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A DEFORMATION THEOREM
AND SOME CRITICAL POINT RESULTS

FOR NON-DIFFERENTIABLE FUNCTIONS

Salvatore A. Marano — Dumitru Motreanu

Abstract. A deformation lemma for functionals which are the sum of
a locally Lipschitz continuous function and of a concave, proper and upper

semicontinuous function is established. Some critical point theorems are

then deduced and an application to a class of elliptic variational-hemiva-
riational inequalities is presented.

Introduction

It is by now well known that the Mountain Pass Theorem of Ambrosetti and
Rabinowitz [2, Theorem 2.1] employs fruitfully in the study of various questions
concerning differential equations. This result basically applies to each case when
the solutions of the problem under consideration can be regarded as critical
points of a continuously differentiable real-valued functional f on a Banach space
(X, ‖ · ‖), with the following property:

(f) there exist x0, x1 ∈ X, r > 0, a ∈ R such that ‖x1 − x0‖ > r and

max{f(x0), f(x1)} < a ≤ f(x) for all x ∈ ∂B(x0, r),

where ∂B(x0, r) = {x ∈ X : ‖x− x0‖ = r}.
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An additional compactness condition of Palais–Smale type then ensures that
f possesses a critical value c ≥ a. Intuitively, this critical value occurs because
x0 and x1 are low points on either side of the “mountain ring” ∂B(x0, r), so
that between them there must be a lowest critical point, or “mountain pass”.
Now, the question whether the conclusion is still true when the “mountain ring”
separating x0 and x1 has “zero altitude”, namely in (f) one merely has

max{f(x0), f(x1)} ≤ a ≤ f(x) for all x ∈ ∂B(x0, r),

spontaneously arises. Complete and satisfactory results in this direction have
been obtained by Pucci and Serrin ([13, Theorem 1]), Rabinowitz ([15, Theorem
2.13]), Ghoussoub and Preiss ([9, Theorem 1.bis]), and, as regards the more
general framework of linkings, Du ([7, Theorem 2.1]).

However, chiefly because of the regularity hypothesis on f , several problems
one meets in important concrete situations cannot be treated directly through
the Mountain Pass Theorem. As an example, let us mention both variational
inequalities and elliptic equations with discontinuous nonlinearities. Indeed, con-
cerning the first case the indicator function of some convex closed subset of X

must appear in the expression of f , while in the second case f turns out locally
Lipschitz continuous at most.

Starting from the seminal papers by Chang ([4]) and Szulkin ([17]), a version
of the Mountain Pass Theorem which works for functions f :X → ]−∞,∞]
fulfilling the structure assumption

(Hf ) f = Φ+α, where Φ: X → R is locally Lipschitz continuous while α:X →
]−∞,∞] is convex, proper, besides lower semicontinuous,

has recently been established; see [10, Theorem 3.2]. Critical points of f are
defined as solutions to the problem

(∗) Find u ∈ X such that Φ0(u;x− u) + α(x)− α(u) ≥ 0 for all x ∈ X,

Φ0(u;x − u) being the generalized directional derivative [5, p. 25] of Φ at the
point u along the direction x−u. The standard Palais–Smale condition becomes
here:

(PS)f,c If {un} is a sequence in X satisfying f(un) → c, c ∈ R, and

Φ0(un;x− un) + α(x)− α(un) ≥ −εn‖x− un‖ for all n ∈ N, x ∈ X,

where εn → 0+, then {un} possesses a convergent subsequence.

When Φ ∈ C1(X, R), problem (∗) reduces to a classical variational inequality,
and the relevant critical point theory as well as meaningful applications are
developed in [17]. If α ≡ 0 then (∗) coincides with the problem treated by Chang
([4]), which also exploits the abstract results to study elliptic equations having
discontinuous nonlinearities. Finally, when both Φ ∈ C1(X, R) and α ≡ 0,
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problem (∗) simplifies to the Euler equation Φ′(u) = 0, and the theory is by now
classical; vide for instance [1], [14].

Regarding this new setting, it makes sense – like before – to ask whether
the standard strict inequality appearing in Theorem 3.2 of [10] can be weak-
ened to allow also equality. A partial answer, namely for α ≡ 0, is already
known; see [11, Theorem 2.1]. The present paper continues such investigation
by treating the general case. To do this, we first establish a deformation lemma
(Theorem 2.1 below) for the function −f , which includes both [7, Lemma 2.1]
and [11, Theorem 1.1]. From a technical point of view, it represents the most
difficult part of the work and is presented in Section 2. After that, in Sec-
tion 3, a version of [10, Theorem 3.2] where “less than or equal to” takes the
place of “less than” is established (see Theorem 3.1) and some classical results
(as the Mountain Pass Theorem) are reformulated in our framework. Finally,
Section 4 contains an application (Theorem 4.1) to a class of elliptic variational-
hemivariational inequalities in the sense of Panagiotopoulos ([12]). Let us point
out that variational-hemivariational inequalities arise in the modelling of impor-
tant mechanical and engineering problems, like for instance the behaviour of an
adhesive material in the direction orthogonal to the interface.

1. Preliminaries

Let (X, ‖ · ‖) be a real Banach space. If V is a subset of X, we write int(V )
for the interior of V , V for the closure of V , ∂V for the boundary of V . When
V is nonempty, x ∈ X, and δ > 0, we define B(x, δ) = {z ∈ X : ‖z − x‖ < δ} as
well as

Bδ = B(0, δ), Bδ = B(0, δ),

d(x, V ) = inf
z∈V

‖x− z‖, Nδ(V ) = {z ∈ X : d(z, V ) ≤ δ}.

Given x, z ∈ X, the symbol [x, z] indicates the line segment joining x to z, i.e.

[x, z] = {(1− t)x + tz : t ∈ [0, 1]}.

We denote by X∗ the dual space of X, while 〈 · , · 〉 stands for the duality pairing
between X∗ and X. A function Φ: X → R is called locally Lipschitz continuous
when to every x ∈ X there correspond a neighbourhood Vx of x and a constant
Lx ≥ 0 such that

|Φ(z)− Φ(w)| ≤ Lx‖z − w‖ for all z, w ∈ Vx.

If x, z ∈ X, we write Φ0(x; z) for the generalized directional derivative of Φ at
the point x along the direction z, namely

Φ0(x; z) = lim sup
w→x, t→0+

Φ(w + tz)− Φ(w)
t

.



142 S. A. Marano — D. Motreanu

It is known ([5, Proposition 2.1.1]) that Φ0 is upper semicontinuous on X ×X.
The generalized gradient of the function Φ in x, denoted by ∂Φ(x), is the set

∂Φ(x) = {x∗ ∈ X∗ : 〈x∗, z〉 ≤ Φ0(x; z) for all z ∈ X}.

Proposition 2.1.2 of [5] ensures that ∂Φ(x) turns out nonempty, convex, in ad-
dition to weak* compact.

Let X be reflexive and let α:X → ]−∞,∞] be convex, proper and lower
semicontinuous. The function α is continuous on int(Dα), where

Dα = {x ∈ X : α(x) < ∞},

vide for instance [6, Exercise 1, p. 296]. If ∂α(x) indicates the sub-differential
of α at the point x ∈ X while D∂α = {x ∈ X : ∂α(x) 6= ∅} then Theorem 23.5
in the same reference gives int(Dα) = int(D∂α). Moreover, one has

Proposition 1.1. Suppose x ∈ int(Dα). Then for every xn → x in X and
every z∗n ∈ ∂α(xn), n ∈ N, there exist z∗ ∈ ∂α(x) as well as a subsequence {z∗rn

}
of {z∗n} satisfying z∗rn

⇀ z∗ in X∗.

Proof. Recall that the multifunction ∂α: int(D∂α) → 2X∗
takes convex

weakly closed values, is locally bounded, and upper semicontinuous with respect
to the strong topology of X and the weak one in X∗; see [6, Section 23]. Hence,
by the assumptions, {z∗n} turns out bounded. Since X is reflexive, we can find
a subsequence {z∗rn

} of {z∗n} such that z∗rn
⇀ z∗ in X∗. The upper semicontinuity

of ∂α then implies z∗ ∈ ∂α(x). �

Finally, if h:X → [−∞,∞] and a ∈ R, we write

ha = {x ∈ X : h(x) ≤ a}, ha = {x ∈ X : a ≤ h(x)}.

2. A deformation result

Let (X, ‖ · ‖) be a real reflexive Banach space and let g be a function on X

fulfilling the structural hypothesis:

(Hg) g = Ψ+β, where Ψ:X → R is locally Lipschitz continuous while β:X →
[−∞,∞[ is concave, proper and upper semicontinuous.

We say that u ∈ X is a critical point of g when

Ψ0(u;u− x) + β(u)− β(x) ≥ 0 for all x ∈ X.

Given a real number c, write

Kc(g) = {u ∈ X : g(u) = c, u is a critical point of g}.

We denote by Dβ the set {x ∈ X : β(x) > −∞} while

∂β(x) = −∂(−β)(x), x ∈ X.
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The following assumption will be posited in the sequel.

(g) A and B are two nonempty closed subsets of X such that

A ∩B = ∅, A ⊆ gc, B ⊆ gc, Kc(g) ∩B = ∅.

Moreover, there exists ε0 > 0 satisfying Nε0(B) ⊆ int(Dβ).

Remark 2.1. Because of Proposition 1.1, the conditions x ∈ Nε0(B), xn →
x in X, z∗n ∈ ∂β(xn), n ∈ N, yield a subsequence {z∗rn

} of {z∗n} weakly converging
in X∗ to some point z∗ ∈ ∂β(x).

We shall also suppose that the function g complies with the next Palais–
Smale condition around B at the level c:

(PS)g,B,c Each sequence {xn} ⊆ X such that d(xn, B) → 0, g(xn) → c, and

Ψ0(xn;xn − x) + β(xn)− β(x) ≥ −εn‖xn − x‖ for all n ∈ N, x ∈ X,

where εn → 0+, possesses a convergent subsequence.

Lemma 2.2. Let (Hg), (g), and (PS)g,B,c be fulfilled. Then there exist ε1 ∈
]0, ε0[, σ > 0 such that for every x ∈ Nε1(B) ∩ gc−ε1 ∩ gc+ε1 , x∗ ∈ ∂Ψ(x),
z∗ ∈ ∂β(x) one has ‖x∗ + z∗‖X∗ ≥ σ.

Proof. If the conclusion were false one could construct three sequences
{xn} ⊆ X, {x∗n}, {z∗n} ⊆ X∗ having the following properties:

d(xn, B) → 0,(2.1)

g(xn) → c,(2.2)

x∗n ∈ ∂Ψ(xn) and z∗n ∈ ∂β(xn) for all n ∈ N,(2.3)

‖x∗n + z∗n‖X∗ → 0.(2.4)

From (2.3) we obtain easily

(2.5) Ψ0(xn;xn − x) + β(xn)− β(x) ≥ −‖x∗n + z∗n‖X∗‖xn − x‖

for all n ∈ N, x ∈ X. Setting εn = ‖x∗n + z∗n‖X∗ and using (PS)g,B,c as well
as (2.1), (2.2), (2.4), inequality (2.5) produces xn → u in X for some u ∈ X,
where a subsequence is considered when necessary. Since Ψ0 and β are upper
semicontinuous, this forces

(2.6) Ψ0(u;u− x) + β(u)− β(x) ≥ 0 for all x ∈ X,

namely u is a critical point of g. By (2.1) and (g) we then infer u ∈ int(Dβ).
Thus β(xn) → β(u), which leads to u ∈ Kc(g) on account of (2.2). However, via
(2.1) we also have u ∈ B, against assumption (g). �
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Lemma 2.3. Suppose the function g satisfies (Hg), (g), and (PS)g,B,c while
ε1, σ are as in Lemma 2.2. Then to every x ∈ Nε1(B) ∩ gc−ε1 ∩ gc+ε1 there
corresponds a point ξx ∈ X such that

(2.7) ‖ξx‖ = 1, 〈x∗ + z∗, ξx〉 ≥ σ for all x∗ ∈ ∂Ψ(x), z∗ ∈ ∂β(x).

Proof. Fix x ∈ Nε1(B) ∩ gc−ε1 ∩ gc+ε1 ⊆ D∂β . Since ∂Ψ(x) and ∂β(x)
are nonempty and convex, the same holds for ∂Ψ(x) + ∂β(x). Let us show that
this set is also closed. Pick {x∗n} ⊆ ∂Ψ(x) and {z∗n} ⊆ ∂β(x) complying with
x∗n + z∗n → u∗ in X∗. The reflexivity of X as well as Proposition 2.1.2 in [5]
yield x∗ ∈ ∂Ψ(x) such that, taking a subsequence if necessary, x∗n ⇀ x∗. Hence,
z∗n ⇀ u∗−x∗. The choice of {z∗n} clearly forces u∗−x∗ ∈ ∂β(x), from which the
assertion follows.

Next observe that, by Lemma 2.1, 0 6∈ ∂Ψ(x) + ∂β(x). Through Corol-
lary III.20 in [3] we thus obtain u∗ ∈ ∂Ψ(x), v∗ ∈ ∂β(x) fulfilling

Bδ∗ ∩ (∂Ψ(x) + ∂β(x)) = ∅, where δ∗ = ‖u∗ + v∗‖X∗ .

Now, the Hahn–Banach Theorem [3,Theorem I.6] provides a point ξx ∈ X with
the properties ‖ξx‖ = 1 and, whenever x∗ ∈ ∂Ψ(x), z∗ ∈ ∂β(x),

〈x∗ + z∗, ξx〉 ≥ 〈w∗, ξx〉 for all w∗ ∈ Bδ∗ .

Since

‖u∗ + v∗‖X∗ = ‖u∗ + v∗‖X∗‖ξx‖ = max{〈w∗, ξx〉 : w∗ ∈ Bδ∗},

the above inequality and Lemma 2.1 lead to

〈x∗ + z∗, ξx〉 ≥ ‖u∗ + v∗‖X∗ ≥ σ for all x∗ ∈ ∂Ψ(x), z∗ ∈ ∂β(x),

as claimed. �

Lemma 2.4. Let (Hg), (g), (PS)g,B,c be satisfied and let ε1, σ be like in
Lemma 2.2. Then for every x ∈ Nε1(B) ∩ gc−ε1 ∩ gc+ε1 there exists δx > 0 such
that

〈x∗ + z∗, ξx〉 >
σ

2
for all x∗ ∈ ∂Ψ(x′), z∗ ∈ ∂β(x′′), x′, x′′ ∈ B(x, δx),

where ξx is given by Lemma 2.3.

Proof. If the conclusion were false we could find x ∈ Nε1(B)∩gc−ε1∩gc+ε1 ,
{x′n}, {x′′n} ⊆ X, and {x∗n}, {z∗n} ⊆ X∗ fulfilling the following conditions:

x′n → x, x∗n ∈ ∂Ψ(x′n) for all n ∈ N,(2.8)

x′′n → x, z∗n ∈ ∂β(x′′n) for all n ∈ N,(2.9)

〈x∗n + z∗n, ξx〉 ≤
σ

2
for all n ∈ N.(2.10)
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Due to the reflexivity of X and (2.8), Proposition 2.1.2 in [5] yields x∗ ∈ X∗

such that x∗n ⇀ x∗ in X∗, where a subsequence is considered when necessary,
while Proposition 2.1.5 of the same reference forces x∗ ∈ ∂Ψ(x). From (2.10) we
thus get

(2.11) lim sup
n→∞

〈z∗n, ξx〉 ≤
σ

2
− 〈x∗, ξx〉.

Now, exploiting (2.9) and Remark 2.1 provides z∗ ∈ ∂β(x) and a subsequence
{z∗rn

} of {z∗n} which comply with

〈z∗, ξx〉 = lim
n→∞

〈z∗rn
, ξx〉.

By (2.11) it implies 〈x∗ + z∗, ξx〉 ≤ σ/2, against (2.7). �

The next deformation theorem represents the main result of this section. It
extends [7, Lemma 1.1] and [11, Theorem 1.1] to the framework of the present
paper.

Theorem 2.5. Assume the function g satisfies (Hg), (g), (PS)g,B,c and the
set Nε1(B)∩gc−ε1 ∩gc+ε1 , with ε1 like in Lemma 2.1, is closed. Then there exist
ε > 0 and a homeomorphism η:X → X having the following properties:

(a) η(x) = x for every x ∈ A,
(b) η(B) ⊆ gc−ε.

Proof. The family of balls B = {B(x, δx) : x ∈ Nε1(B) ∩ gc−ε1 ∩ gc+ε1}
constructed through Lemma 2.4 represents an open covering of Nε1(B)∩gc−ε1 ∩
gc+ε1 . Since, by [8, Theorem VIII.2.4], this set is paracompact, B possesses an
open locally finite refinement V = {Vi : i ∈ I}. Moreover, to each i ∈ I there
corresponds ξi ∈ X such that ‖ξi‖ = 1 as well as

(2.12) 〈x∗ + z∗, ξi〉 >
σ

2
for all x∗ ∈ ∂Ψ(x′), z∗ ∈ ∂β(x′′), x′, x′′ ∈ Vi.

Shrink V to an open locally finite coveringW = {Wi : i ∈ I} fulfilling cl(Wi) ⊆ Vi

for every i ∈ I (vide [8, Theorems VIII.2.2 and VII.6.1]) and write

di(x) = d(x,X \Wi), x ∈ X.

Evidently, di is Lipschitz continuous while di(x) = 0 means x ∈ X \Wi. Thus,
defining

W =
⋃
i∈I

Wi, ρi(x) =
di(x)∑

j∈I dj(x)
for all x ∈ W, i ∈ I,

we obtain a family of locally Lipschitz continuous functions ρi:W → [0, 1], i ∈ I,
with the following properties:

supp ρi = cl (Wi) ⊆ Vi for all i ∈ I,
∑
i∈I

ρi(x) = 1 for all x ∈ W.
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Now, let θ:W → X be given by

θ(x) =
∑
i∈I

ρi(x)ξi, x ∈ W.

Clearly, θ is locally Lipschitz continuous and ‖θ(x)‖ ≤ 1 in W . Put, for every
x ∈ X,

(2.13) Θ(x) =

{
−ε1θ(x) if x ∈ W ,

0 otherwise.

The function Θ: X → X turns out locally Lipschitz continuous as well. To see
this, we simply note that the set ∪i∈Isupp ρi is closed, which comes from the local
finiteness of V, while Θ(x) = 0 in X \ ∪i∈Isupp ρi. Moreover, one has ‖Θ(x)‖ ≤
ε1 for all x ∈ X. Hence, the basic existence-uniqueness theorem for ordinary
differential equations in Banach spaces provides a function γ ∈ C0(R × X, X)
satisfying

(2.14)
dγ(t, x)

dt
= Θ(γ(t, x)), γ(0, x) = x for all (t, x) ∈ R×X.

Next, define B1 = γ([0, 1]×B). If x ∈ B then

‖γ(t, x)− x‖ =
∥∥∥∥∫ t

0

dγ(τ, x)
dτ

dτ

∥∥∥∥ =
∥∥∥∥∫ t

0

Θ(γ(τ, x)) dτ

∥∥∥∥ ≤ ε1 for all t ∈ [0, 1],

namely

(2.15) B1 ⊆ Nε1(B).

Let us verify that the set B1 is closed. To this end, pick a sequence {yn} ⊆ B1

converging to some y ∈ X. Since yn = γ(tn, xn) with (tn, xn) ∈ [0, 1] × B,
by possibly taking a subsequence we can suppose tn → t in [0, 1]. Write zn =
γ(t, xn), n ∈ N, and observe that

‖yn − zn‖ =
∥∥∥∥∫ tn

t

dγ(τ, xn)
dτ

dτ

∥∥∥∥ ≤ ε1|tn − t| for all n ∈ N.

Therefore, zn → y. Through the properties of γ we thus achieve

xn = γ(−t, zn) → γ(−t, y).

Setting x = γ(−t, y) one has xn → x, the point x lies in B because B is closed,
while y = γ(t, x) ∈ γ([0, 1]×B) = B1, which represents the desired conclusion.

Our next goal is to show that

(2.16) for all x ∈ B the function t 7→ g(γ(t, x)) turns out decreasing on [0, 1].
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Obviously, the claim will be proved once we see that to each x0 ∈ B, t0 ∈ [0, 1]
it corresponds δ0 > 0 fulfilling

(2.17)
g(γ(t, x0))− g(γ(t0, x0))

t− t0
≤ 0 for all t ∈ [0, 1] ∩B(t0, δ0) \ {t0}.

So, fix (t0, x0) ∈ [0, 1] × B. If γ(t0, x0) 6∈
⋃

i∈I supp ρi then one can easily find
δ0 > 0 such that

γ(t, x0) 6∈
⋃
i∈I

supp ρi for all t ∈ [0, 1] ∩B(t0, δ0).

It implies Θ(γ(t, x0)) = 0 and hence γ(t, x0) = γ(t0, x0) in [0, 1]∩B(t0, δ0), from
which (2.17) follows at once. Suppose now γ(t0, x0) ∈

⋃
i∈I supp ρi. Since the

family {supp ρi : i ∈ I} is locally finite, there exists δ′ > 0 satisfying

supp ρi ∩B(γ(t0, x0), δ′) 6= ∅

for a finite number of i ∈ I, say i1, . . . , ip. Consequently,

(2.18) supp ρi ∩B(γ(t0, x0), δ′)

{
6= ∅ if i ∈ {i1, . . . , ip},
= ∅ otherwise.

Let i′1, . . . , i′q be the elements in {i1, . . . , ip} such that γ(t0, x0) ∈ supp ρi′j
when-

ever j = 1, . . . , q. One clearly has

(2.19)
γ(t0, x0) ∈ supp ρi′j

for all j = 1, . . . , q,

δi = d(γ(t0, x0), supp ρi) > 0 for all i ∈ {i1, . . . , ip} \ {i′1, . . . , i′q}.

Pick δ′′ ∈ ]0, δ′[ with the following properties:

δ′′ < δi for all i ∈ {i1, . . . , ip} \ {i′1, . . . , i′q},
B(γ(t0, x0), δ′′) ⊆ Vi′j

for all j = 1, . . . , q.

Thanks to (2.18) and (2.19) we get

(2.20)
supp ρi ∩B(γ(t0, x0), δ′′) = ∅ for all i ∈ I \ {i′1, . . . , i′p},

B(γ(t0, x0), δ′′) ⊆ Vi′j
for all j = 1, . . . , q.

Finally, choose δ0 > 0 such that

(2.21) γ(t, x0) ∈ B(γ(t0, x0), δ′′) for all t ∈ [0, 1] ∩B(t0, δ0).

Let t ∈ [0, 1] ∩ B(t0, δ0) \ {t0}. Suppose t > t0. Since x0 ∈ B, inclusion (2.15)
and assumption (g) force

γ(τ, x0) ∈ Nε1(B) ⊆ D∂β for all τ ∈ [t0, t].
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Exploiting Theorem 2.3.7 in [5] as well as the definition of ∂β we have, for
suitable x ∈ [γ(t0, x0), γ(t, x0)], x∗ ∈ ∂Ψ(x), and z∗ ∈ ∂β(γ(t0, x0)),

(2.22) g(γ(t, x0))− g(γ(t0, x0)) ≤ 〈x∗ + z∗, γ(t, x0)− γ(t0, x0)〉

=
〈

x∗ + z∗,

∫ t

t0

dγ(τ, x0)
dτ

dτ

〉
=

∫ t

t0

〈x∗ + z∗,Θ(γ(τ, x0))〉 dτ.

On account of (2.21), (2.20) it results

Θ(γ(τ, x0)) = −ε1

q∑
j=1

ρi′j
(γ(τ, x0))ξi′j

for all τ ∈ [t0, t].

Bearing in mind that x, γ(t0, x0) ∈ Vi′j
, j = 1, . . . , q, inequality (2.12) can be

applied and we obtain

(2.23) 〈x∗ + z∗,Θ(γ(τ, x0))〉 ≤ −ε1σ

2

q∑
j=1

ρi′j
(γ(τ, x0)) = −ε1σ

2

for every τ ∈ [t0, t]. Hence, by (2.22),

g(γ(t, x0))− g(γ(t0, x0))
t− t0

≤ −ε1σ

2
< 0.

Now, suppose t < t0. Gathering (2.22), with t0 and t exchanged, and (2.23)
yields

g(γ(t0, x0))− g(γ(t, x0)) ≤
∫ t0

t

〈x∗ + z∗,Θ(γ(τ, x0))〉 dτ ≤ −ε1σ

2
(t0 − t),

which leads to the conclusion (as for t > t0) once more. Thus (2.17) is completely
achieved.

We next claim that

(2.24) A ∩B1 = ∅.

Indeed, if (2.24) were false one could find (t0, x0) ∈ ]0, 1]× B fulfilling γ(t0, x0)
∈ A. Because of assumption (g) and (2.16) this easily implies

(2.25) g(γ(t, x0)) = c for all t ∈ [0, t0].

Hence, due to (2.15), γ(t, x0) ∈ Nε1(B) ∩ gc−ε1 ∩ gc+ε1 for all t ∈ [0, t0] and, in
particular, γ(t0, x0) ∈

⋃
i∈I supp ρi. Arguing as before gives δ0 > 0 such that

g(γ(t, x0))− g(γ(t0, x0))
t− t0

≤ −ε1σ

2
for all t ∈ [0, 1] ∩B(t0, δ0) \ {t0}.

Through (2.25) we then obtain, whenever t ∈ ]t0 − δ0, t0[ ∩ [0, 1],

g(γ(t0, x0)) =
g(γ(t0, x0))− g(γ(t, x0))

t0 − t
(t0 − t) + g(γ(t, x0))

≤ −ε1σ

2
(t0 − t) + c < c,
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which contradicts (2.25) written for t = t0.
Note that from (2.24) it follows d(x,A) + d(x,B1) > 0 at each point x ∈ X.

Let A1 = {x ∈ X : ζ1(x) ≤ 1/2}, where

ζ1(x) =
d(x, A)

d(x,A) + d(x, B1)
, x ∈ X.

Since the function ζ1 is evidently continuous, the set A1 turns out closed. More-
over, one has A ⊆ int (A1) as well as A1 ∩B1 = ∅. Putting

ζ(x) =
d(x,A1)

d(x, A1) + d(x,B1)
for all x ∈ X

provides a locally Lipschitz continuous function ζ:X → [0, 1] such that

(2.26) ζ|A1 ≡ 0, ζ|B1 ≡ 1.

Thanks to the properties of Θ the function Λ:X → X given by

(2.27) Λ(x) = ζ(x)Θ(x), x ∈ X,

comes bounded and locally Lipschitz continuous. Indicate with χ: R ×X → X

the solution of the Cauchy problem

dχ(t, x)
dt

= Λ(χ(t, x)), χ(0, x) = x,

and define

(2.28) ε = ε1 min
{σ

2
, 1

}
, η(x) = χ(1, x) for all x ∈ X.

Classical results concerning ordinary differential equations in Banach spaces en-
sure that η:X → X is a homeomorphism. If x ∈ A then x ∈ int(A1) and,
because of (2.26), Λ ≡ 0 on some neighbourhood of x. This implies immediately
η(x) = x, thus showing assertion (a).

Finally, the proof is accomplished once we verify (b). Suppose on the contrary
that there exists x0 ∈ B satisfying

(2.29) g(η(x0)) > c− ε.

Through (2.27) and (2.26) we obtain

Λ(γ(t, x0)) = Θ(γ(t, x0)) for all t ∈ [0, 1],

from which it follows, bearing in mind (2.14),

dγ(t, x0)
dt

= Λ(γ(t, x0)) in [0, 1], γ(0, x0) = x0.

By uniqueness we thus have

(2.30) γ(t, x0) = χ(t, x0) for all t ∈ [0, 1].
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Fix t0 ∈ [0, 1]. Since x0 ∈ B, (2.29), (2.28), (2.30), (2.16), and (g) lead to

c− ε < g(γ(t, x0)) = g(χ(t, x0)) < c + ε, t ∈ [0, 1],

while gathering (2.27) and (2.13) together yields

‖χ(t, x0)− x0‖ =
∥∥∥∥∫ t

0

dχ(τ, x0)
dτ

dτ

∥∥∥∥ =
∥∥∥∥∫ t

0

Λ(χ(τ, x0)) dτ

∥∥∥∥ ≤ ε1t ≤ ε1

for all t ∈ [0, 1]. Therefore,

γ(t, x0) = χ(t, x0) ∈ Nε1(B) ∩ gc−ε1 ∩ gc+ε1 for all t ∈ [0, 1].

Using the compactness of [0, 1] and the fact that W is a locally finite covering of
Nε1(B) ∩ gc−ε1 ∩ gc+ε1 we can find a decomposition 0 = t0 < t1 < . . . < tp−1 <

tp = 1 of [0, 1] such that to every j ∈ {1, . . . , p} there corresponds a finite family
Ij ⊆ I for which

[γ(tj−1, x0), γ(tj , x0)] ⊆ Wi ⊆ supp ρi ⊆ Vi,

γ(τ, x0) ∈ Wi for all τ ∈ [tj−1, tj ]

whenever i ∈ Ij . By [5, Theorem 2.3.7] and the definition of ∂β there exist
xj ∈ [γ(tj−1, x0), γ(tj , x0)], x∗j ∈ ∂Ψ(xj), and z∗j ∈ ∂β(γ(tj−1, x0)) fulfilling

g(γ(tj , x0))− g(γ(tj−1, x0)) ≤ 〈x∗j + z∗j , γ(tj , x0)− γ(tj−1, x0)〉

=
〈

x∗j + z∗j ,

∫ tj

tj−1

dγ(τ, x0)
dτ

dτ

〉
=

∫ tj

tj−1

〈x∗j + z∗j ,Θ(γ(τ, x0))〉 dτ.

Due to (2.13) this inequality becomes

g(γ(tj , x0))− g(γ(tj−1, x0)) ≤ −ε1

∑
i∈Ij

〈x∗j + z∗j , ξi〉
∫ tj

tj−1

ρi(γ(τ, x0)) dτ.

Now, since xj , γ(tj−1, x0) ∈ Vi for all i ∈ Ij , using (2.12) we get

g(γ(tj , x0))− g(γ(tj−1, x0)) ≤ −ε1σ

2

∫ tj

tj−1

∑
i∈Ij

ρi(γ(τ, x0)) dτ = −ε1σ

2
(tj − tj−1).

Hence, as j was arbitrary,

g(γ(1, x0))− g(γ(0, x0)) =
p∑

j=1

[g(γ(tj , x0))− g(γ(tj−1, x0))] ≤ −ε1σ

2
.

Taking account of (2.28), (2.30), and (g) one finally has

g(η(x0)) ≤ −ε1σ

2
+ g(x0) ≤ c− ε,

which contradicts (2.29). The proof is thus complete. �
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3. Existence of critical points

In this section we establish a version of the minimax principle by Motreanu
and Panagiotopoulos ([10, Theorem 3.2]) where the usual strict inequality is
weakened to allow also equality; see Theorem 3.1 below. It can be considered as
a further contribution to the study initiated in [7] for the smooth case and then
continued in [11] regarding the locally Lipschitz continuous setting. Classical
results on the same subject are those by Pucci and Serrin ([13, Theorem 1]),
Rabinowitz ([15, Theorem 2.13]), Ghoussoub and Preiss ([9, Theorem 1.bis]).

The next definition of linking is adopted here; vide [10, Definition 3.3]. Let
(X, ‖·‖) be a real reflexive Banach space, let Q be a compact topological manifold
in X with nonempty boundary (according to [16, p. 297]) ∂Q, and let S be a
nonempty closed subset of X. Write

Γ = {γ ∈ C0(Q,X) : γ|∂Q = id|∂Q}.

We say that Q links with S provided ∂Q ∩ S = ∅ and for every γ ∈ Γ one has
γ(Q)∩ S 6= ∅. Now, let f be a function on X fulfilling the structure hypothesis

(Hf ) f = Φ+α, where Φ: X → R is locally Lipschitz continuous while α:X →
]−∞,∞] is convex, proper and lower semicontinuous.

A critical point of f is a point u ∈ X at which

Φ0(u;x− u) + α(x)− α(u) ≥ 0 for all x ∈ X.

Given a real number c, we put

Kc(f) = {u ∈ X : f(u) = c, u is a critical point of f}.

The Palais–Smale condition around the set S at the level c takes the form

(PS)f,S,c Each sequence {xn} ⊆ X such that d(xn, S) → 0, f(xn) → c, and

Φ0(xn;x− xn) + α(x)− α(xn) ≥ −εn‖xn − x‖ for all n ∈ N, x ∈ X,

where εn → 0+, possesses a convergent subsequence.

(PS)f,c will denote the above condition without the request d(xn, S) → 0.

Theorem 3.1. Suppose Q and S link while the function f satisfies the fol-
lowing assumptions in addition to (Hf ).

(f1) supx∈Q f(x) < ∞.
(f2) ∂Q ⊆ fa and S ⊆ fa for some a ∈ R.
(f3) Setting

c = inf
γ∈Γ

sup
z∈γ(Q)

f(z)

either (PS)f,c or (PS)f,S,c holds according to whether c > a or c = a.
Further, there exists ε0 > 0 such that
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(f3.1) Nε0(S) ⊆ int(Dα), and
(f3.2) the set Nδ(S) ∩ fc−δ ∩ fc+δ, δ ∈]0, ε0[, is closed.

Then one has

(i1) c ≥ a,
(i2) Kc(f) \ ∂Q 6= ∅, and
(i3) Kc(f) ∩ S 6= ∅ if c = a.

Proof. We first note that c < ∞ because the function γ = id|Q lies in Γ
while (f1) gives supz∈γ(Q) f(z) < ∞. Let us show (i1). Since Q is linking with S,
for every γ ∈ Γ there exists x ∈ Q such that γ(x) ∈ S. Thanks to (f2) this forces
supz∈γ(Q) f(z) ≥ a. As γ was arbitrary, we actually have

c = inf
γ∈Γ

sup
z∈γ(Q)

f(z) ≥ a.

When c > a, by (f2) again, it results Kc(f) \ ∂Q = Kc(f). The same technique
used to establish Theorem 3.2 of [10] ensures that Kc(f) 6= ∅, which yields (i2)
and completes the proof. So, let c = a. The conclusion will be achieved once we
verify (i3), because ∂Q ∩ S = ∅. Suppose on the contrary that Kc(f) ∩ S = ∅
and define A = ∂Q, B = S, g = −f . Then, bearing in mind the assumptions,
the function g fulfils condition (PS)g,B,−c while

A ∩B = ∅, A ⊆ g−c, B ⊆ g−c, K−c(g) ∩B = ∅.

Observe that for any δ > 0 we have

Nδ(B) ∩ fc−δ ∩ fc+δ = Nδ(B) ∩ g−c−δ ∩ g−c+δ.

Consequently, by (f3), both g and −c satisfy all the hypotheses of Theorem 2.1.
Thus, there exist ε > 0 as well as a homeomorphism η:X → X such that

(3.1) η(x) = x for all x ∈ ∂Q, c + ε ≤ f(η(x)) for all x ∈ S.

Exploiting the definition of c produces, for some γε ∈ Γ,

(3.2) f(γε(x)) < c + ε, x ∈ Q.

Since Q links with S while η−1 ◦ γε ∈ Γ we can find a point xε in Q fulfilling
η−1(γε(xε)) ∈ S. So, due to (3.1) and (3.2),

c + ε ≤ f(η(η−1(γε(xε)))) = f(γε(xε)) < c + ε,

which is clearly impossible. �

Remark 3.2. When α ≡ 0 the preceding result gives Theorem 2.1 by Motre-
anu and Varga ([11]), but with the above-mentioned definition of linking. To see
this we simply note that, in view of [10, Proposition 3.1], the Palais–Smale con-
dition around S at the level c adopted in [11] implies our (PS)f,S,c.
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Several classical results can be reformulated in the framework of the present
paper through Theorem 3.1. As an example we state here the following versions
of the Mountain Pass Theorem ([2, Theorem 2.1]) and the Saddle Point Theorem
([14, Theorem 4.6]).

Theorem 3.3. Let f be like in (Hf ). Suppose that

(f4) there exist x1 ∈ X, r > 0, and a ∈ R satisfying ‖x1‖ > r in addition to

max{f(0), f(x1)} ≤ a ≤ f(x) for all x ∈ ∂Br,

(f5) assumption (f3) of Theorem 3.1 holds with Q = [0, x1], S = ∂Br.

Then c ≥ a and Kc(f) \ {0, x1} 6= ∅.

Theorem 3.4. Let X = V ⊕ E, where V 6= {0} is finite dimensional. If

(f6) there are two real numbers r > 0 and a such that

sup
x∈V ∩Br

f(x) < ∞, ∂(V ∩Br) ⊆ fa, E ⊆ fa,

(f7) hypothesis (f3) of Theorem 3.1 holds for S = E,

then c ≥ a and Kc(f) 6= ∅.

4. An application

In this section we exploit Theorem 3.1 to solve an elliptic variational-hemi-
variational inequality in the sense of Panagiotopoulos (see [12]).

Let Ω be a nonempty, bounded, open subset of the real Euclidean N -space
(RN , | · |), N ≥ 3, having a smooth boundary ∂Ω and let H1

0 (Ω) be the closure
of C∞0 (Ω) with respect to the norm

‖u‖ :=
( ∫

Ω

|∇u(x)|2 dx

)1/2

.

Denote by 2∗ the critical exponent for the Sobolev embedding H1
0 (Ω) ⊆ Lp(Ω).

Recall that 2∗ = 2N/(N − 2), if p ∈ [1, 2∗] then there exists a constant cp > 0
fulfilling ‖u‖Lp(Ω) ≤ cp‖u‖ for all u ∈ H1

0 (Ω), and the embedding is compact
whenever p ∈ [1, 2∗[; see for instance Proposition B.7 in [14].

Now, let {λn} be the sequence of eigenvalues of the operator −∆ in H1
0 (Ω),

with 0 < λ1 < . . . ≤ λn ≤ . . . , and let {ϕn} be a corresponding sequence of
eigenfunctions normalized as follows:

(4.1)
‖ϕn‖2 = 1 = λn‖ϕn‖2

L2(Ω), n ∈ N,∫
Ω

∇ϕm(x) · ∇ϕn(x) dx =
∫

Ω

ϕm(x)ϕn(x) dx = 0 provided m 6= n.

If j, k: Ω× R → R satisfy the conditions

(a1) j, k are measurable with respect to each variable separately, and
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(a2) there exist c > 0, p ∈ [1, 2∗[ such that

max{|j(x, t)|, |k(x, t)|} ≤ c(1 + |t|p−1) for all (x, t) ∈ Ω× R,

then the functions J,K: Ω× R → R given by

J(x, ξ) =
∫ ξ

0

j(x, t) dt, K(x, ξ) =
∫ ξ

0

k(x, t) dt, (x, ξ) ∈ Ω× R,

turn out well defined, J( · , ξ), K( · , ξ) are measurable, while J(x, · ), K(x, · )
are locally Lipschitz continuous. So it makes sense to consider their generalized
directional derivatives J0

x , K0
x with respect to the variable ξ.

Let q be a positive integer such that λq < λq+1 and let λ ∈ [λq, λq+1]. Setting

V = span{ϕ1, . . . , ϕq}, W = span{ϕ1, . . . , ϕq, ϕq+1}

one clearly has H1
0 (Ω) = V ⊕ Rϕq+1 ⊕W⊥. Consequently, each u ∈ H1

0 (Ω) can
be written as u = u1 + u2 + u3 where u1 ∈ V , u2 ∈ Rϕq+1, u3 ∈ W⊥.

We will also assume that

(a3) J(x, ξ) ≤ (1/2)(λ/λq − 1)λ1ξ
2 for all (x, ξ) ∈ Ω× R,

(a4) K(x, ξ) ≥ −(1/2)(1− λ/λq+1)λq+2ξ
2 for all (x, ξ) ∈ Ω× R.

Given a positive real number r0 and a convex closed subset U of H1
0 (Ω)

fulfilling

(4.2) W ⊕ {u ∈ W⊥ : ‖u‖ ≤ r0} ⊆ U,

we have the following elliptic variational-hemivariational inequality problem:

(P) Find u ∈ U , u = u1 + u2 + u3, such that

−
∫

Ω

∇u1(x) · ∇(v1 − u1)(x) dx− λ

λq+1

∫
Ω

∇u2(x) · ∇(v2 − u2)(x) dx

−
∫

Ω

∇u3(x) · ∇(v3 − u3)(x) dx + λ

∫
Ω

u(x)(v − u)(x) dx

≤
∫

Ω

J0
x(u1(x); v1(x)− u1(x)) dx +

∫
Ω

K0
x(u3(x); v3(x)− u3(x)) dx

for all v ∈ U , v = v1 + v2 + v3.

Theorem 4.1. Suppose (a1)–(a4) hold. Then (P) possesses a nontrivial
solution u ∈ Br0 ∩ V ⊥.

Proof. Pick X = H1
0 (Ω) and define

Φ(u) =
1
2
(‖u‖2 − λ‖u‖2

L2(Ω)) +
∫

Ω

J(x, u1(x)) dx

− 1
2

(
1− λ

λq+1

)
‖u2‖2 +

∫
Ω

K(x, u3(x)) dx,
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for u ∈ H1
0 (Ω). Owing to (a2) the function Φ:H1

0 (Ω) → R turns out locally
Lipschitz continuous. Moreover, if for any u ∈ H1

0 (Ω) we put

α(u) =

{
0 when u ∈ U,

∞ otherwise,
and f(u) = Φ(u) + α(u),

then hypothesis (Hf ) is satisfied. Now, write

Q = (V ∩Bρ)⊕ [0, ρ ϕq+1], S = ∂Br ∩ V ⊥,

where r ∈ ]0, r0[ while ρ > r. In view of [1, Lemma 4.1] (vide also [14, Proposi-
tion 5.9]) the compact topological manifold Q links with the closed set S. Since,
by (4.2),

(4.3) Q ⊆ W ⊆ U,

we also have f |Q = Φ|Q, which evidently implies (f1).
Let us next verify assumption (f2) for a = 0. Each u ∈ W can be written as

u = u1 + u2 where u1 =
∑q

i=1 tiϕi, u2 = tq+1ϕq+1, t1, . . . , tq+1 ∈ R. Through
(4.3), (4.1), and (a3) we obtain

(4.4) f(u) =Φ(u)

=
1
2

q+1∑
i=1

(
1− λ

λi

)
t2i +

∫
Ω

J(x, u1(x)) dx− 1
2

(
1− λ

λq+1

)
t2q+1

≤ 1
2

q∑
i=1

(
1− λ

λi

)
t2i +

1
2

(
λ

λq
− 1

)
λ1‖u1‖2

L2(Ω)

≤ 1
2

q∑
i=1

(
1− λ

λq

)
t2i +

1
2

(
λ

λq
− 1

)
λ1

q∑
i=1

1
λi

t2i

=
1
2

(
1− λ

λq

) q∑
i=1

(
1− λ1

λi

)
t2i ≤ 0

for all u ∈ W . Hence, on account of (4.3), ∂Q ⊆ f0. Taking now u ∈ V ⊥ it
results u = u2 + u3, where u2 = tq+1ϕq+1, u3 =

∑∞
i=q+2 tiϕi, tq+1, tq+2, . . . ∈ R.

Thanks to (a4) and (4.1) we thus achieve

f(u) ≥ Φ(u) =
1
2

∞∑
i=q+1

(
1− λ

λi

)
t2i −

1
2

(
1− λ

λq+1

)
t2q+1 +

∫
Ω

K(x, u3(x)) dx

≥ 1
2

∞∑
i=q+2

(
1− λ

λi

)
t2i −

1
2

(
1− λ

λq+1

)
λq+2‖u3‖2

L2(Ω)
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=
1
2

∞∑
i=q+2

(
1− λ

λi

)
t2i −

1
2

(
1− λ

λq+1

)
λq+2

∞∑
i=q+2

1
λi

t2i

≥ 1
2
λ

∞∑
i=q+2

(
1

λq+1
− 1

λi

)
t2i ≥ 0

for all u ∈ V ⊥. Since S ⊆ V ⊥ this forces S ⊆ f0, and (f2) follows.
It is worth noting that f(tϕq+1) = 0 whenever tϕq+1 ∈ U , as an elementary

computation shows. Therefore,

0 = min
u∈S

f(u) = max
u∈∂Q

f(u) = a.

Let us finally verify hypothesis (f3). By virtue of the linking property, the
inclusion S ⊆ f0, and (4.4) one has

0 ≤ inf
γ∈Γ

sup
z∈γ(Q)

f(z) ≤ sup
x∈Q

f(x) ≤ 0,

namely c = a = 0. Consequently, our first task will be to prove (PS)f,S,0. Pick
a sequence {un} ⊆ X such that d(un, S) → 0, f(un) → 0, and

(4.5) Φ0(un; v − un) + α(v)− α(un) ≥ −εn‖v − un‖ for all n ∈ N, v ∈ X,

where εn → 0+. Evidently, {un} turns out bounded because so is the set S.
Thus, passing to a subsequence if necessary, we may suppose un ⇀ u in X,
un → u in L2(Ω), un(x) → u(x) at almost all x ∈ Ω. Inequality (4.5) can be
equivalently written as

(4.6) un ∈ U, Φ0(un; v − un) ≥ −εn‖v − un‖ for all n ∈ N, v ∈ U.

Since U is convex and closed, we get u ∈ U . Exploiting (4.6) with v = u and
taking account of formula (2) at p. 77 in [5] yields∫

Ω

∇un(x) · ∇u(x) dx− λ

∫
Ω

un(x)
(

u(x)− un(x)
)

dx

−
(

1− λ

λq+1

) ∫
Ω

∇un,2(x) · ∇u2(x) dx +
∫

Ω

J0
x(un,1(x);u1(x)− un,1(x)) dx

+
∫

Ω

K0
x(un,3(x);u3(x)− un,3(x)) dx

≥ −εn‖un − u‖+
∫

Ω

|∇un(x)|2 dx−
(

1− λ

λq+1

) ∫
Ω

|∇un,2(x)|2 dx,

for n ∈ N, where un = un,1 + un,2 + un,3 while u = u1 + u2 + u3. By the upper
semicontinuity of J0

x and K0
x we then achieve

‖u‖2 −
(

1− λ

λq+1

)
‖u2‖2 ≥ lim sup

n→∞

[
‖un‖2 −

(
1− λ

λq+1

)
‖un,2‖2

]
.
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As Rϕq+1 is finite dimensional and {un,2} ⊆ Rϕq+1, the condition un,2 ⇀ u2

in Rϕk+1 actually means un,2 → u2 in Rϕk+1. Hence, the preceding inequality
immediately leads to un → u in X, i.e. (PS)f,S,0 holds. Observe next that

S ⊆ W ⊕ {u ∈ W⊥ : ‖u‖ ≤ r0} ⊆ U

because 0 < r < r0. Choosing any ε ∈ ]0, r0 − r[ produces

{u ∈ H1
0 (Ω) : d(u, S) < ε} ⊆ U.

Thus, (f3.1) is satisfied whenever ε0 < ε. Since for every δ ∈ ]0, ε0[ it results

Nδ(S) ∩ fc−δ ∩ fc+δ = Nδ(S) ∩ {x ∈ U : c− δ ≤ Φ(x) ≤ c + δ},

we see at once that assertion (f3.2) turns out true too.
Now, Theorem 3.1 can be applied, and we obtain a point u ∈ ∂Br ∩V ⊥ such

that
Φ0(u; v − u) + α(v)− α(u) ≥ 0 for all v ∈ H1

0 (Ω).

The choice of α forces both u ∈ U and Φ0(u; v − u) ≥ 0 provided v ∈ U . Using
formula (2) at p. 77 in [5] we realize that the function u is a nontrivial solution
to problem (P). �

Remark 4.2. The above proof ensures that if r ∈ ]0, r0[ then there exists
a solution of (P) lying in ∂Br ∩ V ⊥. Therefore, this problem really possesses
infinitely many nontrivial solutions inside Br0 ∩ V ⊥.
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