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MORSE DECOMPOSITIONS
IN THE ABSENCE OF UNIQUENESS, II

Maria C. Carbinatto — Krzysztof P. Rybakowski

Abstract. This paper is a sequel to our previous work [3]. We first ex-

tend the concept of T -Morse decompositions to the partially ordered case
and prove a generalization of a result by Franzosa and Mischaikow char-

acterizing partially ordered T -Morse decompositions by the so-called T -
attractor semifiltrations. Then we extend the (regular) continuation result

for Morse decompositions from [3] to the partially ordered case. We also

define singular convergence of families of “solution” sets in the spirit of
our previous paper [4] and prove various singular continuation results for

attractor-repeller pairs and Morse decompositions. We give a few applica-

tions of our results, e.g. to thin domain problems. The results of this paper
are a main ingredient in the proof of regular and singular continuation

results for the homology braid and the connection matrix in infinite dimen-

sional Conley index theory. These topics are considered in the forthcoming
publications [6] and [7].

1. Introduction

Let (X, d) be a metric space and C = C(R → X) be the set of all con-
tinuous maps from R to X. Let T be an arbitrary subset of C. We view T
as a set of full solutions of a semiflow on X or of a differential equation on X

which might not define a semiflow. In our previous paper [3] we defined the
concepts of T -attractors, T -repellers and T -Morse decompositions (Mi)i∈[[1,m]]
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(of the first and second kind), extending the corresponding concepts introduced
in [8] for the flow case and in [15] and [18] for the semiflow case. We showed
that all the main results about Morse decompositions from, e.g., [18] continue
to hold in the more general setting. We also defined a concept of convergence of
sequences in C and established various continuation results, i.e. stability results,
for T -attractor-repeller pairs, T -attractor filtrations and T -Morse decomposi-
tions (Theorems 2.19, 3.14 and 3.15 in [3]), which were new even in the semiflow
case. We applied the latter result to give an alternative proof of a multiplicity
result for a variational problem previously obtained in [1] by the use of Floer
homology. Our continuation result was later applied in the paper [11] to prove
a multiplicity conjecture made in [1].

Replacing, in the definition of Morse decompositions (of the second kind),
the set [[1,m]] by an arbitrary finite set P and the standard ordering of the
integers by an arbitrary (strict) partial order ≺ on P we arrive at the more
general concept of a partially ordered Morse decomposition (Mi)i∈P . This was
done for the first time in [9] for the flow case and in [10] for the semiflow case.
Partially ordered Morse decompositions are more appropriate for proving the
non-existence of certain connections: if i and j ∈ P , but neither i ≺ j nor j ≺ i,
then there is no connection between Mi and Mj .

In the present paper we extend the concept of T -Morse decompositions to
the partially ordered case. Analogously as in [10], we show that partially ordered
T -Morse decompositions can be characterized by the so-called T -attractor semi-
filtrations (Theorems 2.16 and 2.17).

We then extend the continuation result from [3] to the partially ordered case
(Theorem 3.3). Again this is new even in the semiflow case (cf. Corollaries 3.5
and 3.6). We illustrate this result by extending Theorems 4.5 and 4.15 from [3]
to the partially ordered case.

In the last section of this paper we define singular convergence of families
(Tε)ε∈]0,ε0] of “solution sets” in the setting of our previous article [4]. We es-
tablish various properties of this convergence concept leading to the main sin-
gular continuation result for partially ordered T -Morse decompositions (Theo-
rem 4.12). After specializing to the semiflow case we apply this result to some
thin domain problems. Some other applications of the abstract results of this pa-
per to parabolic and singularly perturbed hyperbolic equations are given in [17].

The results of this paper are fundamental for proving the regular and singular
continuation of the (co)homology index braid and the resulting connection matrix
in infinite dimensional Conley index theory. These topics are considered in the
forthcoming publications [6] and [7].

In this paper we use the notation and results of [3] without any further
comment.
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2. Partially ordered Morse decompositions

In this section we will define partially ordered T -Morse decompositions and
establish some of their properties. In particular, we will extend a result from [10]
which characterizes such T -Morse decompositions in terms of certain T -attractor
semifiltrations.

Recall that a strict partial order on a set P is a relation ≺ ⊂ P × P which
is irreflexive and transitive. As usual, we write x ≺ y instead of (x, y) ∈ ≺. The
symbol < will be reserved for the less-than-relation on R.

For the rest of this paper, unless specified otherwise, let P be a fixed set and
≺ be a strict partial order on P .

A set I ⊂ P is called a ≺-interval if whenever i, j, k ∈ P , i, k ∈ I and
i ≺ j ≺ k, then j ∈ I. By I(≺) we denote the set of all ≺-intervals in P . A set
I is called a ≺-attracting interval if whenever i, j ∈ P , j ∈ I and i ≺ j, then
i ∈ I. By A(≺) we denote the set of all ≺-attracting intervals in P . Of course,
A(≺) ⊂ I(≺). The following result is obvious.

Proposition 2.1. Let J ∈ I(≺) be arbitrary. Define K to be the set of all
k ∈ P for which there is a j ∈ J such that k = j or k ≺ j. Then K ∈ A(≺) and
I := K \ J ∈ A(≺).

Let us also note the following known results.

Proposition 2.2. Let I be an arbitrary ≺-attracting interval. Then ≺ can
be extended to a total order ≺∗=≺∗I on P such that I is an ≺∗-attracting interval.

Proof. Let ≺′ ⊂ P × P be defined by

≺′ = ≺ ∪ { (i, j) | i ∈ I, j ∈ P \ I and (i, j) /∈ ≺}.

It is easily seen that ≺′ is a (strict) partial order on P . By Zorn’s Lemma there
is a total order ≺∗ extending ≺′. It is clear that ≺∗ has the desired property. �

Proposition 2.3. Let k ∈ N0 be arbitrary and suppose P has k+1 elements.
Then there is a bijective map ϕ: [[0, k]] → P such that whenever i, j ∈ [[0, k]] and
ϕ(i) ≺ ϕ(j) then i < j.

Proof. This is proved by induction on k ∈ N0. The result is obvious for
k = 0. Assume the proposition for k−1 and let P have k+1 elements. There is a
≺-maximal element a ∈ P . By the induction hypothesis there is a bijective map
ϕ′: [[0, k − 1]] → P \{a} such that whenever i and j ∈ [[0, k − 1]] and ϕ′(i) ≺ ϕ′(j)
then i < j. Let ϕ be the extension of ϕ′ to [[0, k]] obtained by setting ϕ(k) = a.
The map ϕ: [[0, k]] → P has the desired properties. �

For the rest of this paper we assume that P is a finite set.
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Definition 2.4. Let T be a subset of C. A family (Mi)i∈P is called a
≺-ordered T -Morse decomposition if the following properties hold:

(1) The sets Mi, i ∈ P , are closed, T -invariant and pairwise disjoint.
(2) For every σ ∈ T either σ(R) ⊂ Mk for some k ∈ P or else there are k,

l ∈ P with k ≺ l, α(σ) ⊂Ml and ω(σ) ⊂Mk.

Remark 2.5. If ≺ is a strict total order on P and P has m elements, then
there is a unique order isomorphism ϕ: ([[1,m]] , <) → (P,≺). In this case, a
family (Mi)i∈P is a ≺-ordered T -Morse decomposition if and only if the sequence
(M ′

r)
m
r=1 is a T -Morse-decomposition of the second kind (cf. Definition 3.3 in [3]).

Here, M ′
r = Mϕ(r), r ∈ [[1,m]].

Remark 2.6. Let π be a local semiflow on X and S be a compact invariant
set relative to π. Let T := Tπ,S be the set of all full solutions of π lying in
S. In this case the concept of a T -attractor is equivalent to the concept of an
π-attractor in S and the concept of a T -attractor-repeller pair is equivalent the
concept of an attractor-repeller pair in S (relative to π) as introduced in [15].
Moreover, the concept of a ≺-ordered T -Morse decomposition is equivalent to
the concept of a Morse decomposition for S (relative to π) in the sense of [10].

More explicitly, a family (Mi)i∈P of subsets of S is called a ≺-ordered Morse
decomposition of S (relative to π) if the following properties hold:

(1) The sets Mi, i ∈ P , are closed, π-invariant and pairwise disjoint.
(2) For every full solution σ of π lying in S either σ(R) ⊂ Mk for some

k ∈ P or else there are k, l ∈ P with k ≺ l, α(σ) ⊂Ml and ω(σ) ⊂Mk.

We have the following proposition.

Proposition 2.7. Let π, S and T be as in Remark 2.6. Then T is compact
in C(R → X), translation and cut-and-glue invariant.

Proof. Let σ: R → S be a full solution of π and t ∈ R. We claim that tsltσ
is a full solution of π. In fact, notice that tsltσ(R) ⊂ S. Now let h ≥ 0. Since
σ ∈ T , it follows that σ(s+h) = σ(s)πh for all s ∈ R. As tsltσ(s+h) = σ(t+s+h)
and tsltσ(s)πh = σ(s+ t)πh, we have that tsltσ(s+ h) = tslt(s)πh.

Let σ1: R → S and σ2: R → S be full solutions of π with σ1(0) = σ2(0).
Define σ := σ1 . σ2. Since σ1 and σ2 are solutions of π, it follows that σ1(s) =
σ2(s) = σ1(0)πs, for all s ≥ 0. Therefore, σ1 . σ2 = σ1 is a full solution of π and
so we have proved that T is translation and cut-and-glue invariant.

In order to prove the compactness of T , let (σn)n be an arbitrary sequence
in T . Using the standard Cantor diagonalization procedure and the fact that
S is compact, we obtain a subsequence of (σn)n, which it is denoted again by
(σn)n, such that for all k ∈ N0

(2.1) σn(−k) → x−k ∈ S as n→∞.
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For each k ∈ N0 and for t ∈ [−k,∞[ define

σ̃−k(t) := x−kπ(t+ k).

The compactness of S implies that ωy = ∞ for all y ∈ S so σ̃−k: [−k,∞[ → S is
well-defined.

Note that if k < k′ and t ∈ [−k,∞[ then σn(−k)π(t + k) = σn(t) =
σn(−k′)π(t+ k′) for all n ∈ N, hence

σ̃−k(t) = x−kπ(t+ k) = lim
n→∞

σn(−k)π(t+ k)

and
σ̃−k′(t) = x−k′π(t+ k′) = lim

n→∞
σn(−k′)π(t+ k′)

so σ̃−k and σ̃−k′ coincide on [−k,∞[. Thus there is a unique map σ: R → S such
that σ(t) = σ̃−k(t) for all k ∈ N0 and t ∈ [−k,∞[. It follows that σ is a full
solution of π lying in S.

To complete the proof we need to show that σn → σ in C. This is equivalent
to showing that whenever (tn)n is a sequence in R such that tn → t ∈ R as
n→∞, then σn(tn) → σ(t) as n→∞. Thus let (tn)n be a sequence in R such
that tn → t ∈ R as n→∞.

There is a k ∈ N such that t, tn ∈ [−k,∞[ for all n ∈ N. Therefore,
σ(t) = σ̃−k(t) = x−kπ(t+k) and σn(tn) = σn(−k)π(tn +k). Now, the continuity
of π and formula (2.1) imply that σn(tn) → σ(t) as n→∞. This completes the
proof. �

If A, B ⊂ X then the T -connection set CST (A,B) from A to B is the set
of all points x ∈ X for which there is a σ ∈ T with σ(0) = x, α(σ) ⊂ A and
ω(σ) ⊂ B.

Definition 2.8. Let (Mi)i∈P be a ≺-ordered T -Morse decomposition. For
an arbitrary ≺-interval I set

M(I) =
⋃

(i,j)∈I×I

CST (Mi,Mj).

Note that M(I) also depends on T and the family (Mi)i∈P . Sometimes we
need to stress this dependence and then we write M(I, T , (Mi)i∈P ) instead of
just M(I). If π, S and T are as in Remark 2.6 then we write Mπ,S(I) :=
M(I, T , (Mi)i∈P ).

We have the following simple result:

Proposition 2.9. Let (Mi)i∈P be a ≺-ordered T -Morse decomposition and
I be a ≺-interval. Then

M(I) =
⋃
i∈I

Mi ∪
⋃

(i,j)∈I×I, (i,j)∈≺

CST (Mj ,Mi).
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Moreover, if I is a ≺-attracting interval, then

M(I) = {x ∈ X | ∃σ ∈ T , ∃i ∈ I, with σ(0) = x and α(σ) ⊂Mi }.

Remark 2.10. In the situation of Remark 2.5 the set I ′ = ϕ−1(I) is a <-
attracting interval in [[1,m]] and so there is a j ∈ [[1,m]] such that I ′ = [[1, j]].
Consequently, by Proposition 2.9,

M(I) = {x ∈ X | ∃σ ∈ T , ∃r ∈ [[1, j]], with σ(0) = x and α(σ) ⊂Mϕ(r) }.

If T is compact, translation and cut-and-glue invariant, Theorem 3.10 in [3]
implies that M(I) is a T -attractor.

We now obtain the following results.

Proposition 2.11. Let T be compact, translation and cut-and-glue invari-
ant and (Mi)i∈P be a ≺-ordered T -Morse decomposition. Whenever I ∈ A(≺),
then (M(I),M(P \ I)) is a T -attractor-repeller pair.

Proof. Let A = M(I) and A∗ = M(P \ I). By Proposition 2.2 there is a
strict total order ≺∗ extending ≺ such that I ∈ A(≺∗). Remark 2.10 implies
that A = M(I) is a T -attractor.

We claim that

(2.2) A ∩A∗ = ∅.

In fact, if there is an x ∈ A ∩ A∗ then there are σ1 and σ2 ∈ T with σ1(0) =
σ2(0) = x, α(σ1) ⊂ Mj and ω(σ2) ⊂ Mi for some j ∈ I and i ∈ P \ I. Letting
σ = σ1 . σ2 we see that σ ∈ T , σ(0) = x, α(σ) ⊂Mj and ω(σ) ⊂Mi. It follows
that either i = j or else i ≺ j. Since I ∩ (P \ I) = ∅ and I ∈ A(≺), both
possibilities lead to a contradiction, proving (2.2). We now prove that A∗ = A∗T .
If x ∈ A∗ is arbitrary then there is a σ ∈ T with σ(0) = x and ω(σ) ⊂ Mi for
some i ∈ P \ I. Since Mi ⊂ M(P \ I) it follows that ω(σ) ⊂ X \ A by (2.2), so
x ∈ A∗T . Conversely, let x ∈ A∗T be arbitrary. Then there is a σ ∈ T such that
σ(0) = x and ω(σ) ⊂ X \ A. Moreover, α(σ) ⊂ Mj and ω(σ) ⊂ Mi for some i
and j ∈ P with j = i or i ≺ j. If i ∈ I then ω(σ) ⊂ Mi ⊂ A, a contradiction.
Thus i ∈ P \ I, so j ∈ P \ I and so x ∈ CST (Mj ,Mi) ⊂M(P \ I). �

Proposition 2.12. Let T be compact, translation and cut-and-glue invari-
ant and (Mi)i∈P be a ≺-ordered T -Morse decomposition. Let K ∈ A(≺) be
arbitrary. Define T K to be the set of all σ ∈ T with σ(R) ⊂ M(K). Then
T K is compact in C, translation and cut-and-glue invariant. Moreover, the fam-
ily (Mi)i∈K is a ≺-ordered T K-Morse decomposition. Furthermore, whenever
I ∈ I(≺) with I ⊂ K, then M(I, T , (Mi)i∈P ) = M(I, T K , (Mi)i∈K). Finally,
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whenever I ∈ A(≺) with I ⊂ K, then (M(I),M(K\I)) is a T K-attractor-repeller
pair.

Proof. It is easy to show that T K is compact in C, translation and cut-and-
glue invariant. Since the family (Mi)i∈P is a ≺-ordered T -Morse decomposition,
it follows from Proposition 2.11 that

(2.3) M(K) ∩M(P \K) = ∅.

Moreover, the sets Mi, i ∈ K, are closed, T -invariant and pairwise disjoint. Now
let σ ∈ T K ⊂ T . Thus either σ(R) ⊂ Mk for some k ∈ P or else there are k,
l ∈ P with k ≺ l, α(σ) ⊂Ml and ω(σ) ⊂Mk.

Suppose σ(R) ⊂Mk for some k ∈ P . If k /∈ K, then Mk ⊂M(P \K) and so
σ(R) ⊂M(K) ∩M(P \K) which contradicts (2.3).

Now assume that there are k, l ∈ P with k ≺ l, α(σ) ⊂Ml and ω(σ) ⊂Mk.
Let t ∈ R and x := σ(t). Define τ := tsltσ. Hence, τ(0) = x and α(τ) ⊂ Ml.
Since τ(R) ⊂ M(K), it follows that α(τ) ⊂ M(K) and so formula (2.3) implies
that l ∈ K. Recall that K is a ≺-attracting interval. Thus, k ∈ K. This
completes the proof that (Mi)i∈K is a ≺-ordered T K-Morse decomposition. Let
I ∈ I(≺) with I ⊂ K. Since T K ⊂ T , it follows that⋃

(i,j)∈I×I

CST K (Mi,Mj) ⊂
⋃

(i,j)∈I×I

CST (Mi,Mj).

Now let x ∈ CST (Mi,Mj) for some i and j in I. Therefore, there exists a σ ∈ T
with σ(0) = x, α(σ) ⊂ Mi and ω(σ) ⊂ Mj . We claim that σ(R) ⊂ M(K).
Let t ∈ R and y := σ(t). Define τ := tsltσ. Hence, τ(0) = y and α(τ) ⊂ Mi.
Proposition 2.9 implies that y ∈ M(K). This concludes the proof of our claim
which in turn implies that M(I, T , (Mi)i∈P ) = M(I, T K , (Mi)i∈K). The last
part of the proposition follows from Proposition 2.11. �

Proposition 2.13. Let T be compact, translation and cut-and-glue invari-
ant and (Mi)i∈P be an ≺-ordered T -Morse decomposition. Then there are fam-
ilies (Vi)i∈P and (VI)I∈I(≺) of closed subsets of X such that Mi = InvT (Vi) ⊂
IntX(Vi) and M(I) = InvT (VI) ⊂ IntX(VI) for all i ∈ P and I ∈ I(≺).

Proof. For every i ∈ P the set I := {i} is an ≺-interval and Mi = M(I).
We thus only have to show that for every I ∈ I(≺) there is a closed set VI

with M(I) = InvT (VI) ⊂ IntX(VI). If I ∈ A(≺) then M(I) is a T -attractor
so the existence of VI follows from Theorem 2.8 in [3]. Now let J ∈ I(≺) be
arbitrary. By Proposition 2.1 there are I and K ∈ A(≺) such that I ⊂ K

and J = K \ I. By what we have proved so far there is a closed set VK with
M(K) = InvT (VK) ⊂ IntX(VK). By Proposition 2.12 the set M(J) = M(K \ I)
is a T K-repeller i.e. a (T K)−-attractor so there is a closed set V such that
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M(J) = Inv(T K)−(V ) ⊂ IntX(V ). Since Inv(T K)−(V ) = InvT K (V ) and M(J) ⊂
M(K) we see that VJ := V ∩ VK is closed and M(J) = InvT (VJ) ⊂ IntX(VJ).�

Let us introduce the following concept.

Definition 2.14. A finite collectionA of T -attractors is called a T -attractor
semifiltration if

(1) ∅, ST ∈ A,
(2) whenever A, B ∈ A, then A ∪B ∈ A and ωT (A ∩B) ∈ A.

Remark. In the special case of a local semiflow π on X and S and T =
Tπ,S as above, the concept of T -attractor semifiltration boils down to the one
introduced in [10].

We will now show that, under certain hypotheses on T , ≺-ordered T -Morse
decompositions can be characterized by certain T -attractor semifiltrations. We
require the following technical proposition.

Proposition 2.15. Let T be compact and translation-invariant and (A,A∗)
be a T -attractor-repeller pair. Let U ⊂ X be such that A = ωT (U) ⊂ IntX(U).
Then the following properties hold:

(1) If V is open in X with A ⊂ V , then there is a t0 = t0(V ) such that
T (U, [t0,∞[) ⊂ V .

(2) If B ⊂ X is closed in X, A ⊂ X\B, V ∗ ⊂ X is open in X and A∗ ⊂ V ∗

then there is a t0 = t0(B, V ∗) such that whenever σ ∈ T and t ∈ [t0,∞[
are such that σ(t) ∈ B, then σ(0) ∈ V ∗.

(3) If C ⊂ X is closed in X with A ⊂ C ⊂ X \A∗, then A = ωT (C).

Proof. If (1) is not true then there is an open set V in X with A ⊂ V and
there are sequences (σn)n in T and (tn)n in R such that tn →∞, σn(0) ∈ U and
σn(tn) ∈ X \ V for all n. Since T is compact and translation-invariant we may
assume that σn(tn) → x for some x ∈ X. It follows that x ∈ X \ V . Moreover,
Proposition 2.1 in [3] implies that x ∈ ωT (U) = A. Thus x ∈ A \ V = ∅, a
contradiction, proving (1).

If (2) is not true, then there is a closed set B, A ⊂ X \ B, and an open set
V ∗ such that A∗ ⊂ V ∗ and there are sequences (σn)n in T and (tn)n in R such
that tn → ∞, σn(tn) ∈ B and σn(0) ∈ X \ V ∗ for all n. By compactness and
translation-invariance of T we may assume that σn → σ for some σ ∈ T . It
follows that σ(0) ∈ X \V ∗ so, by Theorem 2.11 in [3], we obtain that ω(σ) ⊂ A.
Hence there is an s1 ∈ R with σ(s1) ∈ IntX(U). Thus there is an n0 such
that σn(s1) ∈ IntX(U) for all n ≥ n0. By part (1) there is an s2 ∈ R such
that T (U, [s2,∞[) ⊂ X \ B. Since T is translation-invariant, we thus see that
σn(t) ∈ X \B for all t ≥ s1 + s2 and all n ≥ n0. Thus σn(tn) ∈ X \B for all n
large enough, a contradiction, proving (2).
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Let us now prove (3). It is clear that ωT (A) = A so A ⊂ C implies A =
ωT (A) ⊂ ωT (C). Therefore, if (3) is not true, then there is a closed set C in X
with A ⊂ C ⊂ X\A∗, and there is a y ∈ ωT (C)\A. There are sequences (σn)n in
T and (sn)n in R with sn →∞, σn(0) ∈ C and σn(sn) → y. Set V = IntX(U).
We claim that for every t ∈ R there is an m ∈ N such that σn(t) ∈ X \ V for all
n ≥ m. In fact, otherwise there is a t ∈ R and a sequence (nm)m in N such that
nm →∞ as m→∞ and such that σnm

(t) ∈ V . Thus snm
− t→∞ as m→∞.

Since tsltσnm(0) ∈ V and tsltσnm(snm − t) = σnm(snm) → y as m → ∞, we
have y ∈ ωT (U) = A which is a contradiction. This proves our claim. Let
V ∗ = X \ C. Then V ∗ is an open set in X such that A∗ ⊂ V ∗ and V ∗ ∩ C = ∅.
Let t0 = t0(B, V ∗) be as in part (2), where B = X \ V . By the above claim
σn(t0) ∈ B for all n large enough so, by part (2), we have that σn(0) ∈ V ∗ for all
such n. However, this contradicts the fact that C is disjoint from V ∗. Part (3)
is proved. �

We can now prove the first characterization result, which extends Theo-
rem 2.4 in [10].

Theorem 2.16. Let T be compact, translation and cut-and-glue invariant.
Suppose (Mi)i∈P is a ≺-ordered T -Morse decomposition and define

A = {M(I) | I ∈ A(≺) }.

Then A is a T -attractor semifiltration.

Proof. We proceed as in the proof of Theorem 2.4 in [10]. Let I ∈ A(≺)
be arbitrary. By Proposition 2.2 there is a strict total order ≺∗ extending ≺
such that I ∈ A(≺∗). Remark 2.10 implies that M(I) is a T -attractor. Now
note that ∅ = M(∅) ∈ A and ST = M(P ) ∈ A. Next, let I and J ∈ A(≺) be
arbitrary. Then I ∪ J ∈ A(≺). An application of Proposition 2.9 clearly shows
that M(I)∪M(J) = M(I ∪J) ∈ A. Finally, note that I ∩J ∈ A(≺). Therefore,
since M(I ∩ J) ∈ A, the theorem will be proved if we show that

(2.4) ωT (M(I) ∩M(J)) = M(I ∩ J).

Since M(I) and M(J) are T -attractors hence closed it follows that C := M(I)∩
M(J) is closed. Clearly, C ⊃ A := M(I ∩ J). We show that

(2.5) C ∩A∗T = ∅.

Formula (2.5) together with Proposition 2.15 implies (2.4) and completes the
proof. Suppose (2.5) is not true and let x ∈ C ∩ A∗T . Then there is a σ ∈ T
with σ(0) = x and ω(σ) ⊂ X \ A. Moreover, there are σ1 and σ2 ∈ T such
that σ1(0) = σ2(0) = x, α(σ1) ⊂ Mi and α(σ2) ⊂ Mj for some i ∈ I and
j ∈ J . Since T is cut-and-glue invariant it follows that τk := σk . σ ∈ T ,
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τk(0) = x and ω(τk) = ω(σ) ⊂ Ml for some l ∈ P and k = 1, 2. Since
α(τ1) = α(σ1) ⊂Mi it follows that l ≺ i or l = i so l ∈ I. Similarly, l ∈ J . Thus
ω(σ) ⊂Ml ⊂M(I ∩ J) = A, a contradiction proving (2.5). �

Theorem 2.16 has the following converse, which extends Theorem 2.6 in [10].

Theorem 2.17. Let T be compact, translation and cut-and-glue invariant.
Let A be a T -attractor semifiltration with #A = m+ 1 for some m ∈ N0. Then
there is a partial order ≺ on P := [[1,m]] and a ≺-ordered Morse decomposition
(Mi)i∈P such that

(2.6) A = S := {M(I) | I ∈ A(≺) }.

Proof. We proceed as in the proof of Theorem 2.6 in [10]. By Propo-
sition 2.3 there is a bijection φ: [[0,m]] → A, i 7→ Ai, such that whenever i,
j ∈ [[0,m]], i 6= j and Ai ⊂ Aj then i < j. In particular, A0 = ∅. Set
Ai =

⋃i
ν=1Aν , i ∈ P . Then Ai is a T -attractor for every i ∈ P and i < j

implies Ai ⊂ Aj . Moreover, A0 = ∅ and Am = ST . Define Mi = Ai ∩ (Ai−1)∗T .
Now Definition 3.2 and Theorem 3.8 in [3] imply that (Mi)i∈P is a <-ordered
T -Morse decomposition.

Lemma 2.18. Let i ∈ P and A ∈ A be such that Mi∩A 6= ∅. Then Mi ⊂ A.

Proof. SinceMi ⊂ Ai\Ai−1 it follows thatMi ⊂ Ai. Choose an x ∈Mi∩A.
Then x ∈ (Ai∩A)∩Mi. Since Mi is T -invariant, it follows that there is a σ ∈ T
with σ(0) = x and σ(R) ⊂ Mi. Since T is compact and translation invariant
there is a sequence (tn)n with tn → ∞ and a y ∈ X with σ(tn) → y. Since Mi

is closed it follows that y ∈Mi ∩ωT (Ai ∩A). Hence Mi ∩ωT (Ai ∩A) 6= ∅. Now
ωT (Ai ∩ A) ∈ A so ωT (Ai ∩ A) = Al for some l ∈ P . Since Mi ∩ Aj = ∅ for
all j ≤ i − 1 we have that i ≤ l. But Al = ωT (Ai ∩ A) ⊂ ωT (Ai) = Ai and so
l ≤ i by our ordering property. Thus l = i and so Ai = ωT (Ai ∩ A) ⊂ A. Thus
Mi ⊂ Ai ⊂ A. The lemma is proved. �

Now define a relation R on P by (i, j) ∈ R if and only if whenever A ∈ A
and Mj ⊂ A then Mi ⊂ A. It is clear that R is transitive. This implies that the
relation ≺ defined by

i ≺ j if and only if (i, j) ∈ R and (j, i) /∈ R

is a strict partial order on P . We show that (Mi)i∈P is a ≺-ordered T -Morse
decomposition. Let σ ∈ T be arbitrary. We have to show that one of the
following cases holds:

(1) σ(R) ⊂Mi for some i ∈ P .
(2) α(σ) ⊂Mj and ω(σ) ⊂Mi for some i, j ∈ P with i ≺ j.
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Suppose that (1) does not hold. Since (Mi)i∈P is a <-ordered T -Morse decompo-
sition it follows that α(σ) ⊂Mj and ω(σ) ⊂Mi for some i, j ∈ P with i < j. In
particular, this implies that Mj 6= ∅. To show that i ≺ j let A ∈ A be arbitrary
with Mj ⊂ A. Then α(σ) ⊂ A so Theorem 2.11 in [3] implies that σ(R) ⊂ A

and so ω(σ) ⊂ A. Thus Mi∩A 6= ∅ which, by Lemma 2.18 implies that Mi ⊂ A.
It follows that (i, j) ∈ R. Now Mj ⊂ X \ Ai and Mi ⊂ Ai. If (j, i) ∈ R then
Mj ⊂ Ai so Mj = ∅, a contradiction proving that (j, i) /∈ R. It follows that
i ≺ j, as claimed. To complete the proof we only have to check formula (2.6).
We need a lemma.

Lemma 2.19. If (i, j) ∈ R, (j, i) ∈ R and j 6= i then Mi = ∅ or Mj = ∅.

Proof. We may assume that i < j. Then we obtain Mi ⊂ Ai and Mj ⊂
X \Ai. Since (j, i) ∈ R we conclude Mj ⊂ Ai so Mj = ∅. �

Now let A ∈ A be arbitrary. Define IA to be the set of all i ∈ P with Mi ⊂ A.
It follows from the definition of ≺ that IA ∈ A(≺). We claim that A = M(IA).
This claim implies that A ∈ S and so, since A ∈ A is arbitrary, it follows that
A ⊂ S. To prove the claim let x ∈ A be arbitrary. Since A is T -invariant, we
obtain a σ ∈ T with σ(0) = x and σ(R) ⊂ A. Moreover, there is a j ∈ P with
α(σ) ⊂ Mj , so Mj ∩ A 6= ∅. Lemma 2.18 now implies that Mj ⊂ A so j ∈ IA.
It follows that x ∈ M(IA) and so A ⊂ M(IA). Conversely, let x ∈ M(IA) be
arbitrary. Then there is a σ ∈ T with σ(0) = x and α(σ) ⊂Mj for some j ∈ IA.
Thus Mj ⊂ A and so α(σ) ⊂ A. Hence, by Theorem 2.11 in [3], we obtain that
σ(R) ⊂ A so x ∈ A. It follows that M(IA) ⊂ A. The claim follows. Now let
us prove that S ⊂ A. Let I ∈ A(≺) be arbitrary. We only need to prove that
M(I) ∈ A. Let A be a minimal element of A containing M(I). To complete the
proof we only need to show that A ⊂ M(I). Using Lemma 2.18 together with
the closedness and T -invariance of A we only need to show that i ∈ P , Mi ⊂ A

and Mi 6= ∅ imply i ∈ I. Suppose this is not true. Then there is an i ∈ P \ I
with Mi ⊂ A and Mi 6= ∅. Now, whenever j ∈ P and (i, j) /∈ R then there is
a Bj ∈ A such that Mj ⊂ Bj and Mi 6⊂ Bj . By Lemma 2.18 we thus obtain
Mi∩Bj = ∅. Let B be the union of all the sets Bj such that j ∈ I and (i, j) /∈ R.
It follows that B ∈ A and B ∩Mi = ∅. We claim that

(2.7) M(I) ⊂ B.

This implies that M(I) ⊂ C := ωT (A ∩B) ⊂ A. Since C ⊂ B, Mi is nonempty,
B is disjoint from Mi and A contains Mi it follows that C is strictly included
in A. Moreover, C ∈ A, so this contradicts the minimality of A and completes
the proof of the theorem. To prove (2.7) we only have to show that j ∈ I and
Mj 6= ∅ imply Mj ⊂ B. Now if (i, j) /∈ R then Mj ⊂ B by the definition of B.
Thus assume (i, j) ∈ R. We cannot have (j, i) /∈ R since otherwise i ≺ j so j ∈ I
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implies that i ∈ I, a contradiction to our choice of i. Thus (j, i) ∈ R. However,
this implies, by Lemma 2.19, that at least one of the sets Mi or Mj is empty,
which again is a contradiction. The theorem is proved. �

3. Continuation of partially ordered Morse decompositions

In this section we will extend the continuation result for T -Morse decompo-
sitions from our previous paper [3] to the partially ordered case. We apply this
to the semiflow case and to the nonuniqueness case considered in [3].

Recall the following definition from [3].

Definition 3.1. Let (Tκ)κ∈N be a sequence of subsets of C and T ⊂ C
be arbitrary. We say that (Tκ)κ∈N converges to T , and we write Tκ → T (as
κ → ∞), if for every sequence (κn)n∈N in N with κn → ∞ as n → ∞ and
every sequence (σn)n∈N such that σn ∈ Tκn

for all n ∈ N there is a subsequence
(σnm)m∈N and a σ ∈ T such that σnm → σ in C as m→∞.

We saw in [3] that this convergence concept is applicable, e.g., to ordinary
differential equations in Banach spaces and their Galerkin approximations. An-
other sufficient condition for Tκ → T is furnished by the following proposition.

Proposition 3.2. Let N be a closed set in X and let πκ, κ ∈ N0, be local
semiflows on X. Assume that πκ → π0 as κ → ∞. Furthermore, suppose that
for each κ ∈ N0, N is strongly πκ-admissible and N is (πκn

)n-admissible for
every subsequence (πκn)n of (πκ)κ. For each κ ∈ N0, define Tκ := Tπκ to be the
set of all full solutions of πκ lying in Sκ = Invπκ

(N). Then Tκ → T0 as κ→∞.

Proof. Let (κn)n∈N be a sequence in N with κn → ∞ as n → ∞ and
(σn)n∈N be sequence such that σn ∈ Tκn

for all n ∈ N. We need to show that
there is a subsequence (σnm)m∈N and a σ ∈ T such that σnm → σ in C as
m→∞. Using the standard Cantor diagonalization procedure and the (πκn

)n-
admissibility of N , we obtain a subsequence of (σn)n, which it is denoted again
by (σn)n, such that for all k ∈ N0

(3.1) σn(−k) → x−k ∈ N as n→∞.

We claim that for each k ∈ N0 the solution of π0 through x−k is defined for all
t ∈ [0,∞[. In fact, if this is not true for some k ∈ N0, then the assumption that
π0 does not explode in N implies the existence of a t ∈ [0,∞[ such that x−kπ0t is
defined and x−kπ0t /∈ N . Since πκ → π0, we see that, for all n ∈ N large enough,
σn(−k)πκn

t is defined and σn(−k)πκn
t /∈ N , a contradiction which proves our

claim.
For each k ∈ N0 and for t ∈ [−k,∞[ define

σ̃−k(t) := x−kπ0(t+ k).
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The above claim implies that σ̃−k: [−k,∞[ → N is well-defined.
Note that if k < k′, and t ∈ [−k,∞[ then σn(−k)πκn

(t + k) = σn(t) =
σn(−k′)πκn

(t+ k′) for all n ∈ N, hence

σ̃−k(t) = x−kπ0(t+ k) = lim
n→∞

σn(−k)πκn
(t+ k)

and
σ̃−k′(t) = x−k′π0(t+ k′) = lim

n→∞
σn(−k′)πκn(t+ k′)

so σ̃−k and σ̃−k′ coincide on [−k,∞[. Thus there is a unique map σ: R → N

such that σ(t) = σ̃−k(t) for all k ∈ N0 and t ∈ [−k,∞[. It follows that σ is a full
solution of π0 lying in N .

To complete the proof we need to show that σn → σ in C. This is equivalent
to showing that whenever (tn)n is a sequence in R such that tn → t ∈ R as
n→∞, then σn(tn) → σ(t) as n→∞. Thus let (tn)n be a sequence in R such
that tn → t ∈ R as n→∞.

There is a k ∈ N such that t, tn ∈ [−k,∞[ for all n ∈ N. Therefore,
σ(t) = σ̃−k(t) = x−kπ0(t + k) and σn(tn) = σn(−k)πκn(tn + k). Now, the fact
that πκ → π0 and formula (3.1) imply that σn(tn) → σ(t) as n → ∞. This
completes the proof. �

We state our continuation result for partially ordered Morse decompositions.

Theorem 3.3. Suppose Tκ → T , where T and Tκ, κ ∈ N, are compact
(in C), translation and cut-and-glue invariant. Suppose (Mi)i∈P is a ≺-ordered
T -Morse decomposition. For each i ∈ P , let Vi be closed in X such that

(3.2) Mi = InvT (Vi) ⊂ IntX(Vi).

Moreover, for every I ∈ I(≺), let VI be closed in X such that

M(I) = InvT (VI) ⊂ IntX(VI).

(In view of Proposition 2.13 such sets Vi, i ∈ P , and VI , I ∈ I(≺), always exist.)
For κ ∈ N and i ∈ P set Mi(κ) := InvTκ

(Vi). Then there is a κ0 such that
for every κ ≥ κ0 the family (Mi(κ))i∈P is a ≺-ordered Tκ-Morse decomposition.
Moreover, for every I ∈ I(≺),

MI(κ) :=
⋃

(i,j)∈I×I

CSTκ(Mi(κ),Mj(κ)) = InvTκ(VI) ⊂ IntX(VI).

To prove this theorem we need the following lemma.

Lemma 3.4. Under the hypotheses of the theorem there is a κ′ such that
for every κ ≥ κ′ the family (Mi(κ))i∈P is a ≺-ordered Tκ-Morse decomposition.
Moreover, for every I ∈ A(≺)

(3.3) MI(κ) = InvTκ
(VI) ⊂ IntX(VI), κ ≥ κ′
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and

(3.4) MP\I(κ) = InvTκ
(VP\I) ⊂ IntX(VP\I), κ ≥ κ′.

Proof. We will consider two cases.
Case 1. We first suppose that ≺ is a total order. In view of Remark 2.5 we

may assume that P = [[1,m]] for some m ∈ N and ≺ is <. It follows that (Mi)i∈P

is a T -Morse decomposition of the second kind. Therefore, Theorem 3.15 in [3]
implies that there exists a κ̃0 such that for every κ ≥ κ̃0, (Mi(κ))m

i=1 is a Tκ-Morse
decomposition.

Let r ∈ [[0,m]] and consider the sets

Ar =
{
x

∣∣∣∣ ∃σ ∈ T with σ(0) = x and α(σ) ⊂
r⋃

i=1

Mi

}
.

Theorem 3.10 in [3] implies that (Ar)m
r=0 is a T -attractor filtration and Mr =

Ar ∩ (Ar−1)∗T for r ∈ [[1,m]]. Recall that A0 = ∅. Now, Remark 2.10 implies
that, for r ∈ [[1,m]], Ar = M([[1, r]]). Moreover, Proposition 2.11 implies that
M([[r + 1,m]]) = (Ar)∗T .

For each r ∈ [[0,m]] define Wr := V[[1,r]] and W ∗
r := V[[r+1,m]]. It follows that

Ar = InvT (Wr) ⊂ IntX(Wr),

(Ar)∗T = InvT −(W ∗
r ) = InvT (W ∗

r ) ⊂ IntX(W ∗
r ).

Since the set Mr is T -invariant and Mr ⊂Wr ∩W ∗
r−1 we obtain

Mr ⊂ InvT (Wr ∩W ∗
r−1) ⊂ InvT (Wr) ∩ InvT (W ∗

r−1)

= InvT (Wr) ∩ InvT −(W ∗
r−1) = Ar ∩ (Ar−1)∗T = Mr

so

Mr = InvT (Wr ∩W ∗
r−1) = InvT (Wr) ∩ InvT −(W ∗

r−1)(3.5)

⊂ IntX(Wr) ∩ IntX(W ∗
r−1) ⊂ IntX(Wr ∩W ∗

r−1).

For each r ∈ [[0,m]] and for each κ ∈ N, define Aκ
r = InvTκ

(Wr) and Ãκ
r =

InvTκ
(W ∗

r ). Theorem 3.14 in [3] implies that there exists a κ1 ≥ κ̃0 such that,
for every κ ≥ κ1 and r ∈ [[0,m]], Aκ

r ⊂ IntX(Wr), Ãκ
r ⊂ IntX(W ∗

r ), (Aκ
r )m

r=0 is a
Tκ-attractor filtration and (Ãκ

r )m
r=0 is its dual Tκ-repeller filtration.

For all r ∈ [[1,m]] and for all κ ∈ N with κ ≥ κ1, define M̃κ
r = Aκ

r ∩ Ãκ
r−1. It

follows that the set M̃κ
r is Tκ-invariant and M̃κ

r ⊂Wr ∩W ∗
r−1. Hence

M̃κ
r ⊂ InvTκ

(Wr ∩W ∗
r−1) ⊂ InvTκ

(Wr) ∩ InvTκ
(W ∗

r−1)

= InvTκ
(Wr) ∩ InvT −

κ
(W ∗

r−1) = Aκ
r ∩ (Aκ

r−1)
∗
Tκ

= M̃κ
r
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and so

M̃κ
r = InvTκ

(Wr ∩W ∗
r−1) = InvTκ

(Wr) ∩ InvT −
κ

(W ∗
r−1)(3.6)

⊂ IntX(Wr) ∩ IntX(W ∗
r−1) ⊂ IntX(Wr ∩W ∗

r−1).

Now, formulas (3.2) and (3.5) and Proposition 2.17 in [3] implies that there exists
a κ′ ≥ κ1 such that for all r ∈ [[1,m]]

InvTκ(Wr ∩W ∗
r−1) = InvTκ

(Vr), for all κ ≥ κ′.

Thus, for all r ∈ [[1,m]] and for all κ ≥ κ′, M̃κ
r = Mr(κ). Let κ ≥ κ′ and

I ∈ A(<) be arbitrary. Then there is an r ∈ [[0,m]] such that I = [[1, r]]. Now
Proposition 3.9 in [3] implies that

InvTκ(Wr) = Aκ
r =

{
x

∣∣∣∣ ∃σ ∈ Tκ with σ(0) = x and α(σ) ⊂
r⋃

i=1

Mi(κ)
}

= M[[1,r]](κ).

Since (Aκ
r , Ã

κ
r ) and (M[[1,r]](κ),M[[r+1,m]](κ)) are Tκ-attractor-repeller pairs, it

follows that Ãκ
r = M[[r+1,m]](κ) and this completes the proof of the first case.

Case 2. Now suppose that ≺ is an arbitrary strict partial order on P . It
follows from case 1 that for each total order ≺∗ extending ≺, (Mi(κ))i∈P is a
≺∗-ordered Tκ-Morse decomposition for all κ large enough. Since there is a finite
number of such extensions, it also follows that there exists a κ̃0 such that for
every extension ≺∗ of ≺ and for all κ ≥ κ̃0, (Mi(κ))i∈P is a ≺∗-ordered Tκ-Morse
decomposition.

Let κ ≥ κ̃0 be arbitrary. It follows that the sets Mi(κ), i ∈ P , are closed,
Tκ-invariant and pairwise disjoint. Moreover, for each σ ∈ Tκ either

(1) σ(R) ⊂Mk(κ) for some k ∈ P
or else

(2) there are i, j ∈ P such that i 6= j, α(σ) ⊂Mj(κ) and ω(σ) ⊂Mi(κ).
Assume the second alternative. We shall prove that i ≺ j. Indeed, define

J := { k ∈ P | k = j or k ≺ j }.

It is clear that j ∈ J . Moreover, J ∈ A(≺). By Proposition 2.2, there is a
total order ≺∗ extending ≺ such that J ∈ A(≺) ∩ A(≺∗). We also have that
(Mi(κ))i∈P is a ≺∗-ordered Tκ-Morse decomposition. Thus i ≺∗ j and so i ∈ J .
This implies, as i 6= j, that i ≺ j. This concludes the proof of our claim. Hence,
we have proved that (Mi(κ))i∈P is a ≺-ordered Tκ-Morse decomposition for all
κ ≥ κ̃0.

Let I ∈ A(≺). By Proposition 2.2, there is a total order ≺∗ extending ≺
such that I ∈ A(≺) ∩A(≺∗).
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It follows from Case 1 that, for some κ′ ∈ N large enough,

MI(κ) = InvTκ
(VI) ⊂ IntX(VI), κ ≥ κ′

and
MP\I(κ) = InvTκ

(VP\I) ⊂ IntX(VP\I), κ ≥ κ′.

This completes the proof the lemma. �

Proof of Theorem 3.3. Let κ′ be as in Lemma 3.4 and K ∈ A(≺) be
arbitrary. Using the notation of Proposition 2.12 we will now show that

(3.7) the assumptions of Theorem 3.3 hold with P replaced by K and T , Tκ,
κ ∈ N, replaced by T K , T K

κ , κ ∈ N.
First we claim that T K

κ → T K as κ→∞. Indeed, let (κn)n∈N be a sequence
in N with κn →∞ as n→∞ and (σn)n∈N be a sequence such that σn ∈ T K

κn
for

all n ∈ N. Since Tκ → T , there is a subsequence (σnm)m∈N and a σ ∈ T such
that σnm

→ σ in C as m → ∞. We only need to show that σ ∈ T K . It follows
from Lemma 3.4 that for m large enough

MK(κnm
) = InvTκnm

(VK) ⊂ IntX(VK).

Since σnm(t) ∈ MK(κnm) for all t ∈ R and for all m ∈ N, it follows that for m
large enough, σnm

(t) ∈ VK for all t ∈ R. Hence, σ(t) ∈ VK for all t ∈ R, that is,
σ(t) ∈M(K) for all t ∈ R. The proof of our claim is complete.

For each i ∈ K we have Mi ⊂M(K) and T K ⊂ T , hence

Mi ⊂ InvT K (Vi) ⊂ InvT (Vi) = Mi

so
Mi = InvT K (Vi) ⊂ IntX(Vi).

Let I ∈ I(≺), I ⊂ K, be arbitrary. It follows that M(I) ⊂M(K) and so

M(I) ⊂ InvT K (VI) ⊂ InvT (VI) = M(I).

Thus
M(I) = InvT K (VI) ⊂ IntX(VI).

Now Proposition 2.12 implies that, indeed, (3.7) holds.
Now let J ∈ I(≺) be arbitrary. By Proposition 2.1 there are I and K ∈ A(≺)

with I ⊂ K and J = K \ I. Therefore, (3.7) and Lemma 3.4 imply that

MJ(κ) = MK\I(κ) = InvT K
κ

(VJ) ⊂ IntX(VJ), for all κ ≥ κ̃0(J),

where κ̃0(J) is chosen large enough. We claim that

(3.8) InvT K
κ

(VJ) = InvTκ
(VJ) for all κ large enough.

Suppose that (3.8) is not true. Since InvT K
κ

(VJ) ⊂ InvTκ(VJ) for all κ, it follows
that there exist a sequence (κn)n in N with κn ≥ κ′ for all n ∈ N, κn → ∞ as
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n→∞ and a sequence (σn)n∈N such that, for all n ∈ N, σn ∈ Tκn
, σn(R) ⊂ VJ

and σn(R) 6⊂ Mκn(K) = InvTκn
(VK). By the translation invariance of Tκ, κ ∈ N,

we may thus assume that σn(0) /∈ VK for all n ∈ N. Taking subsequences if
necessary we may assume that there is a σ ∈ T such that σn → σ in C. It follows
that σn(0) → σ(0) =: x. Moreover, σ(R) ⊂ VJ and so x ∈ InvT (VJ) = M(J) ⊂
M(K) ⊂ IntX(VK). Therefore, for all n large enough we have σn(0) ∈ IntX(VK)
which is a contradiction. Thus formula (3.8) holds. Therefore, for each J ∈ I(≺),
there exists a κ0(J) ≥ κ̃0(J) such that

(3.9) MJ(κ) = InvTκ
(VJ) ⊂ IntX(VJ) for all κ ≥ κ0(J).

Since the set I(≺) is finite, formula (3.9) implies that there is a κ0 such that, for
all κ ≥ κ0 and for all J ∈ I(≺),

MJ(κ) = InvTκ
(VJ) ⊂ IntX(VJ).

The theorem is proved. �

Specializing to the semiflow case we thus arrive at the following corollaries.

Corollary 3.5. Assume the following hypotheses:

(1) πκ → π0, where πκ, κ ∈ N0, are local semiflows on X. N is a closed
subset of X which is strongly πκ-admissible for every κ ∈ N0 and
(πκn)n∈N-admissible for every subsequence (πκn)n of (πκ)κ. (Mi)i∈P

is a ≺-ordered Morse decomposition of S0 := Invπ0(N) relative to π0.
(2) For each i ∈ P , Vi ⊂ N is closed in X such that

Mi = Invπ0(Vi) ⊂ IntX(Vi).

Moreover, for every I ∈ I(≺), VI ⊂ N is closed in X such that

Mπ0,S0(I) = Invπ0(VI) ⊂ IntX(VI).

For κ ∈ N and i ∈ P set Mi(κ) := Invπκ
(Vi). Then there is a κ0 such that

for every κ ≥ κ0 the family (Mi(κ))i∈P is a ≺-ordered Morse decomposition of
Sκ := Invπκ

(N) relative to πκ. Moreover, for every I ∈ I(≺),

Mπκ,Sκ(I) = Invπκ(VI) ⊂ IntX(VI).

Proof. For κ ∈ N0 let Tκ := Tπκ,Sκ . By Proposition 2.7 the set Tκ is com-
pact in C, translation- and cut-and-glue-invariant for every κ ∈ N0. Moreover,
by Proposition 3.2 we have that Tκ → T0. Finally, if W ⊂ N and κ ∈ N0,
then Invπκ

(W ) = InvTκ
(W ). Now the corollary follows immediately from Theo-

rem 3.3. �
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Corollary 3.6. Assume hypothesis (1) of Corollary 3.5. Moreover, suppose
that S0 ⊂ IntX(N). Then there are sets Vi, i ∈ P and sets VI , I ∈ I(≺), such
that hypothesis (2) of Corollary 3.5 (and, consequently, its assertion) holds.

Proof. Let T0 be as in the proof of Corollary 3.5. For every V ⊂ X it is
clear that

InvT0(V ∩N) = Invπ0(V ∩N).

If, addition, InvT0(V ) ⊂ IntX(V ), then

Invπ0(V ∩N) ⊂ IntX(V ∩N).

By Proposition 2.13 there are families (V ′i )i∈P and (V ′I )I∈I(≺) of closed subsets
of X such that

Mi = InvT0(V
′
i ) ⊂ IntX(V ′i ), i ∈ P,

Mπ0,S0(I) = InvT0(V
′
I ) ⊂ IntX(V ′I ), I ∈ I(≺).

Setting Vi := V ′i ∩N , i ∈ P and VI := V ′I ∩N , I ∈ I(≺), we thus conclude the
proof. �

We will now extend some results from [3] to the partially ordered case. We
use the notation of section 4 in [3]. In particular, for the rest of this section,
let (E, ‖ · ‖) is a Banach space, set X = E and define the metric d on X by
d(x, y) = ‖x − y‖ for x and y ∈ X. Let U ⊂ X be and f ∈ C(U → X) be
arbitrary. Suppose S is invariant relative to f (i.e. invariant with respect to
the ordinary differential equation ẋ = f(x) on U) and let T = T(f,S) be the
set of all (full) solutions of f lying in S. We say that (Mi)i∈P is a ≺-ordered
Morse decomposition of S (relative to f) if (Mi)i∈P is a ≺-ordered T -Morse
decomposition. If I ∈ I(≺) we write Mf,S(I) := M(I, T(f,S), (Mi)i∈P ).

We now have the following extension of Theorem 4.5 in [3] (with a slightly
different notation).

Corollary 3.7. Assume the following hypotheses:

(1) X = E is a finite dimensional Banach space, U is open in X, N is
bounded and closed in X with N ⊂ U and supx∈N ‖fκ(x)−f0(x)‖E → 0
as κ → ∞ where (fκ)κ∈N0 is a sequence in C(U → X). (Mi)i∈P is a
≺-ordered Morse decomposition of S0 := Inv(f0, N) relative to f0.

(2) For each i ∈ P , Vi ⊂ N is closed in X such that

Mi = Inv(f0, Vi) ⊂ IntX(Vi).

Moreover, for every I ∈ I(≺), VI ⊂ N is closed in X such that

Mf0,S0(I) = Inv(f0, VI) ⊂ IntX(VI).
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For κ ∈ N and i ∈ P set Mi(κ) := Inv(fκ, Vi). Then there is a κ0 such that
for every κ ≥ κ0 the family (Mi(κ))i∈P is a ≺-ordered Morse decomposition of
Sκ := Inv(fκ, N) relative to fκ. Moreover, for every I ∈ I(≺),

Mfκ,Sκ(I) = Inv(fκ, VI) ⊂ IntX(VI).

Proof. For κ ∈ N0, let Tκ := Tfκ,Sκ
. By Propositions 4.1 and 4.2 in [3] the

sets Tκ, κ ∈ N0 are compact in C, translation- and cut-and-glue-invariant and
Tκ → T0. Finally, if W ⊂ N and κ ∈ N0, then Inv(fκ,W ) = InvTκ

(W ). Now the
corollary follows immediately from Theorem 3.3. �

Corollary 3.8. Assume hypothesis (1) of Corollary 3.7. Moreover, suppose
that S0 ⊂ IntX(N). Then there are sets Vi, i ∈ P and sets VI , I ∈ I(≺), such
that hypothesis (2) of Corollary 3.7 (and, consequently, its assertion) holds.

Proof. Let T0 be as in the proof of Corollary 3.7. For every V ⊂ X it is
clear that

InvT0(V ∩N) = Inv(f0, V ∩N).

If, addition, InvT0(V ) ⊂ IntX(V ), then

Inv(f0, V ∩N) ⊂ IntX(V ∩N).

By Proposition 2.13 there are families (V ′i )i∈P and (V ′I )I∈I(≺) of closed subsets
of X such that

Mi = InvT0(V
′
i ) ⊂ IntX(V ′i ), i ∈ P,

Mf0,S0(I) = InvT0(V
′
I ) ⊂ IntX(V ′I ), I ∈ I(≺).

Setting Vi := V ′i ∩N , i ∈ P and VI := V ′I ∩N , I ∈ I(≺), we thus conclude the
proof. �

We now extend Theorem 4.15 in [3] to the partially ordered case (again with
a slightly different notation).

Corollary 3.9. Assume the following hypotheses:

(1) X = E is an infinite dimensional Banach space, Hypothesis 4.9 in [3] is
satisfied and L, L`, P `, E`, ` ∈ N, be as in that hypothesis. U is open
in X, N is bounded and closed in X with N ⊂ U and K ∈ C(U → X)
is such that K(N) is relatively compact in X. The maps f0:U → X

and f`:U ∩ E` → E`, ` ∈ N, are defined by

f0(x) = Lx+K(x), x ∈ U,
f`(x) = L`x+ P `K(x), ` ∈ N, x ∈ U ∩ E`.

(Mi)i∈P is a ≺-ordered Morse decomposition of S0 := Inv(f0, N) rela-
tive to f0.
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(2) For each i ∈ P , Vi ⊂ N is closed in X such that

Mi = Inv(f0, Vi) ⊂ IntX(Vi).

Moreover, for every I ∈ I(≺), VI ⊂ N is closed in X such that

Mf0,S0(I) = Inv(f0, VI) ⊂ IntX(VI).

For ` ∈ N and i ∈ P set Mi(`) := Inv(f`, Vi ∩ E`). Then there is a `0 such that
for every ` ≥ `0 the family (Mi(`))i∈P is a ≺-ordered Morse decomposition of
S` := Inv(f`, N ∩ E`) relative to f`. Moreover, for every I ∈ I(≺),

Mf`,S`
(I) = Inv(f`, VI) ⊂ IntX(VI).

Proof. For ` ∈ N0, let T` := Tf`,S`
. By Proposition 4.11 in [3] the sets T`,

` ∈ N are compact in C, translation- and cut-and-glue-invariant and T` → T0 as
` → ∞. Finally, if W ⊂ N and ` ∈ N0, then Inv(f`,W ) = InvT`

(W ). Now the
corollary follows immediately from Theorem 3.3. �

Corollary 3.10. Assume hypothesis (1) of Corollary 3.9. Moreover, sup-
pose that S0 ⊂ IntX(N). Then there are sets Vi, i ∈ P and sets VI , I ∈ I(≺),
such that hypothesis (2) of Corollary 3.9 (and, consequently, its assertion) holds.

Proof. The proof is identical to the proof of Corollary 3.8. �

4. Singular convergence and totally ordered Morse decompositions

In this section we will discuss perturbations of Morse decompositions within
the framework introduced in [4] for the study of singular perturbation problems.
After recalling some concepts from [4] we define singular convergence for sequence
of “solution sets”. Then we prove a few properties of this convergence concept,
in particular we obtain a few basic continuation results for singularly perturbed
T -attractor-repeller pairs, (totally ordered) T -attractor filtrations and (totally
ordered) T -Morse decompositions. We then extend the latter result to the par-
tially ordered case. We end this section by specializing to the semiflow case and
considering some thin domain problems.

Let us recall the basic concepts related to singular perturbation problems,
introduced in [4]. For the rest of this paper, unless specified otherwise, let
(X0, d0) be a metric space, ε0 be a positive number and, for each ε ∈ ]0, ε0],
(Yε, dε) be a metric space and θε ∈ Yε be a distinguished point of Yε.

The open ball in Yε of center in v and radius β > 0 is denoted by Bε(v, β).
For each ε ∈ ]0, ε0] define the set Zε := X0 × Yε. Endow Zε with the metric

Γε((u, v), (u′, v′)) := max{d0(u, u′), dε(v, v′)}, (u, v), (u′, v′) ∈ Zε.
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Let C0 denote the set of all continuous functions from R to X0 endowed with the
metric introduced in [3], replacing d by d0. For every ε ∈ ]0, ε0], denote by Cε the
set of all continuous functions from R to Zε endowed with the metric introduced
in [3], replacing d by Γε.

Given an ε ∈ ]0, ε0] and σ ∈ Cε we denote, for each t ∈ R, the components of
σ(t) by (φ(t), ψ(t)), where φ(t) ∈ X0 and ψ(t) ∈ Yε. This notation will also be
used if the symbol σ carries an index, e.g. σn. Then the components of σn are
written with the same index, e.g. φn and ψn.

Definition 4.1. Given a subset V of X0, β > 0 and ε ∈ ]0, ε0] define the
“inflated” subsets ]V [ε,β and [V ]ε,β of Zε as follows:

]V [ε,β := { (u, v) ∈ Zε | u ∈ V and v ∈ Bε(θε, β) },
[V ]ε,β := { (u, v) ∈ Zε | u ∈ V and v ∈ ClεBε(θε, β) }.

Now we introduce a solution convergence concept in the context of singular
perturbations.

Definition 4.2. For each ε ∈ ]0, ε0], let Tε be a subset of Cε and let T0 be
a subset of C0. We say that (Tε)ε∈]0,ε0] converges singularly to T0, and we write
Tε

sg→T0, if for every sequence (εn)n∈N in ]0, ε0] with εn → 0 as n → ∞ and
every sequence (σn)n∈N such that σn ∈ Tεn

for all n ∈ N there is a subsequence
(σnm

)m∈N and a σ ∈ T0 such that

Γεnm

(
σnm(t), (σ(t), θεnm

)
)
→ 0 as m→∞

uniformly on compact subsets of R.

The next proposition gives sufficient condition for Tε
sg→T0. We first recall

two basic definitions introduced in [4].
Let π0 be a local semiflow on X0 and for every ε ∈ ]0, ε0] let πε denote a

local semiflow on Zε.
We say that the family (πε)ε∈]0,ε0] of local semiflows converges singularly to

the local semiflow π0 if whenever (εn)n∈N and (tn)n∈N are sequences of positive
numbers such that εn → 0, tn → t0 as n→∞, for some t0 ∈ [0,∞[ and whenever
u0 ∈ X0 and wn ∈ Zεn

, n ∈ N, are such that Γεn
(wn, (u0, θεn

)) → 0 as n → ∞
and u0π0t0 is defined, then there exists an n0 ∈ N such that for all n ≥ n0,
wnπεntn is defined and

Γεn
(wnπεn

tn, (u0π0t0, θεn
)) → 0 as n→∞.

Let η be a positive number and N be a closed subset of X0. We say that N
is a singularly strongly admissible set with respect to η and the family (πε)ε∈[0,ε0]

of local semiflows if the following conditions are satisfied:

(1) N is a strongly π0-admissible set;
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(2) for each ε ∈ ]0, ε0] the set [N ]ε,η is strongly πε-admissible;
(3) whenever (εn)n∈N and (tn)n∈N are sequences of positive numbers such

that εn → 0, tn → ∞ as n → ∞ and whenever wn ∈ Zεn
, n ∈ N, are

such that wnπεn
[0, tn] ⊂ [N ]εn,η, n ∈ N, then there exist a u0 ∈ N

and a subsequence of the sequence (wnπεntn)n∈N of endpoints, denoted
again by (wnπεn

tn)n∈N, such that

Γεn
(wnπεn

tn, (u0, θεn
)) → 0 as n→∞.

Proposition 4.3. Let η be a positive number. Suppose (πε)ε∈]0,ε0] is a
family of local semiflows that converges singularly to the local semiflow π0 and
N is a singularly strongly admissible set with respect to η and (πε)ε∈[0,ε0]. For
each ε ∈ ]0, ε0], define Tε := Tπε

be the set of all full solutions of πε lying in
Sε = Invπε

([N ]ε,η) and T0 := Tπ0 be the set of all full solutions of π0 lying in
S0 = Invπ0(N). Then Tε

sg→T0.

Proof. Let (εn)n∈N be a sequence in N with εn → 0 as n→∞ and (σn)n∈N

be sequence such that σn ∈ Tεn
for all n ∈ N. We need to show that there is a

subsequence (σnm
)m∈N and a σ ∈ T0 such that

Γεnm

(
σnm

(t), (σ(t), θεnm
)
)
→ 0 as m→∞

uniformly on compact subsets of R. Using the standard Cantor diagonalization
procedure and the singular admissibility of N , we obtain a subsequence of (σn)n,
which it is denoted again by (σn)n, and a sequence (u−k)k∈N0 in N such that
for all k ∈ N0

(4.1) Γεn(σn(−k), (u−k, θεn)) as n→∞.

We claim that for each k ∈ N0 the solution of π0 through u−k is defined for all
t ∈ [0,∞[. In fact, if this is not true for some k ∈ N0, then the assumption that
π0 does not explode in N implies the existence of a t ∈ [0,∞[ such that u−kπ0t

is defined and u−kπ0t /∈ N . Since (πε)ε∈]0,ε0] converges singularly to π0, we see
that, for all n ∈ N large enough, σn(−k)πεn

t is defined and σn(−k)πεn
t /∈ [N ]εn,η,

a contradiction which proves our claim.
For each k ∈ N0 and for t ∈ [−k,∞[ define

σ̃−k(t) := u−kπ0(t+ k).

The above claim implies that σ̃−k: [−k,∞[ → N is well-defined.
Note that if k < k′ and t ∈ [−k,∞[ then σn(−k)πεn

(t + k) = σn(t) =
σn(−k′)πεn

(t+k′) for all n ∈ N, hence, by the singular convergence of (πε)ε∈]0,ε0]

to π0,
Γεn

(σn(−k)πεn
(t+ k), (σ̃−k(t), θεn

)) → 0 as n→∞
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and
Γεn

(σn(−k′)πεn
(t+ k′), (σ̃−k′(t), θεn

)) → 0 as n→∞
so σ̃−k and σ̃−k′ coincide on [−k,∞[. Thus there is a unique map σ: R → N

such that σ(t) = σ̃−k(t) for all k ∈ N0 and t ∈ [−k,∞[. It follows that σ is a full
solution of π0 lying in N .

To complete the proof we need to show that whenever (tn)n is a sequence in
R such that tn → t ∈ R as n→∞, then

(4.2) Γεn
(σn(tn), (σ(t), θεn

)) → 0.

Thus let (tn)n be a sequence in R such that tn → t ∈ R as n→∞.
There is a k ∈ N such that t, tn ∈ [−k,∞[ for all n ∈ N. Therefore,

σ(t) = σ̃−k(t) = u−kπ0(t + k) and σn(tn) = σn(−k)πκn
(tn + k). Now, the

singular convergence of (πε)ε∈]0,ε0] to π0 and formula (4.1) imply (4.2). This
completes the proof. �

Some elementary properties of the above concepts are proved in the next
propositions.

Proposition 4.4. Suppose N is a closed set in X0, Tε
sg→T0 and InvT0(N) ⊂

IntX0(N). Assume also that each Tε, ε ∈ ]0, ε0], is translation-invariant. Let
η > 0. Then there is an ε̃ ∈ ]0, ε0] such that InvTε

([N ]ε,η) ⊂ IntZε
([N ]ε,η) for

all ε ∈ ]0, ε̃].

Proof. If the proposition is not true, then, by Definition 4.2 and the trans-
lation-invariance of Tε, there is a sequence (εn)n∈N with εn → 0 as n → ∞, a
sequence (σn)n∈N such that σn ∈ Tεn

for all n ∈ N and a σ ∈ T0 such that for
each t ∈ R

(4.3) Γεn
(σn(t), (σ(t), θεn

)) → 0 as n→∞,

σn(R) ⊂ [N ]εn,η and σn(0) ∈ ∂Zεn
([N ]εn,η) for every n ∈ N. It follows from (4.3)

that for each t ∈ R

(4.4) d0(φn(t), σ(t)) → 0 as n→∞

and

(4.5) dεn
(ψn(t), θεn

) → 0 as n→∞.

Letting t = 0 in (4.5), it follows that there exists an n0 ∈ N such that for all
n ≥ n0

(4.6) dεn
(ψn(0), θεn

) < η.

Since σn(0) ∈ ∂Zεn
([N ]εn,η) for every n ∈ N, formula (4.6) implies that σ(0) ∈

∂X0(N). On the other hand, since N is closed and φn(t) ∈ N for every t ∈ R,
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formula (4.4) implies that σ(R) ⊂ N . Our assumption implies that σ(R) ⊂
IntX0(N). Thus, σ(0) ∈ ∂X0(N) ∩ IntX0(N) which is a contradiction. �

Proposition 4.5. Suppose N is closed in X0 and U is open in X0, Tε
sg→T0

and InvT0(N) ⊂ InvT0(U). Assume also that each Tε, ε ∈ ]0, ε0], is translation-
invariant. Let η > 0. Then there is an ε̃ ∈ ]0, ε0] such that InvTε

([N ]ε,η) ⊂
InvTε(]U [ε,η) for all ε ∈ ]0, ε̃].

Proof. If the proposition is not true, then, by Definition 4.2 and the trans-
lation-invariance of Tε, there is a sequence (εn)n∈N with εn → 0 as n → ∞, a
sequence (σn)n∈N such that σn ∈ Tεn

for all n ∈ N and a σ ∈ T0 such that for
each t ∈ R

(4.7) Γεn
(σn(t), (σ(t), θεn

)) → 0 as n→∞,

σn(R) ⊂ [N ]εn,η and σn(0) ∈ Zεn
\ ]U [εn,η for every n ∈ N. It follows from (4.7)

that for each t ∈ R

(4.8) d0(φn(t), σ(t)) → 0 as n→∞

and

(4.9) dεn
(ψn(t), θεn

) → 0 as n→∞.

Letting t = 0 in (4.9), it follows that there exists an n0 ∈ N such that for all
n ≥ n0

(4.10) dεn(ψn(0), θεn) < η.

Since σn(0) /∈ ]U [εn,η for all n ∈ N, formula (4.10) implies that φn(0) /∈ U for
all n ≥ n0. Thus, we obtain that σ(0) ∈ X \ U . However, since N is closed it
follows from (4.8) that σ(R) ⊂ N and so σ(0) ∈ InvT0(N) ⊂ InvT0(U) ⊂ U , a
contradiction. The proof is complete. �

Corollary 4.6. Suppose that N is a closed set in X0, N ′ ⊂ X is a arbitrary
set, Tε

sg→T0 and InvT0(N) ⊂ InvT0(N
′) ⊂ IntX0(N

′). Assume also that each Tε,
ε ∈ ]0, ε0], is translation-invariant. Let η > 0. Then there is an ε̃ ∈ ]0, ε0] such
that InvTε

([N ]ε,η) ⊂ InvTε
([N ′]ε,η) for all ε ∈ ]0, ε̃].

Proof. Define U := IntX0(N
′). Since InvT0(N

′) ⊂ U , we obtain that
InvT0(U) = InvT0(N

′) so the corollary follows from Proposition 4.5. �

Corollary 4.7. Suppose N and N ′ are closed in X0, Tε
sg→T0, InvT0(N) ⊂

IntX0(N), InvT0(N
′) ⊂ IntX0(N

′) and InvT0(N) = InvT0(N
′). Assume also

that each Tε, ε ∈ ]0, ε0], is translation-invariant. Let η > 0. Then there is an
ε̃ ∈ ]0, ε0] such that InvTε

([N ]ε,η) = InvTε
([N ′]ε,η) for all ε ∈ ]0, ε̃].

Proof. This is an immediate consequence of Corollary 4.6. �
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Proposition 4.8. Suppose that N is a closed set in X0, Tε
sg→T0, t′ ∈ ]0,∞[

and T0(N, t′) ⊂ IntX0(N). Let η > 0. Then there is an ε̃ ∈ ]0, ε0] such that
Tε([N ]ε,η , t

′) ⊂ IntZε([N ]ε,η) for all ε ∈ ]0, ε̃].

Proof. If the proposition is not true then, by Definition 4.2, there is a
sequence (εn)n∈N with εn → 0 as n→∞, a sequence (σn)n∈N such that σn ∈ Tεn

for all n ∈ N and a σ ∈ T0 such that for each t ∈ R

(4.11) Γεn (σn(t), (σ(t), θεn)) → 0 as n→∞,

σn(t′) 6∈ IntZεn
([N ]εn,η) and σn(0) ∈ [N ]εn,η for every n ∈ N. Formula (4.11)

implies that for each t ∈ R

(4.12) d0(φn(t), σ(t)) → 0 as n→∞

and

(4.13) dεn(ψn(t), θεn) → 0 as n→∞.

Letting t = t′ in (4.13), it follows that there exists an n0 ∈ N such that for all
n ≥ n0

(4.14) dεn(ψn(t′), θεn) < η.

Since σn(t′) 6∈ IntZεn
([N ]εn,η), formula (4.14) implies that φn(t′) 6∈ IntX0(N)

for all n ≥ n0 and so σ(t′) 6∈ IntX0(N). Now, notice that φn(0) ∈ N for every
n ∈ N and N is closed. Therefore, it follows from (4.12) that σ(0) ∈ N . Hence,
σ(t′) ∈ T0(N, t′) \ IntX0(N) which is a contradiction. �

In the next theorem we prove the stability of attractor-repeller pairs under
singular perturbations.

Theorem 4.9. For each ε ∈ ]0, ε0], let Tε be a compact and translation-
invariant subset of Cε and T0 ⊂ C0 be compact and translation-invariant. Suppose
Tε

sg→T0 and let (A,A∗) be a T0-attractor-repeller pair. Let V (resp. V ∗) be closed
in X0 and such that A = InvT0(V ) ⊂ IntX0(V ) (resp. A∗ = InvT0

−(V ∗) ⊂
IntX0(V

∗)). Let η > 0. Then there is an ε̃ ∈ ]0, ε0] such that, for all ε ∈ ]0, ε̃],
the pair (InvTε([V ]ε,η), InvTε([V

∗]ε,η)) is a Tε-attractor-repeller pair.

Proof. Let N and N∗ be closed and such that A = ωT0(N) ⊂ IntX0(N)
and A∗ = ωT0

−(N∗) ⊂ IntX0(N
∗). Since A and A∗ are disjoint and closed by

Theorem 2.11 in [3] we may use Proposition 2.7 in [3] and choose N and N∗

smaller, if necessary, to ensure that N and N∗ are disjoint. For ε ∈ ]0, ε0] set

Aε = InvTε
([N ]ε,η) and Ãε = InvTε

([N∗]ε,η).
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By Theorem 2.8 in [3] there is a t0 ∈ ]0,∞[ such that T0(N, t0) ⊂ IntX0(N).
Furthermore, by Proposition 4.8 there is an ε1 ∈ ]0, ε0] such that Tε([N ]ε,η , t0) ⊂
IntZε

([N ]ε,η) for all ε ∈ ]0, ε1]. Now Theorem 2.8 in [3] implies that

(4.15) Aε = ωTε
([N ]ε,η) ⊂ IntZε

([N ]ε,η) for all ε ∈ ]0, ε1]

so Aε is a Tε-attractor for all ε ∈ ]0, ε1]. Set

A∗ε = (Aε)∗Tε
.

If ε ∈ ]0, ε1] and (u, v) ∈ Ãε, then there is a σ ∈ Tε with σ(0) = (u, v) and σ(R) ⊂
[N∗]ε,η. Since [N∗]ε,η is closed, we conclude that ω(σ) ⊂ [N∗]ε,η ⊂ Zε \ [N ]ε,η,
so ω(σ) ∩Aε = ∅. Hence (u, v) ∈ A∗ε which proves that

Ãε ⊂ A∗ε.

Now suppose that it is not true that A∗ε ⊂ Ãε for all ε small enough. Then
there are sequences (εn)n∈N with εn → 0 as n → ∞ and ((un, vn))n∈N such
that (un, vn) ∈ A∗εn

\ Ãεn for all n ∈ N. Thus there is a sequence (σn)n∈N with
σn ∈ Tεn

, σn(0) = (un, vn) and ω(σn) ∩ Aεn
= ∅ for all n ∈ N. Proposition 2.10

in [3] and (4.15) imply that σn(R) ∩ [N ]εn,η = ∅ for all n ∈ N large enough.
On the other hand, for every n ∈ N we have σn(R) 6⊂ [N∗]εn,η since otherwise
(un, vn) ∈ InvTεn

([N∗]εn,η) = Ãεn
, a contradiction. It follows that for every

n ∈ N there is a tn ∈ R with σn(tn) 6∈ [N∗]εn,η. Let τn = tsltn
σn, n ∈ N. Taking

subsequences if necessary we may assume that there is a τ ∈ T0 such that for
each t ∈ R

Γεn
(τn(t), (τ(t), θεn

)) → 0 as n→∞,

which implies that for each t ∈ R

(4.16) d0(φn(t), τ(t)) → 0 as n→∞

and

(4.17) dεn(ψn(t), θεn) → 0 as n→∞,

where τn(t) = (φn(t), ψn(t)) with φn(t) ∈ X0 and ψn(t) ∈ Yεn . Letting t = 0 in
formula (4.17), it follows that there exists an n0 ∈ N such that for all n ≥ n0

(4.18) dεn
(ψn(0), θεn

) < η.

Since τn(0) = σn(tn) 6∈ [N∗]εn,η for all n ∈ N, formula (4.18) implies that

(4.19) φn(0) 6∈ N∗ for all n ≥ n0.

Formulas (4.19) and (4.16) imply that τ(0) 6∈ IntX0(N
∗). This fact together

with Theorem 2.11 in [3] imply that ω(τ) ⊂ A and so τ(t′) ∈ IntX0(N) for some
t′ ∈ R. However, τn(R) = σn(R) ⊂ Zεn

\ [N ]εn,η.
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Now, letting t = t′ in formula (4.17), it follows that there exists an n1 ∈ N
such that for all n ≥ n1

dεn
(ψn(t′), θεn

) < η.

Thus, φn(t′) /∈ N for all n ≥ n1 and so τ(t′) /∈ IntX0(N), a contradiction. This
proves that

A∗ε ⊂ Ãε

so A∗ε = Ãε for all ε sufficiently small. Thus, for all such ε, the pair (Aε, Ãε)
is a Tε-attractor-repeller pair. Now, since A = InvT0(V ) ⊂ IntX0(V ) and A =
InvT0(N) ⊂ IntX0(N), Corollary 4.7 implies that

InvTε
([V ]ε,η) = InvTε

([N ]ε,η) = Aε for all ε sufficiently small.

Similarly, InvT −
ε

([V ∗]ε,η) = InvT −
ε

([N∗]ε,η) = Ãε for all ε sufficiently small. This
completes the proof. �

We will now state and prove two continuation (i.e. “stability”) results for
attractor filtrations and Morse decompositions under singular perturbations.

Theorem 4.10. For each ε ∈ ]0, ε0], let Tε be a compact and translation- and
cut-and-glue-invariant subset of Cε and T0 ⊂ C0 be compact and translation- and
cut-and-glue-invariant. Suppose that Tε

sg→T0. Let (Ar)m
r=0 be a T0-attractor fil-

tration. For every r ∈ [[0,m]] let Vr and V ∗r be closed sets with Ar = InvT0(Vr) ⊂
IntX0(Vr) and (Ar)∗T0

= InvT0
−(V ∗r ) ⊂ IntX0(V

∗
r ). Let η > 0. For ε ∈ ]0, ε0] and

r ∈ [[0,m]] set

Aε
r = InvTε

([Vr]ε,η), Ãε
r = InvT −

ε
([V ∗r ]ε,η).

Then there is an ε̃ ∈ ]0, ε0] such that, for all ε ∈ ]0, ε̃], the sequence (Aε
r)

m
r=0 is

a Tε-attractor filtration and (Ãε
r)

m
r=0 is its dual Tε-repeller filtration.

Proof. An application of Theorem 4.9 shows that (Aε
r, Ã

ε
r) is a Tε-attr-

actor-repeller pair for all r ∈ [[0,m]] and all ε sufficiently small. Furthermore,
we conclude from Corollary 4.6 that Aε

r ⊂ Aε
r+1 for all r ∈ [[0,m− 1]] and all ε

sufficiently small. Thus we only have to show that

Aε
0 = ∅ and Aε

m = STε
for all ε sufficiently small.

If there is a sequence (εn)n∈N in ]0, ε0] with εn → 0 and Aεn
0 6= ∅, then there is a

sequence (σn)n∈N such that σn ∈ Tεn
and σn(R) ⊂ [V0]εn,η for all n ∈ N. Then,

taking a subsequence if necessary, we may assume that there exists a σ ∈ T0

such that for each t ∈ R

Γεn
(σn(t), (σ(t), θεn

)) → 0 as n→∞.

In particular, for each t ∈ R

(4.20) d0(φn(t), σ(t)) → 0 as n→∞.
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Since σn(R) ⊂ [V0]εn,η, formula (4.20) implies that σ(R) ⊂ V0 and so A0 =
InvT0(V0) 6= ∅, a contradiction.

Now clearly Aε ⊂ STε for every ε ∈ ]0, ε0]. Consequently, if there is a
sequence (εn)n∈N in ]0, ε0] with εn → 0 and Aεn

m 6= STεn
, then there is a sequence

(σn)n∈N such that σn ∈ Tεn
and σn(0) /∈ [Vm]εn,η for all n ∈ N. Taking a

subsequence if necessary, we may assume that there exists a σ ∈ T0 such that
for each t ∈ R

Γεn
(σn(t), (σ(t), θεn

)) → 0 as n→∞.

Therefore, d0(φn(t), σ(t)) → 0 as n→∞ and

(4.21) dεn(ψn(t), θεn) → 0 as n→∞.

Letting t = 0 in formula (4.21) we have that there exists an n0 ∈ N such that
for all n ≥ n0

dεn
(ψn(0), θεn

) < η.

Since σn(0) /∈ [Vm]εn,η for all n ∈ N, we see that φn(0) 6∈ Vm for n large enough.
Thus, σ(0) ∈ X0 \ IntX0(Vm) so Am 6= ST0 , a contradiction. �

Theorem 4.11. For each ε ∈ ]0, ε0], let Tε be a compact and translation-
and cut-and-glue-invariant subset of Cε and T0 ⊂ C0 be compact and translation-
and cut-and-glue-invariant. Suppose that Tε

sg→T0. Let (Mr)m
r=1 be a T0-Morse

decomposition. Let (Wr)m
r=1 be a finite sequence of closed sets such that

Mr = InvT0(Wr) ⊂ IntX0(Wr), r ∈ [[1,m]] .

Let η > 0. For ε ∈ ]0, ε0] and r ∈ [[1,m]] set

(4.22) Mε
r = InvTε

([Wr]ε,η).

Then there is an ε̃ ∈ ]0, ε0] such that for all ε ∈ ]0, ε̃] the sequence (Mε
r )m

r=1 is a
Tε-Morse decomposition.

Proof. Choose a T0-attractor filtration (Ar)m
r=0 such that Mr = Ar ∩

(Ar−1)∗T0
, for all r ∈ [[1,m]]. For every r ∈ [[0,m]] let Vr and V ∗r be closed

sets with Ar = InvT0(Vr) ⊂ IntX0(Vr) and (Ar)∗T0
= InvT0

−(V ∗r ) ⊂ IntX0(V
∗
r ).

Let r ∈ [[1,m]] be arbitrary. Since Mr is T0-invariant and Mr ⊂ Vr ∩ V ∗r−1, we
see that

Mr ⊂ InvT0(Vr ∩ V ∗r−1) ⊂ InvT0(Vr) ∩ InvT0(V
∗
r−1)

= InvT0(Vr) ∩ InvT0
−(V ∗r−1) = Ar ∩ (Ar−1)∗T0

= Mr

so

Mr = InvT0(Vr ∩ V ∗r−1) = InvT0(Vr) ∩ InvT0
−(V ∗r−1)(4.23)

⊂ IntX0(Vr) ∩ IntX0(V
∗
r−1) ⊂ IntX0(Vr ∩ V ∗r−1).
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For r ∈ [[0,m]] and ε ∈ ]0, ε0] define

Aε
r = InvTε([Vr]ε,η), Ãε

r = InvT −
ε

([V ∗r ]ε,η).

By Theorem 4.10 there is an ε1 ∈ ]0, ε0] such that, for all ε ∈ ]0, ε1], the sequence
(Aε

r)
m
r=0 is a Tε-attractor filtration and (Ãε

r)
m
r=0 is its dual Tε-repeller filtration.

It follows that, for all ε ∈ ]0, ε1], the sequence (M̃ε
r )m

r=1 is a Tε-Morse decomp-
osition, where

M̃ε
r = Aε

r ∩ Ãε
r−1, r ∈ [[1,m]] .

Proceeding as in the proof of formula (4.23) we see that

Mε
r = InvTε

([Vr]ε,η ∩ [V ∗r−1]ε,η) = InvTε
([Vr]ε,η) ∩ InvT −

ε
([V ∗r−1]ε,η)

⊂ IntZε
([Vr]ε,η) ∩ IntZε

([V ∗r−1]ε,η) ⊂ IntZε
([Vr]ε,η ∩ [V ∗r−1]ε,η).

Notice that, for all subsets B and C of X0 and all β ∈ ]0,∞[ and ε ∈ ]0, ε0] we
have

(4.24) [B]ε,β ∩ [C]ε,β = [B ∩ C]ε,β .

Now (4.22)–(4.24) and Corollary 4.7 imply that there is an ε̃ ∈ ]0, ε1] such that
for all r ∈ [[1,m]] and for all ε ∈ ]0, ε̃],

M̃ε
r = InvTε

([Vr]ε,η ∩ [V ∗r−1]ε,η) = InvTε
([Vr ∩ V ∗r−1]ε,η) = InvTε

([Wr]ε,η) = Mε
r .

The theorem is proved. �

We will now prove the main result of this section.

Theorem 4.12. Suppose Tε
sg→T0, where, for each ε ∈ [0, ε0], Tε ⊂ Cε is

compact, translation and cut-and-glue invariant. Suppose (Mi)i∈P is a ≺-ordered
T0-Morse decomposition. For each i ∈ P , let Vi be closed in X0 such that

(4.25) Mi = InvT0(Vi) ⊂ IntX0(Vi).

Moreover, for every I ∈ I(≺), let VI be closed in X0 such that

M(I) = InvT0(VI) ⊂ IntX0(VI).

(In view of Proposition 2.13 such sets Vi, i ∈ P and VI , I ∈ I(≺), always exist.)
For ε ∈ ]0, ε0] and i ∈ P set Mi(ε) := InvTε

([Vi]ε,η). Then there is an ε̃ ∈ ]0, ε0]
such that for every ε ∈ ]0, ε̃] the family (Mi(ε))i∈P is a ≺-ordered Tε-Morse
decomposition. Moreover, for every I ∈ I(≺),

MI(ε) :=
⋃

(i,j)∈I×I

CSTε
(Mi(ε),Mj(ε)) = InvTε

([VI ]ε,η) ⊂ IntZε
([VI ]ε,η).

To prove this theorem we need the following lemma.
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Lemma 4.13. Under the assumptions of the theorem there is an ε′ ∈ ]0, ε0]
such that for every ε ∈ ]0, ε′] the family (Mi(ε))i∈P is a ≺-ordered Tε-Morse
decomposition. Moreover, for every I ∈ A(≺)

(4.26) MI(ε) = InvTε([VI ]ε,η) ⊂ IntZε([VI ]ε,η)

and

(4.27) MP\I(ε) = InvTε([VP\I ]ε,η) ⊂ IntZε([VP\I ]ε,η).

Proof. We will consider two cases.
Case 1. We first suppose that ≺ is a total order. In view of Remark 2.5 we

may assume that P = [[1,m]] for some m ∈ N and ≺ is <. It follows that (Mi)i∈P

is a T -Morse decomposition of the second kind. Therefore, Theorem 4.11 implies
that there exists a ε̃0 such that for every ε ∈ ]0, ε̃0], (Mi(ε))m

i=1 is a Tε-Morse
decomposition.

For r ∈ [[0,m]] let Ar, Wr and W ∗
r be as in the proof of case 1 of Lemma 3.4,

with (X, d) replaced by (X0, d0) and T replaced by T0. As in that proof we see
that

(4.28) Mr = InvT0(Wr ∩W ∗
r−1) ⊂ IntX0(Wr ∩W ∗

r−1).

For each r ∈ [[0,m]] and each ε ∈ ]0, ε0], define Aε
r = InvTε

([Wr]ε,η) and Ãε
r =

InvTε([W
∗
r ]ε,η). Theorem 4.10 implies that there exists an ε1 ∈ ]0, ε0] with

ε1 ≤ ε̃0 such that, for every ε ∈ ]0, ε1] and r ∈ [[0,m]], Aε
r ⊂ IntZε

([Wr]ε,η),
Ãε

r ⊂ IntZε
([W ∗

r ]ε,η), (Aε
r)

m
r=0 is a Tε-attractor filtration and (Ãε

r)
m
r=0 is its dual

Tε-repeller filtration.
For all r ∈ [[1,m]] and for all ε ∈ ]0, ε1] define M̃ε

r = Aε
r ∩ Ãε

r−1. It follows
that the set M̃ε

r is Tε-invariant and

M̃ε
r ⊂ [Wr]ε,η ∩ [W ∗

r−1]ε,η = [Wr ∩W ∗
r−1]ε,η .

Hence

M̃ε
r ⊂ InvTε([Wr ∩W ∗

r−1]ε,η) ⊂ InvTε([Wr]ε,η) ∩ InvTε([W
∗
r−1]ε,η)

= InvTε([Wr]ε,η) ∩ InvT −
ε

([W ∗
r−1]ε,η) = Aε

r ∩ (Aε
r−1)

∗
Tε

= M̃ε
r

and so

M̃ε
r = InvTε

([Wr ∩W ∗
r−1]ε,η) = InvTε

([Wr]ε,η) ∩ InvT −
ε

([W ∗
r−1]ε,η)(4.29)

⊂ IntZε
([Wr]ε,η) ∩ IntZε

([W ∗
r−1]ε,η) = IntZε

([Wr ∩W ∗
r−1]ε,η).

Now, formulas (4.25) and (4.28) and Corollary 4.6 imply that there exists a
ε′ ∈ ]0, ε1] such that for all r ∈ [[1,m]]

InvTε([Wr ∩W ∗
r−1]ε,η) = InvTε([Vr]ε,η), for all ε ∈ ]0, ε′].
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Thus, for all r ∈ [[1,m]] and for all ε ∈ ]0, ε′], M̃ε
r = Mr(ε). Let ε ∈ ]0, ε′] and

I ∈ A(<) be arbitrary. Then there is an r ∈ [[0,m]] such that I = [[1, r]]. Now
Proposition 3.9 in [3] implies that

InvTε
([Wr]ε,η) = Aε

r =
{
x

∣∣∣∣ ∃σ ∈ Tε with σ(0) = x and α(σ) ⊂
r⋃

i=1

Mi(ε)
}

= M[[1,r]](ε).

Since (Aε
r, Ã

ε
r) and (M[[1,r]](ε),M[[r+1,m]](ε)) are Tε-attractor-repeller pairs, it fol-

lows that Ãε
r = M[[r+1,m]](ε) and this completes the proof of the first case.

Case 2. Now suppose that ≺ is an arbitrary strict partial order on P . It
follows from case 1 that for each total order ≺∗ extending ≺, (Mi(ε))i∈P is a
≺∗-ordered Tε-Morse decomposition for all ε > 0 small enough. Since there is a
finite number of such extensions, it also follows that there exists an ε̃0 ∈ ]0, ε0]
such that, for every extension ≺∗ of ≺ and for all ε ∈ ]0, ε̃0], (Mi(ε))i∈P is a
≺∗-ordered Tε-Morse decomposition.

Let ε ∈ ]0, ε̃0] be arbitrary. It follows that the sets Mi(ε), i ∈ P , are closed,
Tε-invariant and pairwise disjoint. Moreover, for each σ ∈ Tε either

(1) σ(R) ⊂Mk(ε) for some k ∈ P
or else

(2) there are i, j ∈ P such that i 6= j, α(σ) ⊂Mj(ε) and ω(σ) ⊂Mi(ε).
Assume the second alternative. We shall prove that i ≺ j. Indeed, define

J := {k ∈ P | k = j or k ≺ j}.

It is clear that j ∈ J . Moreover, J ∈ A(≺). By Proposition 2.2, there is a
total order ≺∗ extending ≺ such that J ∈ A(≺) ∩ A(≺∗). We also have that
(Mi(ε))i∈P is a ≺∗-ordered Tε-Morse decomposition. Thus i ≺∗ j and so i ∈ J .
This implies, as i 6= j, that i ≺ j. This concludes the proof of our claim. Hence,
we have proved that (Mi(ε))i∈P is a ≺-ordered Tε-Morse decomposition for all
ε ∈ ]0, ε̃0].

Let I ∈ A(≺). By Proposition 2.2, there is a total order ≺∗ extending ≺
such that I ∈ A(≺) ∩A(≺∗).

It follows from Case 1 that, for some ε′ > 0 sufficiently small,

MI(ε) = InvTε([VI ]ε,η) ⊂ IntZε([VI ]ε,η), ε ∈ ]0, ε′] ,

MP\I(ε) = InvTε([VP\I ]ε,η) ⊂ IntZε([VP\I ]ε,η), ε ∈ ]0, ε′] .

This completes the proof the lemma. �

Proof of Theorem 4.12. Let ε′ be as in Lemma 4.13 and K ∈ A(≺) be
arbitrary. Using the notation of Proposition 2.12 we will now show that
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(4.30) the assumptions of Theorem 4.12 hold with P replaced by K and Tε,
ε ∈ ]0, ε0], replaced by T K

ε , ε ∈ ]0, ε0].
First we claim that T K

ε
sg→T K

0 . Indeed, let (εn)n∈N be a sequence in ]0, ε0]
with εn → 0 as n → ∞ and (σn)n∈N be a sequence such that σn ∈ T K

εn
for all

n ∈ N. Since Tε
sg→T0, there is a subsequence (σnm)m∈N and a σ ∈ T0 such that

(4.31) Γεnm

(
σnm(t), (σ(t), θεnm

)
)
→ 0 as m→∞

uniformly on compact subsets of R. We only need to show that σ ∈ T K
0 . It

follows from Lemma 4.13 that for all εnm
with m large enough

MK(εnm) = InvTεnm
([VK ]εnm ,η) ⊂ IntZεnm

([VK ]εnm ,η).

Since σnm
(t) ∈ MK(εnm

) for all t ∈ R and for all m ∈ N, it follows that, for
m ∈ N large enough, σnm

(t) ∈ [VK ]εnm ,η for t ∈ R. In particular, we have

(4.32) φnm
(t) ∈ VK for all t ∈ R

where σnm(t) = (φnm(t), ψnm(t)) ∈ X0 × Yεnm
. Formula (4.31) implies that, for

all t ∈ R,

d0(φnm
(t), σ(t)) → 0 and dεnm

(ψnm
(t), θεnm

) → 0 as m→∞.

This together with formula (4.32) implies that σ(t) ∈ VK for each t ∈ R, i.e.
σ(R) ⊂M(K). The proof of our claim is complete.

Since for each i ∈ K we have Mi ⊂M(K) and T K
0 ⊂ T0, it follows that

Mi ⊂ InvT K
0

(Vi) ⊂ InvT0(Vi) = Mi

so Mi = InvT K
0

(Vi) ⊂ IntX0(Vi). Let I ∈ I(≺), I ⊂ K, be arbitrary. It follows
that M(I) ⊂M(K), M(K \ I) ⊂M(K) and so

M(I) ⊂ InvT K
0

(VI) ⊂ InvT0(VI) = M(I),

M(K \ I) ⊂ InvT K
0

(VK\I) ⊂ InvT0(VK\I) = M(K \ I).

Thus
M(I) = InvT K

0
(VI) ⊂ IntX0(VI)

and
M(K \ I) = InvT K

0
(VK\I) ⊂ IntX0(VK\I).

Now Proposition 2.12 implies that, indeed, (4.30) holds.
Now let J ∈ I(≺) be arbitrary. By Proposition 2.1 there are I and K ∈ A(≺)

with I ⊂ K and J = K \ I. Therefore, (4.30) and Lemma 4.13 imply that

MJ(ε) = MK\I(ε) = InvT K
ε

([VJ ]ε,η) ⊂ IntZε
([VJ ]ε,η), for all ε ∈ ]0, ε̃J ],

where ε̃J ∈ ]0, ε′] is chosen small enough. We claim that

(4.33) InvT K
ε

([VJ ]ε,η) = InvTε
([VJ ]ε,η) for all ε > 0 small enough.
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Suppose that (4.33) is not true. Since InvT K
ε

([VJ ]ε,η) ⊂ InvTε
([VJ ]ε,η) for all ε ∈

]0, ε0], it follows that there exist a sequence (εn)n in ]0, ε′] with εn → 0 as n→∞
and a sequence (σn)n∈N such that, for all n ∈ N, σn ∈ Tεn

, σn(R) ⊂ [VJ ]εn,η

and σn(R) 6⊂ Mεn
(K) = InvTεn

([VK ]εn,η). Hence, by the translation invariance
of Tε, ε ∈ ]0, ε0], we may assume that σn(0) /∈ [VK ]εn,η, Taking subsequences if
necessary we may assume that there is a σ ∈ T0 such that

(4.34) Γεn
(σn(t), (σ(t), θεn

)) → 0,

uniformly on compact subsets in R.
Letting t = 0 in (4.34), it follows that

(4.35) d0(φn(0), σ(0)) → 0 and dεn
(ψn(0), θεn

) → 0 as n→∞.

Formula (4.35) implies that

(4.36) dεn(φn(0), θεn) < η for all n large enough.

Since σn(0) /∈ [VK ]εn,η, formula (4.36) implies that

(4.37) φn(0) /∈ VK for all n large enough.

We claim that σ(R) ⊂M(J). Indeed, formula (4.34) implies that for each t ∈ R,
d0(φn(t), σ(t)) → 0 as n → ∞. Since σn(R) ⊂ [VJ ]εn,η for all n ∈ N, it follows
that φn(t) ∈ VJ for all n ∈ N and for all t ∈ R. Since VJ is a closed set in X0, it
follows that σ(R) ⊂ VJ and so σ(R) ⊂ InvT0(VJ) = M(J). This completes the
proof of our claim. Since M(J) ⊂ M(K) ⊂ IntX0(VK), our claim implies that,
for all n large enough, we have σn(0) ∈ IntX(VK) which contradicts (4.37). Thus,
formula (4.33) holds. Therefore, for each J ∈ I(≺), there exists an εJ ∈ ]0, ε̃J ]
such that

(4.38) MJ(ε) = InvTε([VJ ]ε,η) ⊂ IntZε([VJ ]ε,η), for all ε ∈ ]0, εJ ].

Since the set I(≺) is finite, formula (4.38) implies that there is a ε̃ ∈ ]0, ε0] such
that, for all ε ∈ ]0, ε̃] and for all J ∈ I(≺),

MJ(ε) = InvTε
([VJ ]ε,η) ⊂ IntZε

([VJ ]ε,η).

The theorem is proved. �

Specializing to the semiflow case we obtain the following results.

Corollary 4.14. Assume the following hypotheses:

(1) η is a positive number, (πε)ε∈]0,ε0] is a family of local semiflows that con-
verges singularly to the local semiflow π0 and N is a singularly strongly
admissible set with respect to η and (πε)ε∈[0,ε0].
(Mi)i∈P is a ≺-ordered Morse decomposition of S0 := Invπ0(N) relative
to π0.
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(2) For each i ∈ P , Vi ⊂ N is closed in X0 and such that

(4.39) Mi = Invπ0(Vi) ⊂ IntX0(Vi).

Moreover, for every I ∈ I(≺), VI ⊂ N is closed in X0 and such that

Mπ0,S0(I) = Invπ0(VI) ⊂ IntX0(VI).

For ε ∈ ]0, ε0] and i ∈ P set Mi(ε) := Invπε
([Vi]ε,η). Then there is an ε̃ ∈

]0, ε0] such that for every ε ∈ ]0, ε̃] the family (Mi(ε))i∈P is a ≺-ordered Morse
decomposition of Sε := Invπε([N ]ε,η) relative to πε. Furthermore, for every
I ∈ I(≺),

MI(ε) := Mπε,Sε
= InvTε

([VI ]ε,η) ⊂ IntZε
([VI ]ε,η).

Proof. For each ε ∈ ]0, ε0], define Tε := Tπε
be the set of all full solutions of

πε lying in Sε = Invπε
([N ]ε,η) and T0 := Tπ0 be the set of all full solutions of π0

lying in S0 = Invπ0(N). Then Tε
sg→T0 by Proposition 4.3. Now Theorem 4.12

implies the assertion. �

Corollary 4.15. Assume hypothesis (1) of Corollary 4.14. Moreover, sup-
pose that S0 ⊂ IntX(N). Then there are sets Vi, i ∈ P and sets VI , I ∈ I(≺),
such that hypothesis (2) of Corollary 4.14 (and, consequently, its assertion) holds.

Proof. The proof is identical to the proof of Corollary 3.5. �

We will now apply Corollaries 4.14 and 4.15 to a thin domain problem con-
sidered in [12] and [2]. We assume the reader’s familiarity with [2] and only
recall some of the relevant notations and definitions.

LetM andN be positive integers. Write (x, y) for a generic point of RM×RN .
Let Ω be an arbitrary nonempty bounded domain in RM × RN with Lipschitz
boundary and let ε > 0 be arbitrary. Define the symmetric bilinear form

aε:H1(Ω)×H1(Ω) → R

by

aε(u, v) :=
∫

Ω

(
∇xu · ∇xv +

1
ε2
∇yu · ∇yv

)
dx dy

and let b be the scalar product 〈 · , · 〉L2(Ω). Let Aε:D(Aε) ⊂ H1(Ω) → L2(Ω) be
the linear operator generated by the pair (aε, b). We define on H1(Ω) the scalar
product

(u, v)ε := aε(u, v) + b(u, v), u, v ∈ H1(Ω)

and the corresponding norm

|u|ε := (aε(u, u) + |u|2L2(Ω))
1/2, u ∈ H1(Ω)

which is equivalent to the usual norm on H1(Ω).
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We also define the “limit” spaceH1
s (Ω) byH1

s (Ω) = {u ∈ H1(Ω) | ∇yu = 0 }.
Note that H1

s (Ω) is a closed linear subspace of H1(Ω) so H1
s (Ω) is a Hilbert space

under the usual scalar product of H1(Ω).
Furthermore, define the space L2

s(Ω) to be the closure of the set H1
s (Ω) in

L2(Ω). It follows that L2
s(Ω) is a Hilbert space under the scalar product of L2(Ω).

Now let a0:H1
s (Ω)×H1

s (Ω) → R be the “limit” bilinear form defined by

a0(u, v) :=
∫

Ω

∇u · ∇v dx dy =
∫

Ω

∇xu · ∇xv dx dy.

Finally, let b0 be the restriction of the scalar product b to L2
s(Ω)×L2

s(Ω). Denote
by A0 the operator generated by the pair (a0, b0).

Now let ε0 ∈ ]0, 1] be arbitrary and (fε)ε∈[0,ε0] be a family satisfying hypoth-
esis (A1) introduced in Definition 2.6 in [2]. For ε ∈ ]0, ε0] let πε be the local
semiflow on H1(Ω) generated by the solutions of the evolution equation

u̇ = Aεu+ fε(u).

Moreover, let π0 be the local semiflow on H1
s (Ω) generated by the solutions of

the evolution equation
u̇ = A0u+ f0(u).

We now have the following singular convergence result.

Proposition 4.16. Let (εn)n∈N be an arbitrary sequence of positive numbers
convergent to zero. Moreover let t ∈ [0,∞[ and (tn)n∈N be a sequence in [0,∞[
converging to t. Finally, let u0 ∈ H1

s (Ω) and (un)n∈N be a sequence in H1(Ω)
such that

|un − u0|εn
→ 0 as n→∞.

Assume that u0π0t is defined. Then, for all n ∈ N large enough, unπntn is
defined and

|unπεn
tn − u0π0t|εn

→ 0 as n→∞.

Proof. We choose an open ball Y ⊂ H1(Ω) such that u0π0 [0, t] ⊂ Y . Then
we modify the family (fε)ε∈[0,ε0] as in Proposition 2.9 of [2] to obtain the modified
family (f ′ε)ε∈[0,ε0] satisfying the stronger hypothesis (A2). Let (π′ε)ε∈[0,ε0] be
the corresponding family of modified semiflows. These modified semiflows are
global and coincide on Y with the original local semiflows πε, ε ∈ [0, ε0]. Now
Corollary 2.15 in [2] shows that

(4.40) |unπ
′
εn
sn − u0π

′
0s|εn → 0

for every sequence (sn)n with sn ∈ [0, tn], n ∈ N such that sn → s ∈ [0, t]. In
particular, for all n ∈ N large enough, unπ

′
n [0, tn] ⊂ Y so, in particular, unπntn

is defined and unπntn = unπ
′
ntn. Now formula (4.40) concludes the proof. �
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For all ε ∈ ]0, ε0] set θε := 0 ∈ H1(Ω) and let Qε:H1(Ω) → H1(Ω) be
the orthogonal projector onto H1

s (Ω) with respect to the scalar product ( · , · )ε.
Let X0 := H1

s (Ω) be endowed with the usual norm of H1(Ω) and d0 be the
corresponding metric on X0. Moreover, let Yε := (I −Qε)(H1(Ω)) be endowed
with the norm | · |ε and let dε be the corresponding metric on Yε. Set Zε :=
X0 × Yε

∼= H1(Ω) and note that the norm

‖(u, v)‖ε := max{|u|H1(Ω), |v|ε}, (u, v) ∈ X0 × Yε,

is equivalent to the norm | · |ε on H1(Ω) with constants independent of ε ∈ ]0, ε0].
Let Γε be the metric on Zε generated by the norm ‖ · ‖ε.

The remarks just made imply that, for every ε ∈ ]0, ε0], πε is a local semiflow
on Zε and π0 is a local semiflow on X0, while Proposition 4.16 just says that
(πε)ε∈]0,ε0] singularly converges to π0.

Now an application of Lemma 2.21 in [2] shows that whenever η > 0 and N
is closed and bounded in X0 then N is singularly admissible with respect to η
and the family (πε)ε∈[0,ε0]. Therefore we finally obtain the following result:

Theorem 4.17. Let η be a positive number and N ⊂ H1
s (Ω) be closed and

bounded. Suppose that (Mi)i∈P is a ≺-ordered Morse decomposition of S0 :=
Invπ0(N) relative to π0. For each i ∈ P , let Vi ⊂ N be closed in X0 and such
that

Mi = Invπ0(Vi) ⊂ IntX0(Vi).

Moreover, for every I ∈ I(≺), let VI ⊂ N be closed in X0 and such that

Mπ0,S0(I) = Invπ0(VI) ⊂ IntX0(VI).

For ε ∈ ]0, ε0] and i ∈ P set Mi(ε) := Invπε
([Vi]ε,η). Then there is an ε̃ ∈

]0, ε0] such that for every ε ∈ ]0, ε̃] the family (Mi(ε))i∈P is a ≺-ordered Morse
decomposition of Sε := Invπε([N ]ε,η) relative to πε. Furthermore, for every
I ∈ I(≺),

MI(ε) := Mπε,Sε
= InvTε

([VI ]ε,η) ⊂ IntZε
([VI ]ε,η).

Theorem 4.17 also holds for the more general case of reaction-diffusion equa-
tions on curved squeezed domains considered in [13]. Furthermore, an analogous
result can be proved for damped wave equations on squeezed domains considered
in [5] and [4]. The formulation of this result is left to the interested reader.
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