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IMPULSIVE HYPERBOLIC DIFFERENTIAL INCLUSIONS
WITH VARIABLE TIMES

M. Benchohra — L. Górniewicz — S. K. Ntouyas — A. Ouahab

Abstract. In this paper the nonlinear alternative of Leray–Schauder type
is used to investigate the existence of solutions for second order impulsive

hyperbolic differential inclusions with variable times.

1. Introduction

In this paper, we shall be concerned with the existence of solutions for the
following second order impulsive hyperbolic differential inclusions with variable
times:

∂2u(t, x)
∂t∂x

∈ F (t, x, u(t, x)), a.e. (t, x) ∈ Ja × Jb,(1.1)

t 6= τk(u(t, x)), k = 1, . . . ,m,
u(t+, x) = Ik(u(t, x)), t = τk(u(t, x)), k = 1, . . . ,m,(1.2)

u(t, 0) = ψ(t), t ∈ Ja, u(0, x) = φ(x), x ∈ Jb,(1.3)

where F : Ja × Jb × Rn → P (Rn) is a multivalued map with compact values,
J := Ja × Jb := [0, a] × [0, b], Ik ∈ C1(Rn,Rn), φ ∈ C(Ja,Rn), u(t+, y) =
lim(h,x)→(0+,y) u(t+ h, x) and u(t−, y) = lim(h,x)→(0−,y) u(t− h, x) represent the
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right and left limits of u(t, x) at (t, x), respectively and Rn a Euclidean space
with norm | · |.
Impulsive differential and partial differential equations with fixed moments

have become more important in recent years in some mathematical models of
real phenomena, especially in control, biological or medical domains, see the
mongraphs of Lakshmikantham et al ([12]), Samoilenko and Perestyuk ([16]),
and the papers of Bainov et al ([2]), Kirane and Rogovchenko ([11]), Liu ([14])
and Liu and Zhang ([15]). However the theory of impulsive partial differential
equations with variable time is relatively less developed due to the difficulties
created by the state-dependent impulses.

Very recently, by means of a Martelli’s fixed point theorem for condensing
multivalued maps, a particular case (Ik = 0, k = 1, . . . ,m) of the problem (1.1)–
(1.3) was studied by Benchohra in [3]. Let us mention that that with the aid
of the Leray–Schauder nonlinear alternative ([6]), the problem (1.1)–(1.3) was
considered by the authors (see [4]) in the case where the instant of impulses
are fixed. Hence the present result is an extension of the problem to variable
moments. Our proof is based also on the nonlinear alternative. It can also be
considered as a contribution to the title literature.

2. Preliminaries

We will briefly recall some basic definitions and facts from multivalued anal-
ysis that we will use in the sequel.

C(Ja × Jb,Rn) is the Banach space of all continuous functions from Ja × Jb
into Rn with the norm

‖u‖∞ = sup{|u(t, s)| : (t, s) ∈ Ja × Jb}.

A measurable function z: Ja × Jb → Rn is integrable if and only if z is Lebesgue
integrable.

L1(Ja×Jb,Rn) denotes the Banach space of functions z: Ja×Jb → Rn which
are Lebesgue integrable normed by

‖z‖L1 =
∫ a
0

∫ b
0
|z(t, s)| dt ds.

Let (X, ‖ · ‖) be a normed space and

Pcl(X) = {Y ∈ P (X) : Y closed},
Pb(X) = {Y ∈ P (X) : Y bounded},
Pcp(X) = {Y ∈ P (X) : Y compact},
Pcp,c(X) = {Y ∈ P (X) : Y compact, convex}.
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A multivalued map G:X → P (X) is convex (closed) valued if G(x) is convex
(closed) for all x ∈ X.

G is bounded on bounded sets if G(B) =
⋃
x∈BG(x) is bounded in X for all

B ∈ Pb(X) (i.e. supx∈B{sup{‖y‖ : y ∈ G(x)}} <∞).
G is called upper semi-continuous (u.s.c.) on X if for each x0 ∈ X the

set G(x0) is a nonempty, closed subset of X, and if for each open set U of
X containing G(x0), there exists an open neighbourhood V of x0 such that
G(V) ⊆ U .

G is said to be completely continuous if G(B) is relatively compact for every
B ∈ Pb(X). If the multivalued map G is completely continuous with nonempty
compact values, then G is u.s.c. if and only if G has a closed graph (i.e. xn → x∗,
yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗)). G has a fixed point if there is x ∈ X
such that x ∈ G(x). The fixed point set of the multivalued operator G will be
denoted by FixG.
A multivalued map N : Ja×Jb×Rn → Pcl(Rn) is said to be measurable, if for

every w ∈ Rn, the function t 7→ d(w,N(t, x, u)) = inf{‖w − v‖ : v ∈ N(t, x, u)}
is measurable where d is the distance induced from the normed space Rn. For
more details on multivalued maps see the books of Aubin and Cellina ([1]),
Deimling ([5]), Górniewicz ([8]) and Hu and Papageorgiou ([10]).

Definition 2.1. The multivalued map F : Ja × Jb ×Rn → P (Rn) is said to
be an L1-Carathéodory if

(a) (t, x) 7→ F (t, x, u) is measurable for each u ∈ Rn,
(b) u 7→ F (t, x, u) is upper semicontinuous for almost all (t, x) ∈ Ja × Jb,
(c) for each r > 0, there exists ϕr ∈ L1(Ja × Jb,R+) such that

‖F (t, x, u)‖ = sup{|v| : v ∈ F (t, x, u)} ≤ ϕr(t, x)

for all |u| ≤ r and for a.e. (t, x) ∈ Ja × Jb.

For each u ∈ C(Ja × Jb,Rn), define the set of selections of F by

SF,u = {v ∈ L1(Ja × Jb,Rn) : v(t, s) ∈ F (t, x, u(t, x)) a.e. t ∈ Ja, x ∈ Jb}.

Lemma 2.2 ([13]). Let X be a Banach space. Let F : Ja×Jb×X → Pcp,c(X)
be an L1-Carathéodory multivalued map with SF 6= ∅ and let Ψ be a linear
continuous mapping from L1(Ja × Jb, X) to C(J × Jb, X), then the operator

Ψ ◦ SF :C(Ja × Jb, X)→ Pcp,c(C(Ja × Jb, X)),
u 7→ (Ψ ◦ SF )(u) := Ψ(SF,u)

is a closed graph operator in C(Ja × Jb, X)× C(Ja × Jb, X).
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Lemma 2.3 ([6]). Let X be a Banach space with C ⊂ X a convex. Assume
U is a relatively open subset of C with 0 ∈ U and G:X → Pcp,c(X) be an upper
semi-continuous and compact map. Then either

(a) there is a point u ∈ ∂U and λ ∈ (0, 1) with u ∈ λG(u) or
(b) G has a fixed point in U .

Remark 2.4. By U and ∂U we denote the closure of U and the boundary
of U , respectively.

3. Main result

In this section we are concerned with the existence of solutions for problem
(1.1)–(1.3). In order to define the solution of (1.1)–(1.3) we shall consider the
following space

Ω = {u: Ja × Jb → Rn : there exist 0 = t0 < t1 < . . . < tm < tm+1 = a

such that tk = τk(u(tk, · )) and uk ∈ C(Γk,Rn), k = 0, . . . ,m
and there exist u(t−k , · ), and u(t

+
k , · ), k = 1, . . . ,m

with u(t−k , · ) = u(tk, · )}

which is a Banach space with the norm

‖u‖Ω = max{‖uk‖, k = 0, . . . ,m},

where uk is the restriction of u to Γk = (tk, tk+1)× Jb, k = 0, . . . ,m. So let us
start by defining what we mean by a solution of problem (1.1)–(1.3).

Definition 3.1. A function u ∈ Ω∩
⋃m
k=1A

1(Γk,Rn) is said to be a solution
of (1.1)–(1.3) if there exist v ∈ L1(Ja× Jb) such that v(t, x) ∈ F (t, x, u(t, x)) sa-
tisfied a.e. on Ja×Jb, ∂2u(t, x)/∂t∂x = v(t, x) a.e. on Ja×Jb, and the conditions
(1.2)–(1.3).

Let us introduce the following hypotheses:

(H1) There exist constants ck such that |Ik(u)| ≤ ck, k = 1, . . . ,m for each
u ∈ Rn.

(H2) There exist functions p, q ∈ L1(Ja × Jb,R+) such that

‖F (t, x, u)‖ ≤ p(t, x) + q(t, x)|u|

for a.e. (t, x) ∈ Ja × Jb and each u ∈ Rn.
(H3) The functions τk ∈ C1(Rn,R) for k = 1, . . . ,m. Moreover,

0 < τ1(x) < . . . < τm(x) < a for all x ∈ Rn.
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(H4) For all u ∈ C(Ja × Jb,Rn) and all v ∈ SF,u we have〈
τ ′k(x),

∫ t
t

v(s, x) ds
〉
6= 1

for all (t, t, x) ∈ Ja × Ja × Rn and k = 0, . . . ,m, where 〈 · , · 〉 denotes
the scalar product in Rn.

(H5) For all x ∈ Rn

τk(Ik(x)) ≤ τk(x) < τk+1(Ik(x)) for k = 1, . . . ,m.

Theorem 3.2. Assume that the hypotheses (H1)–(H5) are satisfied. Then
the IVP (1.1)–(1.3) has at least one solution.

Proof. The proof will be given in several steps.
Step 1. Consider the following problem

∂2u(t, x)
∂t∂x

∈ F (t, x, u(t, x)), a.e. (t, x) ∈ Ja × Jb(3.1)

u(t, 0) = ψ(t), t ∈ Ja, u(0, x) = φ(x), x ∈ Jb.(3.2)

A solution to problem (3.1)–(3.2) is a fixed point of the operator

N :C(Ja × Jb,Rn)→ P (C(Ja × Jb,Rn))

defined by:

N(u) =
{
h ∈ C(Ja×Jb,Rn) : h(t, x) = z0(t, x)+

∫ t
0

∫ x
0
v(s, y) ds dy, v ∈ SF,u

}
,

where z0(t, x) := ψ(t) + φ(x)− ψ(0). The proof will be given in several claims.

Claim 1. N(u) is convex for each u ∈ Ω.

Indeed, if h1, h2 belong to N(u), then there exist v1, v2 ∈ SF,u such that for
each (t, x) ∈ Ja × Jb we have

hi(t, x) = z0(t, x) +
∫ t
0

∫ x
0
vi(s, y) ds dy, i = 1, 2.

Let 0 ≤ d ≤ 1. Then for each (t, x) ∈ Ja × Jb we have

(dh1 + (1− d)h2)(t) = z0(t, x) +
∫ t
0

∫ x
0
[dv1(s, y) + (1− d)v2(s, y)] ds dy.

Since SF,u is convex (because F has convex values) then

dh1 + (1− d)h2 ∈ N(u).

Claim 2. N maps bounded sets into bounded sets in C(Ja × Jb,Rn).

Indeed, it is enough to show that there exists a positive constant ` such that
for each u ∈ Bq = {u ∈ C(Ja × Jb,Rn) : ‖u‖∞ ≤ q} one has ‖N(u)‖∞ ≤ `.
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Let h ∈ N(u) then there exist v ∈ SF,u such that

h(t, x) = z0(t, x) +
∫ t
0

∫ x
0
v(s, y) ds dy.

Since F is an L-Carathéodory we have for each (t, x) ∈ Ja × Jb

|h(t, x)| ≤ |z0(t, x)|+
∫ a
0

∫ b
0
|ϕq(t, x)| ds ≤ ‖z0‖∞ + ‖ϕq‖L1 := `.

Claim 3. N maps bounded sets into equicontinuous sets of C(Ja× Jb,Rn).

Let (t1, x1), (t2, x2) ∈ Ja × Jb, t1 < t2, x1 < x2 and Bq be a bounded set
of C(Ja × Jb,Rn), as in Claim 2. Then

|h(t2, x2))− h(t1, x1)| ≤ |z0(t2, x2))− z0(t1, x1)|

+
∫ t2
0

∫ x2
x1

ϕq(t, s) dt ds+
∫ t2
t1

∫ x1
0

ϕq(t, s) dt ds.

The right-hand side tends to zero as t2 − t1 → 0, x2 − x1 → 0.
As a consequence of Claims 2 and 3 with the Arzela–Ascoli Theorem we can

conclude that N :C(Ja × Jb,Rn)→ C(Ja × Jb,Rn) is completely continuous.

Claim 4. N has a closed graph.

Let un → u∗, hn ∈ N(un) and hn → h∗. We shall prove that h∗ ∈ N(u∗).
hn ∈ N(un) means that there exists vn ∈ SF,un such that for each t ∈ J

hn(t, x) = z0(t, x) +
∫ t
0

∫ x
0
vn(s, x) ds dx.

We must prove that there exists v∗ ∈ SF,u∗ such that for each (t, x) ∈ Ja × Jb

h∗(t, x) = z0(t, x) +
∫ t
0

∫ x
0
v∗(s, x) ds dx.

Clearly, since φ is continuous we have that

‖(hn − z0(t, x))− (h∗ − z0(t, x))‖∞ → 0 as n→∞.

Consider the linear continuous operator

Ψ:L1(Ja × Jb,Rn)→ C(Ja × Jb,Rn),

v 7→ Ψ(v)(t, x) =
∫ t
0

∫ x
0
v(s, τ) ds dτ.

From Lemma 2.2, it follows that Ψ ◦ SF is a closed graph operator. Moreover,
we have that

(hn(t, x)− z0(t, x)) ∈ Ψ(SF,un).
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Since un → u∗, it follows from Lemma 2.2 that

h∗(t, x) = z0(t, x) +
∫ t
0

∫ x
0
v∗(s, y) ds dy

for some v∗ ∈ SF,u∗ .

Claim 5. A priori bounds on solutions.

Let u ∈ Ω be a possible solution to (3.1)–(3.2). Then there exists v ∈ SF,u
such that for each (t, x) ∈ J

u(t, x) = z0(t, x) +
∫ t
0

∫ x
0
v(s, y) ds dy.

This implies by (H2)–(H4) that for each (t, x) ∈ Ja × Jb we have

|u(t, x)| ≤ ‖z0‖∞ +
∫ t
0

∫ x
0
[|p(s, τ)|+ |q(s, τ)||u(s, τ)|] ds dτ

≤ ‖z0‖∞ +
∫ t
0

∫ x
0
|q(s, τ)||u(s, τ)| ds dτ + ‖p‖L1 .

Invoking Gronwall’s inequality (see for instance [9]) we get that

|u(t, x)| ≤ [‖z0‖∞ + ‖p‖L1 ]exp(‖q‖L1) :=M.

Then ‖u‖Ω < M . Set

U1 = {u ∈ C(Ja × Jb,Rn) : ‖u‖∞ < M + 1}.

N :U1 → P (C(Ja × Jb,Rn)) is completely continuous. From the choice of U1
there is no u ∈ ∂U1 such that u ∈ λN(u) for some λ ∈ (0, 1). As a consequence
of the nonlinear alternative of Leray Schauder type (see [6]) we deduce that N
has a fixed point u in U1 which is a solution of (3.1)–(3.2). Denote this solution
by u1.
Define the function rk,1(t, x) = τk(u1(t, x)) − t for t ≥ 0. (H3) implies that

rk,1(0, 0) 6= 0 for k = 1, . . . ,m. If rk,1(t, x) 6= 0 on Ja × Jb for k = 1, . . . ,m,
i.e. t 6= τk(u1(t, x)) on Ja × Jb and for k = 1, . . . ,m, then u1 is a solution of the
problem (1.1)–(1.3).
It remains to consider the case when r1,1(t, x) = 0 for some (t, x) ∈ Ja × Jb.

Now since r1,1(0, 0) 6= 0 and r1,1 is continuous, there exists t1 > 0, x1 > 0 such
that

r1,1(t1, x1) = 0 and r1,1(t, x) 6= 0 for all (t, x) ∈ [0, t1)× [0, x1].

Thus by (H4) we have

r1,1(t1, x1) = 0 and r1,1(t, x) 6= 0 for all (t, x) ∈ [0, t1)× [0, x1] ∪ (x1, b].
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Suppose that there exist (t, x) ∈ [0, t1)× [0, x1) ∪ (x1, b] such that r1,1(t, x) = 0.
The function r1,1 attains a maximum at some point (s, s) ∈ [0, t1]× Jb. Since

∂2u(t, x)
∂t∂x

∈ F (t, x, u1(t, x)), a.e. (t, x) ∈ Ja × Jb

then there exist v( · , · ) ∈ L1(Ja×Jb) with v(t, x) ∈ F (t, x, u1(t, x)), a.e. (t, x) ∈
Ja × Jb such that

∂2u(t, x)
∂t∂x

= v(t, x) a.e. t ∈ Ja × Jb.

∂u1(t, x)/∂t and ∂u1(t, x)/∂x exist. Then

∂r1,1(s, s)
∂t

= τ ′1(u1(s, s))
∂u1(s, s)

∂t
− 1 = 0.

Since
∂u1(t, x)

∂t
=
∫ t
0
v(s, x, u1(s, x)) ds,

then

τ ′1(u1(s, s))
∫ s
0
v(τ, s) dτ − 1 = 0.

Therefore 〈
τ ′1(u1(s, s)),

∫ s
0
v(τ, s) dτ

〉
= 1,

which contradicts (H4). From (H3) we have

rk,1(t, x) 6= 0 for all t ∈ [0, t1)× Jb and k = 1, . . . ,m.

Step 2. Consider now the following problem

∂2u(t, x)
∂t∂x

∈ F (t, x, u(t, x)), a.e. t ∈ [t1, a]× Jb,(3.3)

u(t+1 , x) = I1(u1(t1, x)).(3.4)

Transform the problem (3.3)–(3.4) into a fixed point problem. Consider the
operator N1:C([t1, a]× Jb,Rn)→ C([t1, a]× Jb,Rn) defined by

N1(u) =
{
h ∈ C([t1, a]× Jb,Rn) :

h(t, x) = I1(u1(t1, x)) +
∫ x
0
v(s, y) ds dy, v ∈ SF,u

}
.

As in Step 1 we can show that N1 is completely continuous, and each possible
solution of (3.3)–(3.4) is a priori bounded by constant M2. Set

U2 := {u ∈ C([t1, a]× Jb,Rn) : ‖u‖∞ < M2 + 1}.

From the choice of U2 there is no u ∈ ∂U2 such that u = λN1(u) for some
λ ∈ (0, 1). As a consequence of the nonlinear alternative of Leray–Schauder type
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(see [6]) we deduce that N1 has a fixed point u in U2 which is a solution of
(3.3)–(3.4). Denote this solution by u2. Define

rk,2(t, x) = τk(u2(t, x))− t for (t, x) ∈ [t1, a]× Jb.

If rk,2(t, x) 6= 0 on (t1, a]× Jb and for all k = 1, . . . ,m then

u(t, x) =

{
u1(t, x) if (t, x) ∈ [0, t1)× Jb,
u2(t, x) if (t, x) ∈ [t1, a]× Jb,

is a solution of the problem (1.1)–(1.3). It remains to consider the case when
r2,2(t, x) = 0, for some (t, x) ∈ (t1, a]× Jb. By (H5) we have

r2,2(t+1 , x1) = τ2(u2(t
+
1 , x1))− t1 = τ2(I1(u1(t1, x1))− t1

> τ1(u1(t1, x1))− t1 = r1,1(t1, x1) = 0.

Since r2,2 is continuous and by (H3) there exists t2 > t1, x2 > x1 such that

r2,2(u2(t2, x2) = 0 and r2,2(t, x) 6= 0 for all (t, x) ∈ (t1, t2)× Jb.

It is clear by (H3) that

rk,2(t, x) 6= 0 for all (t, x) ∈ (t1, t2)× Jb, k = 2, . . . ,m.

Suppose now that there is (s, s) ∈ (t1, t2]× [0, x2) ∪ (x2, b] such that

r1,2(s, s) = 0.

From (H5) it follows that

r1,2(t+1 , x1)) = τ1(u2(t
+
1 , x1))− t1 = τ1(I1(u1(t1, x1))− t1

≤ τ1(u1(t1, x1)− t1 = r1,1(t1, x1) = 0.

Thus the function r1,2 attains a nonnegative maximum at some point (s1, s1) ∈
(t1, a]× [0, x2) ∪ (x2, b]. Since

∂2u2(t, x)
∂t∂x

∈ F (t, x, u2(t, x))

then there exist v(t, x) ∈ F (t, x, u2(t, x)) a.e. (t, x) ∈ [t1, a]× Jb such that

∂2u2(t, x)
∂t∂x

= v(t, x), (t, x) ∈ [t1, a]× Jb.

Then we have

r′1,2(t, x) = τ
′
1(u2(t, x))

∂u2(t, x)
∂t

− 1 = 0.

Therefore 〈
τ ′1(u2(s1, s1)),

∫ s1
t1

v(s, s1) ds
〉
= 1,

which contradicts (H4).
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Step 3. We continue this process and taking into account that um :=
y|[tm,a]×Jb is a solution to the problem

∂2u(t, x)
∂t∂x

∈ F (t, x, u(t, x)), a.e. t ∈ (tm, a]× (0, b],(3.5)

u(t+m, x) = Im(um−1(t
−
m, x)).(3.6)

The solution u of the problem (1.1)–(1.3) is then defined by

u(t, x) =


u1(t, x) if t ∈ [0, t1)× Jb,
u2(t, x) if t ∈ [t1, t2)× Jb,
. . . . . . . . . . . . . . . . . . . . . . . . . . .

um(t, x) if t ∈ [tm, a]× Jb.
�
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