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FIXED POINT INDICES OF ITERATIONS
OF PLANAR HOMEOMORPHISMS

Grzegorz Graff — Piotr Nowak-Przygodzki

Abstract. Let f be a local planar homeomorphism with an isolated fixed
point at 0. We study the form of the sequence {ind(fn, 0)}n6=0, where

ind(f, 0) is a fixed point index at 0.

1. Introduction

A. Dold in 1983 (cf. [7]) proved that a sequence {ind(fn)}∞n=1 of fixed point
indices cannot take arbitrary values but must satisfy some congruences (Dold
relations). Babenko and Bogatyi showed that every sequence of integers that
fulfils this relations can be realized as {ind(fn, 0)}∞n=1, where f :D3 → D3 is
a homeomorphism and D3 is a unit disk in R3 (cf. [1]). Differentiability of f

impacts heavily on the form of {ind(fn, 0)}∞n=1, it must be periodic with the
period determined by the derivative of f (cf. [9], [6]). It is natural to ask about
the shape of indices of iterations for non-differentiable maps in two dimensions.
The class of maps under consideration in this note consists of planar homeo-
morphisms. For orientation preserving planar homeomorphism M. Brown found
strong restrictions on {ind(fn, 0)}n 6=0 (cf. [2]), which are a consequence of topo-
logical properties of the plane. We develop the work of M. Brown by a use
of Dold relations and obtain additional bounds on the form of {ind(fn, 0)}n 6=0.
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Considering the case of an orientation reversing planar homeomorphism we base
on the recent result of M. Bonino (announced earlier by M. Brown in [2]), who
proved that ind(f, 0) may be only one of the three values: −1, 0, 1 (cf. [3]). Again
by applying Dold relations we get the information about indices of iterations.

2. Dold relations

We will consider local homeomorphisms f :U → R2 (U is an open neigbour-
hood of 0) such that for each n 6= 0 the origin 0 is an isolated fixed point for fn,
though the neighbourhood of isolation may depend on n. Then the fixed point
index ind(fn, 0) is defined for fn restricted to a small enough neighbourhood
of 0.

Definition 2.1. The classical arithmetical Möbius function µ is defined by
three properties:

• µ(1) = 1,
• µ(k) = (−1)r if k is a product of r different primes,
• µ(k) = 0 otherwise.

Definition 2.2. For natural n define integers in(f, 0) by the equality:

in(f, 0) =
∑
k|n

µ(n/k)ind(fk, 0).

Notice (cf. [5]) that an alternative representation of in(f, 0) is the following:

in(f, 0) =
∑
k|n

µ(k)ind(fn/k, 0).

Theorem 2.3 (Dold relations, cf. [7]). For each natural n we have:

in(f, 0) ≡ 0 (mod n).

One of the important consequences of Dold relations is the theorem below
(cf. [1]):

Theorem 2.4. The sequence {ind(fn, 0)}∞n=1 is bounded if and only if it is
periodic.

3. Orientation preserving homeomorphisms

Theorem 3.1 (cf. [2]). Let f be an orientation preserving local homeomor-
phism of the plane. Then there is an integer p 6= 1 such that, for each n 6= 0,

(3.1) ind(fn, 0) =
{

p if ind(f, 0) = p,

1 or p if ind(f, 0) = 1.
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Corollary 3.2. If ind(fn, 0) = p, then ind(fkn, 0) = p for every k ∈
Z \ {0}.

By the above corollary we may consider only natural n, since ind(fn, 0) =
ind(f−n, 0).

Definition 3.3. Let us define A, the set of generators for {ind(fn, 0)}∞n=1,

in the following way:

A = {a ∈ N : ind(fa, 0) = p and for all b|a such that b 6= a ind(f b, 0) = 1}.

From Theorem 3.1 we have: if A = ∅, then ind(fn, 0) = 1 for each n.

Theorem 3.4. Let f be an orientation preserving local homeomorphism of
the plane, A 6= ∅. Then A is finite and

LCM(A)|(p− 1),

where LCM(A) denotes the lowest common multiplicity of all elements in A.

Proof.

in(f, 0) =
∑

k:∃a∈A a|k|n

µ(n/k)ind(fk, 0) +
∑

k:∀a∈A a-k|n

µ(n/k)ind(fk, 0)

=
∑

k:∃a∈A a|k|n

µ(n/k)(p− 1 + 1) +
∑

k:∀a∈A a-k|n

µ(n/k)

= (p− 1)
∑

k:∃a∈A a|k|n

µ(n/k) +
∑
k|n

µ(n/k).

For n > 1 by the well-known equalities (cf. [5]):

(3.2)
∑
k|n

µ(n/k) =
∑
k|n

µ(k) = 0,

we obtain:

(3.3) in(f, 0) =
{

(p− 1)
∑

k:∃a∈A a|k|n µ(n/k) if exists a ∈ A a|n,

0 otherwise.

For A = {1} we get i1(f, 0) = p and in(f, 0) = 0 if n > 1. For A 6= {1} and
n > 1, substituting n = a ∈ A into (3.3), we get:

(3.4) ia(f, 0) = p− 1.

It follows from Dold relations (Theorem 2.3) that for each a ∈ A we have:
a|(p−1), hence A is finite and LCM(A)|(p−1), which is the desired conclusion.�

Remark 3.5. M. Brown stated that if ind(f, 0) = 1, then every integer p

may appear as an index of some iteration in the formula (3.1) of Theorem 3.1
(cf. [2], Remark after Theorem 4). He gave examples of homeomorphisms for
all p except for p = 0 and p = 2. However, by Theorem 3.4 in this two cases
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LCM(A)| ± 1, which means that A = ∅ and therefore ind(fn, 0) = 1 for every n.
This imply that p = 0 and p = 2 cannot occur as indices of any iteration if
ind(f, 0) = 1.

Notice that by Theorem 3.1 {ind(fn, 0)}∞n=1 is bounded. Thus Theorem 2.4
gives the periodicity of {ind(fn, 0)}∞n=1. On the other hand the same consequence
gives Theorem 3.4. Theorem 3.4 is in fact equivalent to Dold relations in the class
of sequences which come from a preserving orientation planar homeomorphism.

Theorem 3.6. Let a sequence of integers {ind(fn, 0)}∞n=1 has the form (3.1)
from Theorem 3.1, satisfies Corollary 3.2, A 6= ∅ and LCM(A)|(p − 1). Then
{ind(fn, 0)}∞n=1 satisfies Dold relations.

Proof. Assume n > 1 and let us consider two cases.
Case 1. If n|LCM(A), then by our assumption n|(p − 1). On the other

hand by the equality (3.3) we have: in(f, 0) = (p − 1)
∑

k:∃a∈A a|k|n µ(n/k) or
in(f, 0) = 0, thus n|in(f, 0).

Case 2. If n - LCM(A) then, there are: a prime number r and α ∈ N such
that rα|n and ∀a∈A rα - a. We express the formula for in(f, 0) in another way:

in(f, 0) =
∑
k|n

µ(k)ind(fn/k, 0)

=
∑

k:r-k|n

µ(k)ind(fn/k, 0) +
∑

k:r|k|n

µ(k)ind(fn/k, 0).

The last term we rewrite in the following way:∑
k:r|k|n

µ(k)ind(fn/k, 0) =
∑

k:r|k|n;r2- k

µ(k)ind(fn/k, 0).

Substituting k′ = k/r we get that the sum above is equal to:∑
k′:r|k′r|n;r2-k′r

µ(rk′)ind(fn/(rk′), 0)

=
∑

k′:r- k′|n/r

µ(rk′)ind(fn/(rk′), 0) =
∑

k′:r- k′|n

−µ(k′)ind(fn/(rk′), 0).

We used the definition of µ (Definition 2.1) and the fact that µ is a multiplicative
function (cf. [5]). Thus we obtain for a prime r the following formula:

(3.5) in(f, 0) =
∑

k:r-k|n

µ(k)[ind(fn/k, 0)− ind(fn/(rk), 0)].

Notice that by Corollary 3.2 and Definition 3.3, if ind(fn/(rk), 0) = p then,
ind(fn/k, 0) = p since n/k is a multiplicity of n/(rk); if ind(fn/k, 0) = p, then
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ind(fn/(rk), 0) = p since for a ∈ A we have: a|(n/k) implies a|n/(rk), which is a
consequence of the fact that rα|n but rα - a and r - k. Finally,

(3.6) in(f, 0) = 0 for n - LCM(A),

which completes the proof. �

4. Orientation reversing homeomorphisms

Theorem 4.1 (cf. [3]). Let f be a planar orientation reversing local home-
omorphism. Then ind(f, 0) ∈ {−1, 0, 1}.

The theorem above and Dold relations determine the shape of indices of odd
iterations of an orientation reversing homeomorphism.

Theorem 4.2. Let f be a planar orientation reversing local homeomor-
phism. Then for every n odd ind(fn, 0) ∈ {−1, 0, 1} and

ind(fn, 0) =
{

ind(f, 0) if n > 0,

−ind(f, 0) if n < 0.

Proof. For n > 0 we prove the theorem by induction. For n = 1 the thesis
is true by Theorem 4.1. Inductively assume that it is true for all odd k < n.
Using the inductive hypothesis and equality (3.2) we obtain:

in(f, 0) = ind(fn, 0) +
∑

k|n;k 6=n

µ(n/k)ind(fk, 0)

= ind(fn, 0) + ind(f, 0)(
∑
k|n

µ(n/k)− 1)

= ind(fn, 0)− ind(f, 0).

As a result, by Dold relations, in(f, 0) = ind(fn, 0)− ind(f, 0) ≡ 0 (mod n).
Since n > 2 and |ind(fn, 0)| ≤ 1, we get in(f, 0) = 0 which gives the thesis for
n > 0. For n < 0 we use the equality ind(f−1, 0) = −ind(f, 0), which is valid for
orientation reversing planar homeomorphisms. �

Our goal now is to characterize the elements of {ind(fn, 0)}∞n=1 for n even
and n > 0 (for n < 0 the situation is the same, since ind(f2n, 0) = ind(f−2n, 0)).
First we will investigate some special cases. For the rest of the paper we assume
that Ã is a set of generators for {ind((f2)n, 0)}∞n=1 and p̃ an integer from the
formula (3.1) of Theorem 3.1 for f2.

Remark 4.3. Let ind(f, 0) = 0. Then for every natural n ind(f2n, 0) = 2l,

where l is an integer. This is a straightforward consequence of Dold relations
(Theorem 2.3) for n = 2: i2(f, 0) = ind(f, 0) − ind(f2, 0) ≡ 0 (mod 2) and
Theorem 3.1. Let ind(f, 0) = ±1. By the definition of Ã (cf. Definition 3.3) and
Theorem 3.1 we obtain: if Ã = ∅, then ind(f2n, 0) = 1 for each n.
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Theorem 4.4. Let f be an orientation reversing local homeomorphism, Ã 6=
∅ and ind(f, 0) = ±1. Then 2LCM(Ã)|(p̃− 1).

In the sequel we will need the following lemma:

Lemma 4.5. Let f be an orientation reversing local homeomorphism and
n > 2 an even number. Then in(f, 0) = in/2(f2, 0).

Proof. Consider two cases. If n/2 is even, then:

in(f, 0) =
∑
k|n

µ(k)ind(fn/k, 0)

=
∑

k|(n/2)

µ(k)ind((f2)(n/2)/k, 0) = in/2(f2, 0).

If n/2 is odd, then taking r = 2 in the formula (3.5) we obtain:

in(f, 0) =
∑

k:2-k|n

µ(k)[ind(fn/k, 0)− ind(f (n/2)/k), 0)]

=
∑

k|(n/2)

µ(k)ind((f2)(n/2)/k, 0)−
∑

k|(n/2)

µ(k)ind(f (n/2)/k, 0)

= in/2(f2, 0).

The last equality results from the fact that (n/2)/k are odd numbers, so by The-
orem 4.2

∑
k|(n/2) µ(k)ind(f (n/2)/k, 0) = ind(f, 0)

∑
k|(n/2) µ(k), which is equal

to zero for n/2 > 1 by (3.2). �

Proof of Theorem 4.4. If Ã = {1}, then i2(f) = p̃ ± 1, so by Dold
relations 2|(p̃− 1). If Ã 6= {1}, then by Lemma 4.5 and formula (3.4) for f2, we
have: i2a(f, 0) = ia(f2, 0) = p̃−1. From Dold relations we deduce that 2a|(p̃−1)
for each a ∈ Ã, thus 2LCM(Ã)|(p̃− 1). �

Again, the information about {ind(fn, 0)}∞n=1 which we gathered in Theo-
rems 4.2 and 4.4 is equivalent to Dold relations.

Theorem 4.6. Let a sequence of integers {ind(f2n, 0)}∞n=1 has the form
(3.1), satisfies Corollary 3.2, Ã 6= ∅, 2LCM(Ã)|(p̃ − 1) and {ind(f2n−1, 0)}∞n=1

is constantly equal one of the two values: −1, 1. Then {ind(fn, 0)}∞n=1 satisfies
Dold relations.

Proof. Let us consider the following possibilities:
Case 1. n > 1 is odd. Then n/k for k|n is also odd, thus by Theorem 4.2

and equalities (3.2) we have:

in(f, 0) =
∑
k|n

µ(k)ind(fn/k, 0) = ind(f, 0)
∑
k|n

µ(k) = 0.
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Case 2a. n is even and n|2LCM(Ã). If n = 2, then there are 4 possible values
of i2(f, 0): 0, 2, p̃ − 1, p̃ + 1. By the assumption 2|(p̃ − 1), so Dold relation for
n = 2 is always satisfied. Let n > 2. By the formula (3.3)

in/2(f2, 0) = (p̃− 1)
∑

k:∃a∈ eA a|k|(n/2)

µ((n/2)/k)

or in/2(f2, 0) = 0. On the other hand by our assumption: n|2LCM(Ã)|(p̃ − 1),
so n|in/2(f2, 0) and Lemma 4.5 proves the theorem.

Case 2b. n is even and n - 2LCM(Ã). Then (n/2) - LCM(Ã), which implies
by the formula (3.6) that in/2(f2, 0) = 0. Lemma 4.5 completes the proof. �

It is easy to observe by Lemma 4.5 that the sequence of integers from Re-
mark 4.3: ind(fn, 0) = 0 for n odd and ind(fn, 0) = 2l (l ∈ Z) for n even,
satisfies Dold relations.

5. Final remarks

One question that we leave unanswered is whether the restrictions on the se-
quence {ind(fn, 0)}∞n=1 obtained in this paper are maximal, i.e. is it true that ev-
ery sequence of integers which satisfies them can be obtained as {ind(fn, 0)}∞n=1,

where f is a local planar homeomorphism.
For some classes of homeomorphisms (cf. [4], [8]) there is no room on the

plane for more then one element in the set of generators A. This suggests that
indices of an iterated planar homeomorphism may behave in the same way as
indices of a planar differentiable map, for which the set A is always either empty
or has one element (cf. [1]). For orientation reversing planar homeomorphisms
bounds on Ã may be even more restrictive, namely Ã ⊂ {1}.
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