [a, b] ⊂ L be a compact
interval, and ϕ: I � I be an M -map satisfying ϕ(I) ⊂ I. Then ϕ has a fixed-
point.

Proof. We define s := sup{t ∈ [a, b] : there exists T ∈ ϕ(t) such that
T ≥ t}. Observe that because of ϕ(I) ⊂ I, s is well-defined.

Assuming the existence of S1 ∈ ϕ(s), S1 > s (what immediately implies
s �= b), and the absence of S2 ∈ ϕ(s), S2 ≤ s, we obtain a contradiction to the
upper-semicontinuity of ϕ, because ϕ(s) is compact and ϕ(t) < t, for every t > s.

Assuming the existence of S2 ∈ ϕ(s), S2 < s (what immediately implies
s �= a), and the absence of S1 ∈ ϕ(s), S1 ≥ s, we obtain again, in view of
the definition of s, a contradiction to the upper-semicontinuity of ϕ. Thus, s is
a fixed-point of ϕ. �

4. Main result

Throughout this section, let Li, i = 1, . . . , N , will be linear continua, and
L̃ = L1 × . . . × LN , N ∈ N, denotes their Cartesian product. Furthermore,
ϕ: L̃� L̃ will be an admissible mapping (in the sense of Definition 1.8) of the
form

(4.1) ϕ = (ϕ1, . . . , ϕN), ϕi(x1, . . . , xN) = ϕi(x1, . . . , xi),

for every i = 1, . . . , N . We say that the difference inclusion

xn+1 ∈ ϕ(xn)

has an n-orbit x0, . . . , xn−1, whenever {x0, . . . , xn−1} is an n-orbit of ϕ.
Now, we state a joint generalization of the results in [2], [5], [6], [10], [15].

Theorem 4.1. Let ϕ have an n-orbit, where n = 2mq, m ∈ N0 = N ∪ {0}
and q is odd, and let n be maximal in the Sharkovskĭı ordering.

(a) If q > 3, then ϕ has a k-orbit, for every k � n, except k = 2m+2.
(b) If q = 3, then ϕ has a k-orbit, for every k � n, except k = 2m+13, 2m+2,

2m+1.
(c) If q = 1, then ϕ has a k-orbit, for every k � n.
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In the proof of Theorem 4.1 below, we proceed analogously as in the partic-
ular case of a continuous function f : R

N → R
N , treated in [10]. Our approach

is, however, far from to be obvious.
We need the following important

Lemma 4.2. Let us consider the difference inclusion

(4.2) xn+1 ∈ ϕ(xn)

and the truncated one

(4.3) x̂n+1 ∈ ϕ̂(x̂n),

where x̂ = (x1, . . . , xN−1) and ϕ̂ = (ϕ1, . . . , ϕN−1). If inclusion (4.3) has, for
any p = 1, . . . , a p-orbit, then the same is true for inclusion (4.2).

Proof. For the admissible mapping ϕ of the form (4.1) and x = (x̂, xN),
inclusion (4.2) can be written as

(4.4)

{
x̂n+1 ∈ ϕ̂(x̂n),

xn+1
N ∈ ϕN (x̂n, xn

N).

Let η̂0, . . . , η̂p−1 be a p-orbit of inclusion (4.3), and define the set-valued
mapping h: LN � LN by

(4.5) h(xN) = ϕN(η̂p−1, ϕN(η̂p−2, . . . , ϕN(η̂0, xN) . . . )),

for all xN ∈ LN . Then h is an M -map from LN into itself. Indeed, since for an
arbitrary x̂ ∈ LN−1, a multivalued mapping xN �ϕN (x̂, xN) is a composition of
a continuous mapping xN → (x̂, xN), an admissible mapping ϕ and a continuous
projection πN : L̃ → LN , i.e. a composition of three (strongly) admissible maps, it
follows from the properties of (strongly) admissible maps that xN �ϕN (x̂, xN) is
admissible in L̃, i.e. an M -map. In particular, M -maps preserve their character
under iterates. For more details of (strongly) admissible maps, see [3], [8].

By Lemma 3.10, we obtain that h has a fixed-point η∗ ∈ h(η∗). Putting
η0

N = η∗, it holds

η0
N ∈ h(η0

N ) = ϕN (η̂p−1, ϕN(η̂p−2, . . . , ϕN(η̂0, η0
N) . . . )),

and there exist η1
N , . . . , ηp−1

N ∈ IN satisfying

η1
N ∈ ϕN(η̂0, η0

N), η2
N ∈ ϕN (η̂1, η1

N), . . . , ηp−1
N ∈ ϕN (η̂p−2, ηp−2

N ),

and
η0

N ∈ ϕN (η̂p−1, ηp−1
N ).

Thus,
η0 = (η̂0, η0

N), η1 = (η̂1, η1
N), . . . , ηp−1 = (η̂p−1, ηp−1

N )

is a p-orbit of inclusion (4.4), i.e. of inclusion (4.2). �
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Proof of Theorem 4.1. We prove the theorem by induction on N. For
N = 1, Theorem 4.1 is just Theorem 3.8. We suppose that N ≥ 2 and that the
existence of an n = 2mq-orbit of inclusion (4.3), where m ∈ N0, q is odd and n

is maximal in the Sharkovskĭı ordering for inclusion (4.3), implies

(a) the existence of a k-orbit, for every k � n, k �= 2m+2, if q > 3,
(b) the existence of a k-orbit, for every k � n, k �= 2m+13, 2m+2, 2m+1, if

q = 3,
(c) the existence of a k-orbit, for every k � n, if q = 1.

Using the above induction assumption, we show the same for inclusion (4.2).

Hence, let η0, . . . , ηn−1 be an n-orbit of inclusion (4.2), where n = (2k+1)·2l,
k ∈ N0, l ∈ N0, and n is maximal in the Sharkovskĭı ordering for inclusion
(4.2). Then inclusion (4.3) has a p-orbit η̂0, . . . , η̂p−1, where η0 = (η̂0, η0

N), η1 =
(η̂1, η1

N), . . . , ηp−1 = (η̂p−1, ηp−1
N ), ηp = (η̂0, ηp

N), . . . , ηn−1 = (η̂p−1, ηn−1
N ), p =

(2j + 1) · 2i divides n and 0 ≤ j ≤ k, 0 ≤ i ≤ l. Moreover, Lemma 4.2, the
induction assumption and the maximality argument specify that either p = n

or j = 0. The first case can be verified immediately by Lemma 4.2. Thus, it
suffices to consider p = 2i.

Using Lemma 4.2 again, we can suppose that the number of the maximal
orbits of inclusion (4.3) is less than n in the Sharkovskĭı ordering. Hence, by the
induction assumption, inclusion (4.3) has the orbits related to the numbers

(4.6) 2i−1 � 2i−2 � . . . � 2 � 1.

Subsequently, according to Lemma 4.2, inclusion (4.2) has also the orbits related
to the same numbers.

Now, we define the M -mapping h: LN �LN in the same way as in (4.5).
Since

η1
N ∈ ϕN(η̂0, η0

N), η2
N ∈ ϕN (η̂1, η1

N), . . . , ηp
N ∈ ϕN (η̂p−1, ηp−1

N ),

ηp+1
N ∈ ϕN(η̂0, ηp

N), . . . , ηn
N = η0

N ∈ ϕN (η̂p−1, ηn−1
N ),

we obtain that the difference inclusion

(4.7) xn+1
N ∈ h(xn

N)

admits, in a view of the form of h, an n/p = (2k+1)·2l−i-orbit. We note that n/p

is maximal in the Sharkovskĭı ordering for inclusion (4.7). Indeed, the existence
of an u-orbit, u � n/p, of inclusion (4.7) yields the existence of an up-orbit of
inclusion (4.2). One gets that up � n, but it is a contradiction to the maximality
of n.
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Applying Theorem 3.8, we obtain that inclusion (4.7) has also the orbits
related to the numbers

(2k + 3) · 2l−i � (2k + 5) · 2l−i � . . . � 2 � 1,

except 2l−i+2, if k > 1;

(2k + 3) · 2l−i � (2k + 5) · 2l−i � . . . � 2 � 1,

except 2l−i+13, 2l−i+2 and 2l−i+1, if k = 1; and, if k = 0,

2l−i−1 � 2l−i−2 � . . . � 2 � 1.

Let x0
N , x1

N , . . . , xr−1
N be an r-orbit of inclusion (4.7) and define

ξsp
N = xs

N ,

for s = 0, . . . , r − 1. Then we can find ξsp+t
N ∈ LN , for s = 0, . . . , r − 1, and

t = 0, . . . , p − 1 satisfying

ξsp+t+1
N ∈ ϕN (η̂t, ξsp+t

N ),

for s = 0, . . . , r − 1, and t = 0, . . . , p − 1, where p = 2i. Then

(η̂0, ξ0
N ), (η̂1, ξ1

N), . . . , (η̂p−1, ξp−1
N ), (η̂0, ξp

N), . . . , (η̂p−1, ξrp−1
N )

is an rp-orbit of inclusion (4.2).
Doing this for each r for which inclusion (4.7) has an r-orbit demonstrates

that inclusion (4.2) has the orbits related to the numbers

(2k + 3) · 2l � (2k + 5) · 2l � . . . � 2i+1 � 2i,

except 2l+2, if k > 1;

(2k + 3) · 2l � (2k + 5) · 2l � . . . � 2i+1 � 2i,

except 2l+13, 2l+2, 2l+1, if k = 1; and, if k = 0,

2l−1 � 2l−2 � . . . � 2i+1 � 2i.

Summarizing with (4.6), we obtain that inclusion (4.2) has the orbits related
to the numbers

(2k + 3) · 2l � (2k + 5) · 2l � . . . � 2i � 2i−1 � . . . � 2 � 1,

except 2l+2, if k > 1;

(2k + 3) · 2l � (2k + 5) · 2l � . . . � 2i � 2i−1 � . . . � 2 � 1,

except 2l+13, 2l+2, 2l+1, if k = 1; and

2l−1 � 2l−2 � . . . � 2i � 2i−1 � . . . � 2 � 1,

if k = 0, which was to prove. �
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Corollary 4.3. If ϕ has an n-orbit, then ϕ has also a k-orbit, for every
k � n, with the exception of at most three orbits.

Remark 4.4. If ϕ in Theorem 4.1 and Corollary 4.3 is a self-mapping of
I =

∏N
i=1 Ii, i.e. ϕ: I � I, where Ii ⊂ Li are bounded closed subintervals of Li,

i = 1, . . . , N ; then the assertions of Theorem 4.1 and Corollary 4.3 hold obviously
as well, because I is again a Cartesian product of linear continua Ii. In any case,
Theorem 4.1 extends Theorem 1.3 (see also Remark 1.4).

5. Application to differential inclusions

Now, we would like to apply Theorem 4.1 and Corollary 4.3 to differential
systems. Unfortunately, as explained in [2], the classical Sharkovskĭı theorem,
and subsequently also Theorem 1.3, cannot be applied to differential equations,
because only empty assertions are available. Moreover, we do not have any
appropriate result concerning differential equations or inclusions on a linear con-
tinuum, in general, in order to apply Theorem 3.8. For a survey of the results
in this field, see e.g. [1]. The application of Theorem 1.2 has very probably not
much meaning as well.

Therefore, we restrict ourselves to the system

(5.1) X′ ∈ F (t, X), F (t + ω, X) ≡ F (t, X), ω > 0,

where F : [0, ω] × R
N �R

N is an (upper) Carathéodory map with nonempty,
convex and compact values:

(a) F ( · , X): [0, ω] �R
N is measurable, for every X ∈ R

N , i.e. {t ∈ [0, ω] :
F (t, X) ⊂ V } is open in [0, ω], for every X ∈ R

N , whenever V is open
in R

N ,
(b) F (t, · ): R

N � R
N is upper-semicontinuous, for a.a. t ∈ [0, ω],

(c) |F (t, X)| ≤ α|X| + β, for a.a. t ∈ [0, ω] and every X ∈ R
N , where α, β

are suitable nonnegative constants.

Furthermore, we assume that F = (F1, . . . , FN) has a special triangular struc-
ture, namely

(d) Fi(X) = Fi(x1, . . . , xN) = Fi(x1, . . . , xi), i = 1, . . . , N .

Thus, the (well-defined) associated Poincaré translation operator Tkω: R
N � R

N ,
k ∈ N, takes the form

(5.2) Tkω(X◦) := {X(kω; X◦) = (x1(kω; x◦
1), . . . , xi(kω; x◦

1, . . . , x◦
i ), . . . ,

xN(kω; x◦
1, . . . , x◦

N)) : X( · ; X◦) ∈ AC([0; kω], R
N)

is a solution of (5.1) with X(0; X◦) = X◦}.
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Observe that Tkω(X◦) ≡ T k
ω (X◦), k ∈ N. Moreover, the operators in (5.2)

are well-known (see e.g. [1], [3], [8]) to be admissible in the sense of Definition 1.8,
satisfying evidently condition (4.1).

Because of an obvious correspondence between (Carathéodory subharmonic)
kω-periodic solutions X(t) ∈ AC([0; kω], R

N) of (5.1), i.e. X(t) ≡ X(t + kω)
and X(t) �≡ X(t + lω), for 1 ≤ l < k, and k-orbits of the Poincaré operator
Tω in (5.2), we can express immediately Theorem 4.1 in terms of differential
inclusions as follows.

Theorem 5.1. Assume that F : [0, ω]×R
N �R

N has nonempty, convex and
compact values and that it satisfies conditions (a)–(d) above. Let system (5.1)
admit an nω-periodic solution, where n = 2m · q, m ∈ N0 and q is odd, and let n

be maximal in the Sharkovskĭı ordering.

(a) If q > 3, then (5.1) admits a kω-periodic solution, for every k�n, except
k = 2m+2.

(b) If q = 3, then (5.1) admits a kω-periodic solution, for every k�n, except
k = 2m+13, 2m+2, 2m+1.

(c) If q = 1, then (5.1) admits a kω-periodic solution, for every k � n.

By the same reasons, Corollary 4.3 can be rewritten as follows.

Corollary 5.2. If the above Carathéodory system (5.1) has an nω-periodic
solution, then it also possesses a kω-periodic solution, for every k � n, with the
exception of at most three subharmonics. In particular, for n �= 2m, m ∈ N0,
system (5.1) admits infinitely many subharmonics.

The notion of linear continua and their Cartesian products can be also related
to smooth manifolds. We have to our disposal appropriate results for differential
inclusions on so called proximate retracts (see e.g. [8], [9], [12]).

Definition 5.3. A compact subset A ⊂ R
N is called a proximate (neigh-

bourhood) retract if there exists an open neighbourhood U of A in R
N and a

continuous mapping (called a proximative retraction) r: U → A such that

|r(X) − X| = dist(X, A) for all X ∈ U.

Let us note that proximate retracts are always ANR-spaces and as their
examples, we can give C2-manifolds (with or without boundaries) and convex
subsets of R

N ; for more details, see e.g. [8].
Hence, consider again (4.1), but let F be this time defined only on a proxi-

mate retract A ⊂ R
N which is at the same time the Cartesian product of linear

continua, i.e. F : [0, ω] × A �R
N , satisfying (a)–(d). Furthermore, assume still

the Nagumo-type condition

(5.3) F (t, X) ∩ TA(X) �= ∅ for all (t, X) ∈ [0, ω] × A,
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where
TA(X) := {Y ∈ R

N : lim inf
h→0+

(1/h)[dist(X + hY, A)] = 0}
is the Bouligand cone to A.

It can be checked (see [8], [12]) that the associated Poincaré translation ope-
rator

Tkω(X◦) := {X(kω; X◦) = (x1(kω; x◦
1), . . . , xi(kω; x◦

1, . . . , x◦
i ), . . . ,

xN(kω; x◦
1, . . . , x◦

N)) : X( · ; X◦) ∈ AC([0; ω], R
N)

is a solution of (5.1) with X(0; X◦) = X◦

and X(t, X◦) ∈ A, for all t ∈ [0, ω]}

is again admissible in the sense of Definition 1.8.
By the same arguments as above, Theorem 5.1 and Corollary 5.2 can be

easily modified in the following way.

Theorem 5.4. Let A ⊂ R
N be a proximate retract which is at the same time

the Cartesian product of linear continua. Assume that F : [0, ω] × A �R
N has

nonempty, convex and compact values and that it satisfies the above conditions
(a)–(d), jointly with the Nagumo-type condition (5.3). Let system (5.1) admit an
nω-periodic solution whose values are in A, where n = 2m · q, m ∈ N0 and q is
odd, and let n be maximal in the Sharkovskĭı ordering. Then the same conclusions
as in Theorem 5.1 hold and, moreover, the values of all implied subharmonics
are in A.

Corollary 5.5. Let the above Carathéodory system (5.1), considered on
a proximate retract A ⊂ R

N , which is at the same time the Cartesian product
of linear continua, have an nω-periodic solution. Then the same conclusions
as in Corollary 5.2 hold, provided F satisfies the Nagumo-type condition (5.3).
Moreover, the values of subharmonics are in A.

Remark 5.6. The further application of Theorem 4.1 and Corollary 4.3 can
be given quite analogously to differential inclusions on Hilbert proximate retracts
on the basis of the results in [9].

Remark 5.7. We have to our disposal even more abstract appropriate re-
sults for the Poincaré operators of differential inclusions (see [1], [3], and the
references therein), but they do not seem to be quite adequate to the notion of
a linear continuum.
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