ON SETS OF CONSTANT DISTANCE FROM A PLANAR SET

Piotr Pikuta

Abstract. In this paper we prove that d-boundaries

$$
D_{d}=\{x: \operatorname{dist}(x, Z)=d\}
$$

of a compact $Z \subset \mathbb{R}^{2}$ are closed absolutely continuous curves for d greater than some constant depending on Z. It is also shown that D_{d} is a trajectory of solution to the Cauchy Problem of a differential equation with a discontinuous right-hand side.

1. Introduction

Let $Z \subset \mathbb{R}^{2}$ be a compact set. For each $d>0$ define the d-boundary D_{d} of Z, $D_{d}=\{x: \operatorname{dist}(x, Z)=d\}$. In [1], the first paper concerning with d-boundaries, M . Brown showed that for all but countable number of d, every component of D_{d} is a point, or a simple arc, or a simple closed curve. It was also proved that D_{d} is a 1 -manifold for almost all d (see [4] and [6]). If Z is convex, it follows from [3, Theorem 4.7 (8), p. 434] and [3, Corollary 4.9, p. 440] (see also the statement before Definition 4.3 of [3]) that D_{d} is a boundary of a compact convex set, thus it is a closed curve of class $C^{1,1}$.

In this paper we prove that d-boundaries of a compact Z are closed absolutely continuous curves for d greater than some constant depending on Z. The result can be considered complementary to the Federer's concept of sets with positive

2000 Mathematics Subject Classification. 57N05, 34A36.
Key words and phrases. d-boundary, absolutely continuous curve, differential equation with discontinuous right-hand side.
reach (see [3, p. 432]). It is also shown that D_{d} is a trajectory of solution to the Cauchy Problem of a differential equation with a discontinuous right-hand side.

In Section 2 we familiarize the reader with the method used and prove lemmas which we need further to establish our result in Section 3. Some additional remarks are given in Section 4.

2. Definitions and auxiliary lemmas

Let D_{d} be a d-boundary of a compact set $Z \subset \mathbb{R}^{2}$ and $D[a, b]=\bigcup_{d \in[a, b]} D_{d}$ for each a, b such that $0<a<b$. Let $Z_{x, d}=\{z \in Z: \operatorname{dist}(z, x)=d\}, x \in D_{d}$, $d>0$.

Define a multivalued function $S: D[a, b] \rightarrow 2^{\mathbb{R}^{2}}$,

$$
S(x)=\left\{y \in \mathbb{R}^{2}: \text { there exists } t \geq 0 \text { such that } x+t y \in \operatorname{co} Z_{x, \operatorname{dist}(x, Z)}\right\}
$$

where co X stands for the convex hull of X.

Lemma 2.1. Multivalued function S defined above is upper semi-continuous in $U=\left\{u \in \mathbb{R}^{2}: \operatorname{dist}(u, Z) \neq 0\right\}$.

Sketch of proof. First prove that the multivalued function

$$
T(x)=Z_{x, \operatorname{dist}(x, Z)}
$$

is u.s.c. in U. Then prove that co $T(x)$ and, finally, $S(x)$ are u.s.c. in U.
With every point $x \in D[a, b]$ we will associate a certain vector $f(x) \in S^{1}=$ $\left\{x \in \mathbb{R}^{2}:\|x\|=1\right\}$ so that we can consider and solve the Cauchy problem with the right-hand side equal to $f(x)$. In general, the vector field f can be discontinuous, so we will go into differential inclusions to solve the problem.

Lemma 2.2. If $(\operatorname{co} Z) \cap D[a, b]=\emptyset$, then there exists a unique single-valued function

$$
f: D[a, b] \rightarrow S^{1}=\left\{x \in \mathbb{R}^{2}:\|x\|=1\right\}
$$

such that
(a) $\langle e, f(x)\rangle \leq 0$ for all $x \in D[a, b]$ and all $e \in S(x)$, and
(b) for fixed plane orientation \bar{O} and $x \in D[a, b]$, there is a unique $e_{x} \in$ $S(x),\left\|e_{x}\right\|=1$, for which the following conditions are fulfilled
(b1) the pair of vectors $\left\{f(x), e_{x}\right\}$ has the orientation \bar{O}, and
(b2) the equality $\left\langle e_{x}, f(x)\right\rangle=0$ holds.
Proof. Since Z is closed and (co $Z) \cap D[a, b]$ is empty, it follows that the cone $S(x)$ and the dual cone $T(x)=\left\{f \in \mathbb{R}^{2}:\langle e, f\rangle \leq 0\right.$, for each $\left.e \in S(x)\right\}$ are closed and convex, and $S(x)$ do not contain any (straight) line. Consequently,
in $\left(S(x) \cap S^{1}\right) \times\left(T(x) \cap S^{1}\right)$ one can find exactly two pairs ($\left.e_{x}, f(x)\right)$ for which (b2) is satisfied. Uniqueness of e_{x} and $f(x)$ follows from (b1).

For each $x \in D[a, b]$ let us define $G(x)$ consisting of all limit values of $f\left(x_{n}\right)$, when $x_{n} \rightarrow x$. Let $H(x), x \in D[a, b]$, denote the set of all elements $k \in S^{1}$ such that there exists $e \in S(x)$ for which $\langle e, k\rangle=0$ and the pair of vectors $\{e, k\}$ has the orientation \bar{O}. Moreover, let $F(x)=\operatorname{co} G(x)$ and $K(x)=\operatorname{co} H(x)$. Notice that Lemma 2.1 gives $G(x) \subset H(x)$ and, consequently, $F(x) \subset K(x)$.

The next two lemmas deal with local solutions to the problem

$$
\begin{equation*}
x^{\prime}(t) \in K(x(t)), \quad \text { a.e. in } t \in \mathbb{R} . \tag{1}
\end{equation*}
$$

We say that $x(t)$ is a solution to (1) in A if $x(t)$ is absolutely continuous (i.e. x has a finite derivative a.e. in A) and the inclusion is satisfied a.e. in $t \in A$.

Lemma 2.3. If $(\operatorname{co} Z) \cap D[a, b]=\emptyset$ and $x_{0} \in D_{d}, d \in(a, b)$, then there exists a local solution to the problem

$$
\begin{gather*}
x^{\prime}(t) \in K(x(t)), \quad \text { a.e. in } t \in \mathbb{R}, \\
x\left(t_{0}\right)=x_{0} \in D[a, b], \tag{2}
\end{gather*}
$$

and the trajectory of this (absolutely continuous) solution lies in $D[a, b]$.
Proof. Since $F(x) \subset K(x), x \in D[a, b]$, we can restrict our attention to the inclusion $x^{\prime}(t) \in F(x(t))$. Obviously, $f(x) \in F(x), F(x)$ is closed (because $G(x)$ is closed) and bounded for each $x \in D[a, b]$. Moreover, $D[a, b]$ is closed, hence, by $[5$, p. 53 , Lemma 16], F is u.s.c. in $D[a, b]$. Applying [5, p. 60, Theorem 1] we obtain that the problem (2) has a local solution which trajectory lies in $D[a, b]$. \square

Remark 2.4. Let \bar{V} be a closed neighbourhood of t_{0}. Obviously, $\bar{V} \times D[a, b]$ is compact, thus by theorem [5, p. 61, Theorem 2] the solution to (2) can be extended to the boundary of $\bar{V} \times D[a, b]$. Since $0 \notin K(x)$ for each $x \in D[a, b]$, the trajectory of the solution do not have stationary points and there exists a neighbourhood $W \subset D[a, b]$ of x_{0} such that the trajectory passing through x_{0} reaches the boundary of W.

Lemma 2.5. If $x_{0} \in D_{d}$ and $(\operatorname{co} Z) \cap D_{d}=\emptyset$, then there exists a local solution to the problem

$$
\begin{gather*}
x^{\prime}(t) \in K(x(t)), \quad \text { a.e. in } t \in \mathbb{R}, \tag{3}\\
x\left(t_{0}\right)=x_{0},
\end{gather*}
$$

and the trajectory of this solution lies in D_{d}.
Proof. Let us take $a, b \in \mathbb{R}$ such that $0<a<b, d \in(a, b)$ and (co $Z) \cap$ $D[a, b]=\emptyset$. By Lemma 2.3, there exists a local solution $y(t)$ to (2). We claim that the trajectory of $y(t)$ lies in D_{d}.

Let $w(t)=\operatorname{dist}(y(t), Z)$. Since $w\left(t_{0}\right)>0$, we have $w(t)>0$ in a neighbourhood V of t_{0} and $y^{\prime}(t)$ exists almost everywhere in V. From [2, Theorem 2.2.1] it follows that

$$
w^{\prime}(t)=\min \left\{\frac{\left\langle y(t)-z, y^{\prime}(t)\right\rangle}{w(t)}: z \in Z_{y(t), w(t)}\right\}
$$

a.e. in V, where $Z_{y(t), w(t)}=\{z \in Z:\|y(t)-z\|=w(t)\}$. For each $f \in K(y(t))$ there exists $z \in \operatorname{co} Z_{y(t), w(t)}$ such that $\langle z-y(t), f\rangle=0$, so $w^{\prime}(t) \leq 0$ a.e. in V.

Now, let us change the plane orientation \bar{O} to the opposite one $-\bar{O}$, and consider the problem

$$
\begin{equation*}
x^{\prime}(t) \in K_{1}(x), \quad x\left(t_{0}\right)=x_{0} \in D_{d} \tag{4}
\end{equation*}
$$

with $K_{1}(x)$ being constructed analogously to $K(x)$. Notice that $K_{1}(x)=-K(x)$, $x \in D[a, b]$. Thus the solution $y(t)$ to (3) corresponds to a solution (let us call it $\left.y_{1}(t)\right)$ to the problem (4) in such a way that both y and y_{1} have the same trajectory in a neighbourhood of x_{0}, i.e. $y_{1}\left(t_{0}+t\right)=y\left(t_{0}-t\right)$. For $w_{1}(t)=$ $\operatorname{dist}\left(y_{1}(t), Z\right)$ we have

$$
w_{1}^{\prime}(t)=\min \left\{\frac{\left\langle y_{1}(t)-z, y_{1}^{\prime}(t)\right\rangle}{w_{1}(t)}: z \in Z_{y_{1}(t), w_{1}(t)}\right\} \leq 0
$$

a.e. in a neighbourhood V_{1} of t_{0}. Since

$$
w^{\prime}\left(t_{0}+t\right)=-w_{1}^{\prime}\left(t_{0}-t\right)
$$

we conclude that $w^{\prime}(t)=0$ for almost all $t \in V \cap V_{1}$. The distance function is absolutely continuous, so $w(t)=\operatorname{dist}\left(y\left(t_{0}\right), Z\right)=d$ in $V \cap V_{1}$.

3. Main result

Theorem 3.1. There exists $a_{0}>0$ such that d-boundaries D_{d} of $Z \subset \mathbb{R}^{2}$ are closed absolutely continuous curves for all $d>a_{0}$.

Proof. Since Z is compact there exists a closed ball $\bar{K}_{s, r}$ of radius r centered at $s \in \operatorname{co} Z$ such that $Z \subset \bar{K}_{s, r}$. Let

$$
a_{0}=\sup _{k \in \partial \bar{K}_{s, r}} \inf _{z \in Z}\|k-z\|,
$$

where $\partial \bar{K}_{s, r}$ is the boundary of $\bar{K}_{s, r}$. Suppose $d>a_{0}$ and notice that (co $\left.Z\right) \cap$ $D_{d}=\emptyset$.

The distance function is continuous, so the intersection of D_{d} and every halfline starting at s is not empty. Using elementary geometry it is easy to prove that every such intersection has no more than one point.

For each $p \in D_{d}$ we consider the problem $x^{\prime}(t) \in K(x(t))$ with $x\left(t_{0}\right)=p$ and obtain the solution which trajectory is an absolutely continuous curve lying in a neighbourhood W_{p} of p. By Remark 2.4 the trajectory passing through p reaches
the boundary of W_{p}. Let C_{p} be the smallest cone with vertex s containing two endpoints of the trajectory passing through p in W_{p}. The intersection of W_{p}, C_{p} and the trajectory of the solution is a simple arc. Since D_{d} is compact only a finite number of $\left(W_{p} \cap C_{p}\right)$'s are needed to cover D_{d}. Thus D_{d} is a collection of a finite number of simple arcs which form a simple closed curve.

Theorem 3.2. If $x_{0} \in D_{d}$ and $(\operatorname{co} Z) \cap D_{d}=\emptyset$, then
(a) the solution $y(t)$ to the problem (3) solves

$$
\begin{gather*}
x^{\prime}(t)=f(x(t)), \quad \text { a.e. in } t \in \mathbb{R}, \\
x\left(t_{0}\right)=x_{0} . \tag{5}
\end{gather*}
$$

(b) D_{d} is the trajectory of the solution to the problem (5).

Proof. We will use the notations introduced in the proof of Lemma 2.5.
(a) Since $w^{\prime}(t)=0$ we have

$$
\min \left\{\left\langle\frac{y(t)-z}{w(t)}, y^{\prime}(t)\right\rangle: z \in Z_{y(t), w(t)}\right\}=0
$$

where

$$
\frac{y(t)-z}{\|y(t)-z\|}=\frac{y(t)-z}{w(t)} \in S(x) \cap S^{1} .
$$

We only need to apply Lemma 2.2 to prove $y^{\prime}(t)=f(y)$. Actually, condition (a) of Lemma 2.2 is fulfilled with $e=(z-y(t)) / w(t), z \in \operatorname{co} Z_{y(t), w(t)}$. Because $Z_{y(t), w(t)}$ is closed there exists $z_{y} \in Z_{y(t), w(t)}$ satisfying $\left\langle\left(y(t)-z_{y}\right) / w(t), y^{\prime}(t)\right\rangle=$ 0 - condition (b2). Finally, the orientation condition (b1) follows from $y^{\prime}(t) \in$ $K(x)$.
(b) follows from (a) and the proof of Theorem 3.1.

4. Final remarks

Following [4, Theorem 6.1 and its Corollary] we prove the following theorem.
Theorem 4.1. For fixed $d>a_{0}$ the set $\left\{x \in D_{d}: Z_{x, d}\right.$ has at least 2 points $\}$ is countable.

Proof. For each $x \in D_{d}$ denote by $z_{x_{1}}$ and $z_{x_{2}}$ two distinct points of $Z_{x, d}$ such that $\left\{y \in \mathbb{R}^{2}:\right.$ there exists $t \geq 0$ such that $\left.x+t y \in \operatorname{co}\left\{z_{x_{1}}, z_{x_{2}}\right\}\right\}=S(x)$. Let T_{x} be the triangle with vertices $x, z_{x_{1}}$ and $z_{x_{2}}$. Notice that $\operatorname{Int} T_{x} \neq \emptyset$. It is easy to see that for each $x, y \in D_{d}, x \neq y, T_{y}$ cannot contain any vertex of T_{x}. Thus $\operatorname{Int} T_{x} \cap \operatorname{Int} T_{y}=\emptyset$. A collection of disjoint open subsets of \mathbb{R}^{2} is countable.

Corollary 4.2. The set of points of discontinuity of f along the trajectory of solution to (5) is countable.

Proof. Proof follows from Theorem 4.1 and Lemma 2.1.

References

[1] M. Brown, Sets of constant distance from a planar set, Michigan Math. J. 19 (1972), 321-323.
[2] V. F. Demyanov and V. N. Maloziemov, On the theory of nonlinear min-max problems, Uspekhi Mat. Nauk XXVI (1971), 53-104. (Russian)
[3] H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418-491.
[4] S. Ferry, When ε-boundaries are manifolds, Fund. Math. 90 (1976), 199-210.
[5] A. F. Filippov, Differential Equations with Discontinuous Right-Hand Side, Nauka, Moscow, 1985. (Russian)
[6] E. Gariepy and W. D. Pepe, On the level sets of a distance functions in a Minkowski space, Proc. Amer. Math. Soc. 31 (1972), 255-259.

Piotr Pikuta

Institute of Mathematics
Maria Curie-Skłodowska University
pl. Marii Curie-Skłodowskiej 1
20-031 Lublin, POLAND
E-mail address: ppikuta@golem.umcs.lublin.pl

