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OBSTRUCTIONS TO THE EXTENSION PROBLEM
OF SOBOLEV MAPPINGS

Takeshi Isobe

Abstract. Let M and N be compact manifolds with ∂M 6= ∅. We show
that when 1 < p < dim M , there are two different obstructions to extending

a map in W 1−1/p,p(∂M, N) to a map in W 1,p(M, N). We characterize one

of these obstructions which is topological in nature. We also give properties
of the other obstruction. For some cases, we give a characterization of

f ∈ W 1−1/p,p(∂M, N) which has an extension F ∈ W 1,p(M, N)

1. Introduction

Let M and N be two compact connected Riemannian manifolds of dim M =
m and dimN = n. We assume M has a smooth boundary and ∂N = ∅. How-
ever, our argument also applies to the case ∂N 6= ∅ under a suitable assumption.
To define the Sobolev spaces defined between manifolds, it is convenient to as-
sume that N is isometrically imbedded in some Euclidean space Rk. Indeed, by
Nash ([15]), this is always satisfied for some large k. For 1 < p we define

W 1,p(M,N) := {f ∈ W 1,p(M, Rk) : f(x) ∈ N for a.e. x ∈ M}.

For the basic properties of this space, see [2], [12], [13], [18] and [19].
Recall that there is a well-defined continuous surjective linear map, called

the trace operator, γ:W 1,p(M, Rk) → W 1−1/p,p(∂M, Rk) such that for g ∈
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C1(M, Rk), γg = g|∂M (see [1]). Here the trace space W 1−1/p,p(∂M, Rk) is
the subspace of Lp(∂M, Rk) with a norm

‖f‖1−1/p,p := ‖f‖Lp(∂M) +
{∫

∂M

∫
∂M

|f(x)− f(y)|p

d(x, y)p+m−2
dµ(x) dµ(y)

}1/p

,

where d( · , · ) is the distance function defined by the Riemannian structure of
∂M and dµ is the Riemannian density associated to the Riemannian metric
on ∂M . We are concerned with the trace space defined between manifolds,
W 1−1/p,p(∂M,N), defined as

W 1−1/p,p(∂M,N) := {f ∈ W 1−1/p,p(∂M, Rk) : f(x) ∈ N for a.e. x ∈ ∂M}.

One natural question, first treated systematically in [4], is the following:

Question. For f ∈ W 1−1/p,p(∂M,N), is there a function F in W 1,p(M,N)
with γF = f?

For N = Rk, this question is, of course, solved positively for any f ∈
W 1−1/p,p(∂M, Rk). For p > dim M , by using the Sobolev imbedding theorem
W 1−1/p,p(∂M,N) ↪→ C(∂M,N), one can easily prove that f has an W 1,p(M,N)-
extension if and only if f can be extended to M as a continuous map M → N

(see [4, Theorem 1]). Less obvious case is the limiting case p = dim M . In
this case, Bethuel and Demengel proved that any f ∈ W 1−1/p,p(∂M,N) has a
W 1,p(M,N)-extension if and only if any continuous map from ∂M to N has
a continuous extension M → N (see [4, Theorem 2]). Their argument in fact
proves the following:

Theorem 1.1 (Bethuel–Demengel). Assume p ≥ dim M . Let f be a map
in W 1−1/p,p(∂M,N). Recall that f has a well-defined homotopy class which
is defined by the homotopy class of g ∈ W 1−1/p,p(∂M,N) ∩ C(∂M,N) with
‖g − f‖1−1/p,p sufficiently small (see [3, Lemma 1]). We denote the homotopy
class of f by [f ]. Then f has a W 1,p(M,N)-extension if and only if any h ∈
C(∂M,N) with h ∈ [f ] has a continuous extension M → N .

The problem is much more complex when 1 < p < dim M . Also in this
case, for some M and N , there exists f ∈ W 1−1/p,p(∂M,N) such that the above
question is negative for f , that is, there is no F ∈ W 1,p(M,N) with γF = f .
The first example is given by Hardt and Lin (see [14]). They considered the case
W 1/2,2(B3, S1) and showed that the map f(x) = x′/|x′| (B3 is the unit ball in R3,
x = (x′, x3) ∈ B3 and |x′| is the Euclidean norm of x′ ∈ R2) is in W 1/2.2(∂B3, S1),
but it has no W 1,2(B3, S1)-extension (see Section 3 for more detailed discussion
including this case). Later in [4], Bethuel and Demengel proved that the above
question is negative for some f ∈ W 1−1/p,p(∂M,N) provided π[p]−1(N) 6= 0 (and
any M), or πj(N) 6= 0 for some j ≤ [p]− 1 (and for a suitable M), or M = Bm,
N = S1 and 3 ≤ p < m (Bm is the unit ball in Rm) (see also Section 3). The only
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known positive answer for the case 1 < p < dim M is due to Hardt and Lin (see
[14, Theorem 6.2]). They proved that if π1(N) = . . . = π[p]−1(N) = 0, then the
question is positively solved for any f ∈ W 1−1/p,p(∂M,N) (M is arbitrary). Note
that the case p = 1 is a special case. In this case, the trace space of W 1,1(M, Rk)
is L1(∂M, Rk) and it is shown in [4] that γW 1,1(M,N) = L1(∂M,N). Note also
that White ([18]) considered the case f ∈ Lip(∂M,N), however, little is known
for the general case about the above question.

Our main purpose of this paper is to clarify the following: For a given f ∈
W 1−1/p,p(∂M,N), what is the obstruction to extending f to M as a W 1,p(M,N)-
map?

At least to the author’s knowledge, it is not well understood. Our first
observation is that, contrary to the case p ≥ dim M , there are two different kinds
of obstructions to this problem. Roughly speaking, they are defined as follows:
The first obstruction, we denote it by oA(f), is the obstruction to extending f

to the collar neighbourhood of ∂M and the other, we denote it by oB(f), is the
obstruction to extending the map defined in the collar to the whole M . (However,
we note here that oB(f) will be defined whether f is extended to the collar or
not, see below). We will see that these behave very differently. In this paper,
we completely characterize the second type of obstruction oB(f). The other
obstruction oA(f) is defined (see below) and some of its properties are studied.
We also give, for some cases, a characterization of the space T p(∂M,N) :=
{f ∈ W 1−1/p,p(∂M,N) : ∃F ∈ W 1,p(M,N), γF = f}. (We use the notation
introduced in [4]).

To state our results, we introduce some notations. We denote by C(∂M)
the collar neighbourhood of ∂M in M . It is a neighbourhood of ∂M in M

diffeomorphic to [0, 2)×∂M . It is unique up to diffeomorphism. Let ϕ: C(∂M) →
[0, 2)× ∂M be a diffeomorphism. We denote by Ct(∂M) := ϕ−1([0, t)× ∂M) for
t ∈ [0, 2]. For u ∈ W 1,p(Ct(∂M), Rk), define

(1.1) Eε,t(u) =
∫
Ct(∂M)

|∇u|p +
1
ε
d0(u(x), N)p |dx|,

where d0 is the Euclidean distance in Rk and |dx| is the Riemannian density of M .
Eε,t is an approximation of p-Dirichlet energy defined in W 1,p(Ct(∂M), N).

For f ∈ W 1−1/p,p(∂M,N), define

(1.2) oA(f) = lim
t↓0

lim
ε↓0

Eε,t(f),

where Eε,t(f) := inf{Eε,t(u) : u ∈ W 1,p(Ct(∂M), Rk) with γu = f on ∂M}.
Note that oA(f) is well defined for all f ∈ W 1−1/p,p(∂M,N) and oA(f) ∈

[0,∞]. In fact, in Section 2, we show that oA(f) = 0 or oA(f) = ∞ for any
f ∈ W 1−1/p,p(∂M,N). Also note that it only depends on ∂M (not on M),
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N and f . (In fact, we will show that oA(f) depends only on f and the topologies
of ∂M and N .)

In this paper, we denote by Mk the k-skeleton of M with respect to some
CW-structure of M . Throughout this paper, we consider (M,∂M) as a relative
CW-complex, thus M is obtained by attaching cells to ∂M . Then (∂M)k is
defined by (∂M)k := ∂M ∩

⋃
{∂el : for all l-cell el of M with l ≤ k + 1}. For

our purpose, the “cubeulation” of M given in [18] (see also [2]) is sufficient.
We first give a result which characterizes maps in T p(∂M,N) in terms of

oA(f) and oB(f) (oB(f) is defined below):

Theorem 1.2. Assume 1 < p < dim M and p /∈ Z. Let f be given map in
W 1−1/p,p(∂M,N). There exists F ∈ W 1,p(M,N) satisfying γF = f if and only
if the following conditions hold:

(a) oA(f) = 0.
(b) oB(f): f |(∂M)[p]−1 ∈ C((∂M)[p]−1, N) has a continuous extension to

M [p] for a generic relative pair (M [p], (∂M)[p]−1), that is, there exists
uf ∈ C(M [p], N) such that uf |(∂M)[p]−1 = f |(∂M)[p]−1 .

The case p ∈ Z is treated in the following theorem.

Theorem 1.3. Assume 1 < p < dim M and p ∈ Z. Let f be given map in
W 1−1/p,p(∂M,N). There exists F ∈ W 1,p(M,N) satisfying γF = f if and only
if the following conditions hold:

(a) oA(f) = 0.
(b) oB′(f): For a generic relative pair (Mp, (∂M)p−1), there exists a se-

quence {fi} ⊂ Lip((∂M)p−1, N) such that fi → f in W 1−1/p,p((∂M)p−1,

N) and fi (i ≥ 1) has a Lipschitz extension Fi to Mp, that is, Fi ∈
Lip(Mp, N) and Fi|(∂M)p−1 = fi.

It is easy to show that oA(f) = 0 if and only if f is extended in some
neighbourhood of ∂M (see proof of Lemma 2.1). As noted before, the above
definition shows that oB(f) is defined whether oA(f) = 0 or not (i.e. for any f ∈
W 1−1/p,p(∂M,N)). The obstructions oB(f) and oB′(f) are purely topological,
that is, they only depend on the topologies of the pair (M [p], (∂M)[p]−1), N and
the homotopy class of f |(∂M)[p]−1 : (∂M)[p]−1 → N (in the case p /∈ Z. In the
case p ∈ Z, we take the homotopy class of f ∈ W 1−1/p,p((∂M)p−1, N) as the
generalized sense as in [3, Lemma 1]). Thus by the above theorems, once f is
extended to a neighbourhood of ∂M , there is only a topological obstruction to
extending f to M . Sufficient conditions for oB(f) and oB′(f) are given by the
vanishing of cohomology groups Hk+1(M [p], (∂M)[p]−1;πk(N)) = 0 (0 ≤ k ≤
[p]− 1) or Hk+1(M, (∂M)[p]−1;πk(N)) = 0 (0 ≤ k ≤ [p]− 2), π[p]−1(N) = 0, see
Section 3.
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On the other hand, it turns out that the structure of oA(f) is more compli-
cated. The following result gives a simple condition for f implying oA(f) = 0
(for the definition of VMO(∂M), see [9] and [10]):

Proposition 1.4. Let 1 < p < dim M . Assume f ∈ W 1,p(∂M,N) or
f ∈ W 1−1/p,p(∂M,N) ∩VMO(∂M). Then oA(f) = 0.

Corollary 1.5. Let 1 < p < dim M . Assume

Hk+1(M [p], (∂M)[p]−1;πk(N)) = 0 for 0 ≤ k ≤ [p]− 1,

or Hk+1(M, (∂M)[p]−1;πk(N)) = 0 for 0 ≤ k ≤ [p]− 2,

and π[p]−1(N) = 0. For any f ∈ W 1,p(∂M,N) or f ∈ W 1−1/p,p(∂M,N) ∩
VMO(∂M), there exists F ∈ W 1,p(M,N) satisfying γF = f on ∂M .

In general, for a given f ∈ W 1−1/p,p(∂M,N), deciding whether oA(f) = 0
seems a difficult problem. In some cases, however, we can characterize a map
f ∈ W 1−1/p,p(∂M,N) with oA(f) = 0. Also, for some cases, we can give a
concrete characterization of T p(∂M,N). In the following, we give two results
in this direction. By the theorem of Hardt–Lin (see [14, Theorem 6.2]), when
1 < p < 2 (i.e. [p] = 1), we always have T p(∂M,N) = W 1−1/p,p(∂M,N) for any
N . Thus by the same theorem, the first non-trivial case where T p(∂M,N) 6=
W 1−1/p,p(∂M,N) occurs is the case 2 ≤ p < 3 and π1(N) 6= 0. The first result
concerns the case where π1(N) is finite.

Theorem 1.6. Let 2 ≤ p < 3. Let M be a compact Riemannian manifold
with boundary with dim M > p. Assume N is a compact Riemannian manifold
with finite π1(N). Let π: Ñ → N be the universal covering of N . Then we have:

(a) Assume moreover that π1(∂M) = 0, then

{f ∈ W 1−1/p,p(∂M ;N) : oA(f) = 0} = {π(f̃) : f̃ ∈ W 1−1/p,p(∂M, Ñ)}.

(b) Assume π1(∂M) = 0 or π1(M) = 0. Then we have

T p(∂M,N) = {π(f̃) : f̃ ∈ W 1−1/p,p(∂M, Ñ)}.

The next result treats the case where π1(N) is not necessarily finite, but N

has some additional structure, that is, N is a compact Lie group. This class of N

is also important since the Sobolev space with values into a Lie group naturally
arises in gauge theory and harmonic maps into Lie groups (known as classical
solutions of the Chiral Model), see [17]

Theorem 1.7. Let 2 ≤ p < 4. Let M be a compact Riemannian manifold
with boundary with dim M > p. Assume that N = G is a compact Lie group. Let
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π: G̃ → G be the universal covering of G. Then we have:

(a) Assume moreover that π1(∂M) = 0, then

{f ∈ W 1−1/p,p(∂M,G) : oA(f) = 0} = {π(f̃) : f̃ ∈ W 1−1/p,p(∂M, G̃)}.

(b) Assume π1(∂M) = 0 or π1(M) = 0, then

T p(∂M,G) = {π(f̃) : f̃ ∈ W 1−1/p,p(∂M, G̃)}.

One may wonder whether the above theorems (especially, Theorem 1.6)
hold for general compact N . For general compact N , Ñ is non-compact and
the definition of the Sobolev space W 1−1/p,p(∂M, Ñ) is not so clear. (In the
cases treated in the theorems, there is a natural definition of the Sobolev space
W 1−1/p,p(∂M, Ñ), see Section 3. This is the reason why we restrict our consider-
ation to the above two cases). Thus to prove Theorem 1.6 for general N , we need
a suitable definition of the Sobolev space W 1−1/p,p(∂M, Ñ). For such a “Sobolev
space” W 1−1/p,p(∂M, Ñ), Theorem 1.6 will continue to hold. This observation
indicates some aspects of difficulty involved in the extension problem.

Theorems 1.6 and 1.7 show that the extension problem is closely related to
the lifting problem. Recall that N = S1 is a compact Lie group (this is the
most simple compact Lie group) and our Theorem 1.7 shows that under appro-
priate conditions, the problem of finding an extension of f ∈ W 1−1/p,p(∂M, S1)
is equivalent to finding a lifting of f to R (that is, to find φ ∈ W 1,p(∂M, R)
satisfying f = eiφ). In this special case N = S1, the lifting problem is exten-
sively studied by Bourgain, Brezis and Mironescu. In their papers [6], [7], they
showed that there are both topological and analytical obstructions to the lifting
problem. Thus the above equivalence (oA(f) = 0 if and only if f has a lifting)
shows that, contrary to the obstruction oB(f), oA(f) contains both topological
and analytical information.

Theorems 1.6 and 1.7 are also related to the conjecture of Bethuel–Demengel
(see [4, Conjecture 2]). In [4], Bethuel–Demengel conjectured that if π[p]−1(N)
= 0 and πj(N) is finite for all j ≤ [p]− 2, then T p(∂M,N) = W 1−1/p,p(∂M,N).
In view of the theorem of Hardt–Lin (see [14, Theorem 6.2]), the first non-
trivial case is the case 3 ≤ p < 4 (i.e. [p] = 3). In this case, their conjecture
is: When π2(N) = 0 and π1(N) is finite, T p(∂M,N) = W 1−1/p,p(∂M,N) for
3 ≤ p < 4. Thus the conjecture of Bethuel–Demengel is closely related to
the problem treated in Theorems 1.6 and 1.7. We show that this conjecture
is not true in general, see Example 3.4. However, one may conjecture that it
is true under some additional assumptions on M , for example, π1(∂M) = 0 or
M = Bm etc.

Please recall the examples stated after Theorem 1.1. We will show in Sec-
tion 3 that the obstruction π[p]−1(N) 6= 0 is contained in oA in the sense that
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if oA(f) = 0 for any f , it is necessary π[p]−1(N) = 0. But the condition
π[p]−1(N) = 0 is not sufficient to imply oA(f) = 0 for any f (as we have seen, it
also depends on analytical nature of f). Other topological obstructions (namely
πj(N) 6= 0 for some j < [p]− 1) is contained in oB(f). This is also explained in
Section 3.

In the next section, we give proofs of Theorems 1.2 and 1.3.

2. Proofs of Theorems 1.2 and 1.3

We first prove elementary properties of oA(f) for f ∈ W 1−1/p,p(∂M,N).

Lemma 2.1. For any f ∈ W 1−1/p,p(∂M,N), oA(f) = 0 or oA(f) = ∞.
Moreover, oA(f) depends only on f and the topologies of ∂M and N .

Proof. We need to show oA(f) = 0 if oA(f) < ∞. So assume oA(f) < ∞.
By definition, there exists t0 ∈ (0, 2) such that limε↓0 Eε,t0(f) < ∞. Thus, we
easily see that {uε,t0} is bounded in W 1,p(Ct0(∂M), Rk), where γuε,t0 = f on
∂M and Eε,t0(uε,t0) = Eε,t0 for uε,t0 ∈ W 1,p(Ct0(∂M), N). From this, for some
sequence {εn} with εn ↓ 0, we have uεn,t0 ⇀ ut0 weakly in W 1,p(Ct0(∂M), Rk)
for some ut0 ∈ W 1,p(Ct0(∂M), Rk) with γut0 = f on ∂M . Since, by passing to
the limit εn → 0,

sup
ε>0

∫
Ct0 (∂M)

1
ε
d(u(x), N)p |dx|

is finite, we easily see that ut0 ∈ W 1,p(Ct0(∂M), N). Then we have

oA(f) ≤ lim
t↓0

lim
ε↓0

Eε,t(ut0) = lim
t↓0

∫
Ct(∂M)

|∇ut0 |p |dx| = 0.

It is obvious that oA(f) is independent of the metric of N . Since any collar of ∂M

is diffeomorphic to [0, 2) × ∂M , one can easily prove that oA(f) is independent
of a collar of ∂M and the metric of ∂M . In particular, oA(f) depends only on f

and the topologies of ∂M and N . �

Now we turn to proofs of Theorems 1.2 and 1.3. We first give the proof of
necessity of oA(f) = 0 and oB(f) (or oB′(f)). After that, we give the proof of
sufficiency.

Proof of Theorem 1.2 (Necessity). We assume 1 < p < dim M and
p /∈ Z. Assume that f ∈ W 1−1/p,p(∂M,N) has an extension F ∈ W 1,p(M,N):
γF = f . Then we have

oA(f) = lim
t↓0

lim
ε↓0

Eε,t(f) ≤ lim
t↓0

lim
ε↓0

Eε,t(F |Ct(∂M)) = lim
t↓0

∫
Ct(∂M)

|∇F |p |dx| = 0.

Therefore, oA(f) = 0.
Next we prove the necessity of oB(f). Since p /∈ Z, by the Sobolev imbedding

F ∈ C(M [p], N) for generic M [p]. Thus F |M [p] is a continuous extension of
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f |(∂M)[p]−1 to M [p]. Here (∂M)[p]−1 is taken as in Section 1, that is, (M,∂M) is
considered as a relative CW-complex. �

Proof of Theorem 1.3 (Necessity). The proof of oA(f) = 0 is the same
as in the proof of Theorem 1.2. To prove necessity of oB′(f), let F be a map
in W 1,p(M,N) with γF = f . For generic Mp, F |Mp ∈ W 1,p(Mp, N). Since
Lip(Mp, N) is dense in W 1,p(Mp, N), there exists {uj} ⊂ Lip(Mp, N) such that
uj → F |Mp in W 1,p(Mp, N). Trace theorem then implies that uj |(∂M)p−1 →
f |(∂M)p−1 in W 1−1/p,p((∂M)p−1, N). �

Proof of Theorem 1.2 (Sufficiency). Let p /∈ Z. Since oA(f) = 0, Lem-
ma 2.1 and its proof show that there exists t0 ∈ [0, 2] and ut0 ∈W 1,p(Ct0(∂M), N)
such that γut0 = f on ∂M . We may assume without loss of generality t0 = 2
(since Ct0(∂M) is diffeomorphic to C(∂M)) and set F := ut0 ∈ W 1,p(C(∂M), N).
We use the identification C(∂M) ∼= [0, 2) × ∂M throughout the proof. Since
for almost every t ∈ [0, 1], F |{t}×∂M ∈ W 1,p(∂M,N), we may assume without
loss of generality F |{1}×∂M ∈ W 1,p(∂M,N). Thus our problem is reduced to
extending F |{1}×∂M to M \ [0, 1] × ∂M as a W 1,p-map (with values in N). To
proceed, we need the following lemma:

Lemma 2.2. Assume f |(∂M)[p]−1 : (∂M)[p]−1 → N has a continuous extension
uf :M [p] → N for a generic pair (M [p], (∂M)[p]−1). Set ∂1M := {1}×∂M . Then
for a generic pair ((M\[0, 1)×∂M)[p], (∂1M)[p]−1), F |(∂1M)[p]−1 : (∂1M)[p]−1 → N

has a continuous extension (M\[0, 1)×∂M)[p] → N . Here (M\[0, 1)×∂M, ∂1M)
is considered as a relative CW-complex as in Section 1.

To prove the above lemma, we need

Lemma 2.3. For a generic [p] − 1-skeleton (∂M)[p]−1 (which comes from
some relative CW-structure of (M,∂M) as before), we have F |[0,1]×(∂M)[p]−1 ∈
W 1,p([0, 1]× (∂M)[p]−1, N). Here, as always, we use the identification C(∂M) ∼=
[0, 2)× ∂M .

Proof. Give a [p]− 1-skeleton (∂M)[p]−1 (coming from some relative CW-
structure of (M,∂M)) arbitrary. We may assume without loss of generality
∂M is isometrically imbedded in Rr for some r > 1. Let O(∂M) ⊂ Rr be a
tubular neighbourhood of ∂M and π:O(∂M) → ∂M a nearest point fibration,
i.e. d0(x, π(x)) = d0(x, ∂M) (d0 is the Euclidean distance in Rr). We take
ε > 0 so that {x ∈ Rr : d0(x, ∂M) < ε} ⊂ O(∂M). For v ∈ O(∂M), define
φv: ∂M → ∂M by φv(x) = π(x + v). Then φv: ∂M → ∂M is C∞-isotopic to
Id∂M : ∂M → ∂M . Define Φv: [0, 1]× ∂M → [0, 1]× ∂M by Φv(t, x) = (t, φv(x)).
Φv is C∞-isotopic to Id[0,1]×∂M : [0, 1]× ∂M → [0, 1]× ∂M .
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By Fubini, we have∫
|v|<ε

( ∫
[0,1]×(∂M)[p]−1

|∇(F ◦ Φv(t, x))|p dt dx

)
dv

≤C

∫
(∂M)[p]−1

( ∫
[0,1]

∫
|v|<ε

|∇F (t, φv(x))|p dt dv

)
dx

≤C

∫
C(∂M)

|∇F |p dx < ∞.

Thus for almost every v with |v| < ε, F ◦Φv ∈ W 1,p([0, 1]× (∂M)[p]−1, N). Note
that Φ−1

v ([0, 1]× (∂M)[p]−1) = [0, 1]× φ−1
v ((∂M)[p]−1).

To complete the proof, we need to prove that φ−1
v ((∂M)[p]−1) is a [p] − 1-

skeleton of ∂M coming from some relative CW-structure of (M,∂M). For this,
it is sufficient to prove that Φv has an extension Φ̂v:M → M which is also
isotopic to IdM :M → M . Then if (M [p], (∂M)[p]−1) is a relative pair, so is
(Φ̂−1

v (M [p]), φ−1
v ((∂M)[p]−1)).

To extend Φv to M , we recall the identification C(∂M) ∼= [0, 2) × ∂M . Let
α ∈ C∞([1, 2]) be a function satisfying α(t) ≡ 1 for t near 1, α(t) ≡ 0 for
t near 2 and 0 ≤ α(t) ≤ 1 for t ∈ [1, 2]. Define Φ̂v by Φ̂v(t, x) = Φv(t, x)
for (t, x) ∈ [0, 1) × ∂M , Φ̂v(t, x) = Φα(t)v(t, x) for (t, x) ∈ [1, 2) × ∂M and
Φ̂ = IdM\C(∂M) in M \ C(∂M). Clearly, Φ̂v is an extension of Φv to M and
C∞-isotopic to IdM . �

Proof of Lemma 2.2. By Lemma 2.3, for generic [p]−1-skeleton (∂M)[p]−1,
F ∈ W 1,p([0, 1] × (∂M)[p]−1, N). Since p /∈ Z, by the Sobolev imbedding the-
orem, F |[0,1]×(∂M)[p]−1 ∈ C([0, 1] × (∂M)[p]−1, N). Therefore F |{0}×(∂M)[p]−1 =
f |(∂M)[p]−1 is homotopic to F |(∂1M)[p]−1 . By assumption, f |(∂M)[p]−1 has a con-
tinuous extension uf :M [p] → N . Thus by the homotopy extension property, see
[8], [18], (since (∂M)[p]−1 ↪→ M [p] is a cofibration), F |(∂1M)[p]−1 has a continuous
extension (M \ [0, 1]× ∂M))[p] → N , too. �

Our problem is reduced to the special case f ∈ W 1,p(∂M,N). Indeed, by
Lemma 2.2, F |∂1M ∈ W 1,p(∂1M,N) has a continuous extension (M \ [0, 1) ×
∂M)[p] → N and to extend f to M as a W 1,p(M,N)-map, it is sufficient to
extend F |∂1M to M \ [0, 1)× ∂M as a W 1,p(M \ [0, 1)× ∂M,N)-map. Thus in
the following, we assume

oC(f): f ∈ W 1,p(∂M,N) and f |(∂M)[p]−1 has a continuous extension M [p] → N

for a generic pair (M [p], (∂M)[p]−1).

We construct an extension of f by the following two steps.
Step 1. We extend f to M [p] ∪ ∂M as a W 1,p(M [p] ∪ ∂M,N)-map.
Step 2. We extend the map obtained in Step 1 to M as a W 1,p(M,N)-map.
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For the moment, we assume Step 1, that is, we assume f has an extension
F1 ∈ W 1,p(M [p] ∪ ∂M,N) and give a construction of an extension of F1 to M .

Construction of an extension of F1 to M . By using the filtration M [p] ⊂
M [p]+1 ⊂ . . . ⊂ M of M , we successively construct an extension. By Step 1, we
have F1 ∈ W 1,p(M [p] ∪ ∂M,N) with F1|∂M = f .

Assume that F1 is extended to M [p]+k−1 as a W 1,p(M [p]+k−1 ∪ ∂M,N)-map
Fk (1 ≤ k ≤ m + 1− [p]). Let σ[p]+k be a [p] + k-cell of M . We may assume it
is bi-Lipschitz equivalent to [−1, 1][p]+k, that is, there exists a bi-Lipschitz map

ϕσ: [−1, 1][p]+k ∼→ σ[p]+k.

Define Fk+1 on σ[p]+k by homogeneous degree 0 extension of Fk|∂σ[p]+k :

Fk+1 := Fk ◦ f∂σ ◦ ϕσ

(
ϕ−1

σ

‖ϕ−1
σ ‖

)
,

where f∂σ is the attaching map ∂e[p]+k → M [p]+k−1 for the cell σ[p]+k, e[p]+k :=
{x ∈ R[p]+k : |x| ≤ 1} and ‖y‖ := max1≤i≤[p]+k |yi| for y = (y1, . . . , y[p]+k) ∈
[−1, 1][p]+k. Note that Fk+1 ∈ W 1,p(σ[p]+k, N).

We carry out this construction for all [p] + k-cell and obtain an extension
Fk+1 of Fk to M [p]+k as a map in W 1,p(M [p]+k, N). By the induction on k, we
finally obtain an extension Fm−[p]+1 of f to M as a map in W 1,p(M,N). �

We now give a construction of an extension of f to ∂M ∪M [p].

Construction of an extension of f to ∂M ∪M [p]. Here the condition oB(f)
is used. In other words, the topological obstruction oB(f) exists here. By the
condition oB(f) (and our reduction of the problem), f |(∂M)[p]−1 : (∂M)[p]−1 → N

has a continuous extension uf :M [p] → N . In the following, we successively
construct an extension of f using the filtration M0 ⊂ . . . ⊂ M [p]. In this process,
we construct extensions vk

f : ∂M ∪Mk → N (k = 0, . . . , [p]) not only vk
f = f on

∂M but also satisfying:

(a) vk
f ⊂ vk+1

f (this means vk+1
f is an extension of vk

f ),
(b) vk

f ∼ uf on Mk (vk
f ∼ uf on Mk means that vk

f is homotopic to uf

on Mk).

The existence of v0
f satisfying (a) and (b) is obvious. Assume we have con-

structed v0
f , . . . , vk

f satisfying (a) and (b) (k + 1 ≤ [p]). Let σk+1 be a k + 1-cell
of M . We may assume σk+1 is bi-Lipschitz equivalent to [−1, 1]k+1. We define
vk+1

f by vk
f on ∂σk+1∪∂M . By the induction assumption, vk

f ∼ uf on Mk. Since
uf |Mk has a continuous extension to M [p] (i.e. uf ), by the homotopy extension
property (since Mk ↪→ M [p] is a cofibration), vk

f has a continuous extension
V k

f :M [p] → N which is homotopic to uf on M [p]. We use V k
f to extend vk

f

to σk+1. We first extend vk
f to a neighbourhood of ∂σk+1 in σk+1. For this,
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we identify the collar of ∂σk+1 by [0, 1] × ∂σk+1 and define for x ∈ ∂σk+1 and
0 < h < 1:

v(h, x) :=
1

Hk(Bk
h(x))

∫
Bk

h(x)

vk
f dHk,

where Bk
h(x) ⊂ ∂σk+1 is the metric k-ball of radius h with center at x and Hk is

the k-dimensional measure induced from the Riemannian metric on M .

It is well known that v ∈ Lip((0, 1)× ∂σk+1) ∩W 1,p((0, 1)× ∂σk+1, Rk) and
v(h, · ) → vk

f in W 1−1/p,p(∂σk+1, Rk) as h ↓ 0. Moreover, for small h > 0,
v(h, · ) ∈ O(N), where O(N) is a tubular neighbourhood of N in Rk. The last
claim easily follows from the Sobolev imbedding theorem and k + 1 ≤ [p]. We
may assume without loss of generality v(h, · ) ∈ O(N) for h ∈ (0, 1).

Let πN :O(N) → N be the nearest point projection. Then πN ◦ v is well-
defined and in Lip((0, 1)× ∂σk+1)∩W 1,p((0, 1)× ∂σk+1, N). Since vk

f |∂σk+1 has
a continuous extension V k

f in σk+1, πN ◦ v also has an continuous extension to
σk+1 (since πN ◦ v|∂σk+1 = vk

f |∂σk+1). Since πN ◦ v is Lipschitz in (0, 1)× ∂σk+1,
we can take this extension also Lipschitz in σk+1 and homotopic to V k

f in σk+1.
In σk+1, we define vk+1

f by this extension.

By construction vk+1
f ∈ W 1,p(Mk ∪f

∂σk+1 σk+1, N), vk+1
f |Mk = vf , vk+1

f ∼
V k

f ∼ uf on Mk ∪f
∂σk+1 σk+1. We continue this construction for all k + 1-cell

of M and obtain vk+1
f :Mk+1 ∪ ∂M → N with vk+1

f ∈ W 1,p(∂M ∪ Mk+1, N),

vk
f ⊂ vk+1

f and vk+1
f ∼ uf in Mk+1. By induction, we obtain v0

f , v1
f , . . . , v

[p]
f

satisfying (a) and (b). Clearly, v
[p]
f ∈ W 1,p(∂M ∪M [p], N) is an extension of f

to ∂M ∪M [p]. �

Proof of Theorem 1.3 (Sufficiency). We assume p ∈ Z and 1 < p <

dim M . We prove Theorem 1.3 by the same steps in the proof of Theorem 1.2.
If f has an extension to ∂M ∪Mp as a map in W 1,p(∂M ∪Mp, N) (Step 1), then
by the same argument given in the proof of Theorem 1.2, f can be extended
to M as a W 1,p(M,N)-map. Thus we only need to prove the assertion: Under
the assumption of Theorem 1.3, f has an extension to ∂M ∪ Mp as a map in
W 1,p(∂M ∪Mp, N).

By Lemma 2.1 and its proof (see also the argument in the proof of Theorem
1.2), there exists F ∈ W 1,p(C(∂M), N) with γF |∂M = f . The following lemma
is the analogue of Lemma 2.2 when p ∈ Z.

Lemma 2.4. Under the assumption oB′(f), there exists {vi} ⊂ Lip((M \
C(∂M))p, N) such that vi|(∂1M)p−1 → F |(∂1M)p−1 in W 1−1/p,p((∂1M)p−1, N).

Proof. As usual, we identify C(∂M) ∼= [0, 2) × ∂M . By Lemma 2.3, for
generic p− 1-skeleton (∂M)p−1, F ∈ W 1,p((0, 1)× (∂M)p−1, N).
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Since Lip([0, 1]×(∂M)p−1, N) is dense in W 1,p((0, 1)×(∂M)p−1, N) (see [16],
[12]), there exists Fi ∈ Lip([0, 1] × (∂M)p−1, N) such that Fi|(0,1)×(∂M)p−1 →
F |(0,1)×(∂M)p−1 in W 1,p((0, 1)× (∂M)p−1, N).

Set f0
i = Fi|{0}×(∂M)p−1 and f1

i = Fi|{1}×(∂M)p−1 . Note that f0
i ∼ f1

i

on (∂M)p−1 (by the homotopy Fi) and by the trace theorem, f0
i → f in

W 1−1/p,p((∂M)p−1, N) and f1
i → F |{1}×(∂M)p−1 in W 1−1/p,p((∂M)p−1, N).

Since fi → f and f0
i → f in W 1−1/p,p((∂M)p−1, N), by [3, Lemma 1],

f0
i ∼ fi on (∂M)p−1 if i is large. Thus fi ∼ f0

i ∼ f1
i on (∂M)p−1.

By assumption, fi has a continuous extension Mp → N , so by the homo-
topy extension property (since (∂M)p−1 ↪→ Mp is a cofibration), f1

i also has a
continuous extension vi:Mp → N .

Since f1
i is Lipschitz, one can take vi as a Lipschitz map. Here note that by

our identification, Mp is identified with (M \ C(∂M))p. Clearly, {vi} satisfies
the required property. �

As in the case of Theorem 1.2, we may assume F |∂1M ∈ W 1,p(∂1M,N). Thus
as in the proof of Theorem 1.2, by Lemma 2.4, we have reduced the problem to
the case f ∈ W 1,p(∂M,N). Therefore to complete the proof of Theorem 1.3, we
need to extend f to M under the assumption

oC′(f) : f ∈ W 1,p(∂M,N) and there exists {fi} ⊂ Lip((∂M)p−1, N) such that
fi → f |(∂M)p−1 in W 1−1/p,p((∂M)p−1, N) and fi has a Lipschitz exten-
sion Fi:Mp → N .

We also need the following lemma:

Lemma 2.5. Let {fi} and {Fi} be sequences satisfying oC′(f). Then we can
assume that {Fi} satisfies Fi ∼ Fj on Mp for any i 6= j.

Proof. Since fi → f in W 1−1/p,p((∂M)p−1, N), by Bethuel ([3, Lemma 1]),
fi ∼ fj on (∂M)p−1 if i, j are large. Discarding finitely many fi if necessary,
we may assume fi ∼ fj on (∂M)p−1 for all i 6= j. Then f1 ∼ fi on (∂M)p−1

for all i and since f1 has a continuous extension F1:Mp → N , by the homotopy
extension property fi has a continuous extension F ′

i :M
p → N satisfying F1 ∼ F ′

i

on Mp. Since fi is Lipschitz, we can take F ′
i also Lipschitz. Replacing {Fi} by

{F1, F
′
2, . . . , F ′

i , . . . }, we complete the proof. �

By Lemma 2.5, we may assume that the sequence {Fi} in oC′(f) satisfies
Fi ∈ [α], where [α] is a fixed homotopy class of continuous maps from Mp to N .

We now complete the proof of Theorem 1.3. The idea is the same as in the
case p /∈ Z: We use the filtration M0 ⊂ . . . ⊂ Mp and construct an extension
successively.

Completion of the Proof of Theorem 1.3. As in the proof of The-
orem 1.2, we are going to construct vk

f :Mk → N (k = 0, . . . , p) such that
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v0
f ⊂ . . . ⊂ vp

f and vk
f ∈ [α] on Mk (the meaning of the last condition is that if

G:Mp → N is a representative of [α], then vk
f ∼ G on Mk). The existence of v0

f

satisfying the above condition is obvious.
Assume that we have constructed v0

f ⊂ . . . ⊂ vk
f satisfying vj

f ∈ [α] on M j

for 0 ≤ j ≤ k (k + 1 ≤ p). Let σk+1 be a (generic) k + 1-cell of M . Note
that vk

f |∂σk+1 ∈ W 1,p(∂σk+1, N) ↪→ C(∂σk+1, N) by the Sobolev imbedding.
Since vk

f ∈ [α] on Mk and [α] = [G] for some continuous G:Mp → N , by
the homotopy extension property (since Mk ↪→ Mp is a cofibration), vk

f has a
continuous extension V k

f :Mp → N with V k
f ∈ [α] in Mp. Then we proceed as in

the proof of Theorem 1.2 and obtain an extension of vk
f to Mk ∪f

∂σk+1 σk+1 as a
W 1,p(Mk ∪f

∂σk+1 σk+1, N)-map. We continue this construction for all k + 1-cell
of M and obtain vk+1

f :Mk+1 ∪ ∂M → N with vk+1
f ∈ W 1,p(∂M ∪ Mk+1, N),

vk
f ⊂ vk+1

f and vk+1
f ∈ [α] in Mk+1. By induction, we construct v0

f , . . . , vp
f

satisfying the required property. Clearly, vp
f ∈ W 1,p(∂M∪Mp, N) is an extension

of f to ∂M ∪Mp. �

3. Obstructions oA(f) and oB(f) (and oB′(f))

Since the structures of the obstructions oB(f) and oB′(f) are simpler than
that of the obstruction oA(f), we first study oB(f) and oB′(f).

3.1. The obstructions oB(f) and oB′(f). We first point out that the ob-
structions oB(f), oB′(f) are topological one, that is, it depends only on the topol-
ogy of (M [p], (∂M)[p]−1), N and the homotopy class of f |(∂M)[p]−1 : (∂M)[p]−1→N .
A sufficient condition to hold oB(f) (or oB′(f)) for any f ∈ W 1−1/p,p(∂M,N)
is given by the following:

Proposition 3.1. Let 1 < p < dim M . We assume that N is simple and
Hk+1(M [p], (∂M)[p]−1;πk(N)) = 0 for 1 ≤ k ≤ [p] − 1. Then the conditions
oB(f) and oB′(f) hold for any f ∈ W 1−1/p,p(∂M,N).

Before we give the proof, we explain the terminology “simple” in the above
proposition. Recall that (see [8], [20]) there is a natural action of π1(N) on πk(N)
for any k ≥ 1 (it is defined by the condition that γ ·α, the action of γ ∈ π1(N) on
α ∈ πk(N), is freely homotopic to α along γ). N is simple if π1(N) acts trivially
on πk(N) for any k ≥ 1. For example if N is simply connected, N is simple. If
N = S1, N is simple since π1(S1) = Z is abelian and πk(S1) = 0 for k ≥ 2.

Proof of Proposition 3.1. This is a direct consequence of the obstruction
theory in topology. The obstruction theory concerns, for example, the problem
of extending a continuous function g:A → Y to X, where (X, A) is a relative
complex and Y is a topological space. By the obstruction theory, obstructions
to extending g to X are (essentially) cohomology classes in Hk+1(X, A;πk(Y ))
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(k ≥ 0) (for more precise statement and details of this theory, see [8] and [20]).
In particular if Hk+1(X, A;πk(Y )) = 0 for all k ≥ 0, g has an extension to X.
Returning to our problem, under the assumption of the proposition, we have
Hk+1(M [p], (∂M)[p]−1;πk(N)) = 0 for all k. Thus for the case p /∈ Z, the
condition oB(f) follows directly from the obstruction theory. When p ∈ Z,
since Lip((∂M)[p]−1, N) is dense in W 1−1/p,p((∂M)[p]−1, N) (see [3]), there exists
{fi} ∈ Lip((∂M)[p]−1, N) such that fi → f in W 1−1/p,p((∂M)[p]−1, N). Under
the assumption, fi has an continuous (and hence Lipschitz) extension to M [p]

and the condition oB′(f) follows. �

We will show in Section 3.2 that if oA(f) = 0 for any f ∈ W 1−1/p,p(∂M,N),
it is necessary π[p]−1(N) = 0. (The importance of the condition π[p]−1(N) = 0
for the extension problem was first pointed out by Bethuel [3], and Bethuel–
Demengel [4]). Thus it seems useful to restate the above proposition under the
condition π[p]−1(N) = 0.

Proposition 3.2. Let 1 < p < dim M . Let f ∈ W 1−1/p,p(∂M,N). Assume
N is simple, π[p]−1(N) = 0 and Hk+1(M, (∂M)[p]−1;πk(N)) = 0 for 1 ≤ k ≤
[p]− 2, then oB(f) and oB′(f) hold.

Proof. Under the assumption, we need to show that

Hk+1(M [p], (∂M)[p]−1;πk(N)) = 0 for 1 ≤ k ≤ [p]− 1.

Since π[p]−1(N) = 0, H [p](Mp, (∂M)[p]−1;π[p]−1(N)) = 0. The remaining cases
follow from the cohomology exact sequence of (M,M [p], (∂M)[p]−1):

· · · → Hk(M,M [p]) → Hk(M, (∂M)[p]−1)

→ Hk(M [p], (∂M)[p]−1) → Hk+1(M,M [p]),

where the coefficient of the cohomology is an arbitrary group G. (Of course,
we are interested in the case G = πk−1(N).) From the above sequence, if k ≤
[p] − 1, 0 = Hk(M, (∂M)[p]−1) ' Hk(M [p], (∂M)[p]−1). Thus the assertion of
Proposition 3.2 follows from Proposition 3.1. �

Example 3.3 (Hardt–Lin [14] and Bethuel–Demengel [4]). Bethuel–Demen-
gel (and Hardt–Lin for a special case) produced an example under the condition
πj(N) 6= 0 for some 1 ≤ j ≤ [p]− 1. Under this condition, they proved that for
some M there exists f ∈ W 1−1/p,p(∂M,N) which is not in T p(∂M,N). They
choose M = Bj+1 × Sm−j−1 (with m > p).

We will see in the next section that if π[p]−1(N) 6= 0, there always exists
f ∈ W 1−1/p,p(∂M,N) which does not admit an extension to M as a W 1,p(M,N)-
map, thus we may assume 1 ≤ j < [p] − 1. f is constructed as follows (cf. [14]
and [4]): By πj(N) 6= 0, there exists u ∈ C∞(Sj , N) such that u is not homotopic
to 0. For (x, y) ∈ ∂M = Sj × Sm−j−1, define f(x, y) := u(x). Obviously
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f ∈ W 1−1/p,p(Sj×Sm−j−1, N). Note that in this case f satisfies oA(f) = 0, since
f obviously has an smooth (and hence W 1,p) extension to a collar neighbourhood
of ∂M .

We claim that f does not admit any W 1,p(M,N)-extension. There are two
proofs.

The first proof goes as follows (see [14], [4]). Assume contrary, there ex-
ists F ∈ W 1,p(M,N) such that γF = f . By Fubini’s theorem, for almost
every y0 ∈ Sm−j−1, F ( · , y0) ∈ W 1,p(Bj+1, N). Clearly, γF ( · , y0) = u on
∂Bj+1 = Sj . Then there exists V ∈ W 1,p(Bj+1, N) which minimizes the func-
tional W 1,p(Bj+1, N) 3 v 7→

∫
Bj+1 |∇v|p dx under the Dirichlet condition γv = u

on ∂Bj+1. Since j + 1 ≤ [p], we know V ∈ C1(Bj+1, N) (see [14]). This is a
contradiction since u 6∼ 0.

The second proof uses Theorems 1.2 and 1.3. For the case p /∈ Z, one
can easily show the existence of a relative CW-structure of (M,∂M) such that
(∂M)[p]−1 contains Sj × {y0} and M [p] contains Bj × {y0} for a given y0 ∈
Sm−j−1 (cf. the construction below). Then the assertion readily follows from
Theorem 1.2.

The case p ∈ Z is similar by using Theorem 1.3. In fact, if f has an extension,
by Theorem 1.3 there exists {fi} such that oB′(f) holds. By [4], f |(∂M)p−1 ∼
fi|(∂M)p−1 for large i and by the homotopy extension property, f |(∂M)p−1 has an
continuous extension to Mp since fi|(∂M)p−1 has an continuous extension to Mp.
Then we have a contradiction as in the case p /∈ Z.

As noted above, oA(f) = 0 in this case. Thus the obstruction to the extension
is in oB(f). In view of Proposition 3.2, it follows that

Hk+1(M, (∂M)[p]−1, πk(N)) 6= 0 for some 1 ≤ k ≤ [p]− 2.

In fact, we have the following claim:

Claim 1. Hj+1(M, (∂M)[p]−1;πj(N)) 6= 0 for some relative CW-structure
of (M,∂M).

Proof. As a CW-structure of ∂M , take ∂M = Sj × Sm−j−1 = e0 ∪ ej ∪
em−j−1∪em−1, where ek is a k-dimensional cell. Attaching a j+1-cell ej+1 to Sj

by the identity Id: ∂ej+1 → Sj , we obtain a relative CW-structure of (M,∂M).
We have

(∂M)[p]−1 = (Sj × Sm−j−1)[p]−1

=

{
Sj × {∗} (m− j − 1 ≥ [p]),

Sj × {∗} ∪ {∗} × Sm−j−1 (m− j − 1 < [p]).

Case m− j − 1 ≥ [p]. In this case,

Hj+1(M, (∂M)[p]−1;πj(N)) = Hj+1(Bj+1 × Sm−j−1, (Sj × {∗};πj(N)).



360 T. Isobe

By the cohomology exact sequence of the pair (Bj+1 × Sm−j−1, Sj × {∗}), we
have

(3.1) Hj(Bj+1 × Sm−j−1;πj(N)) → Hj(Sj × {∗};πj(N))

→ Hj+1(Bj+1 × Sm−j−1, Sj × {∗};πj(N))

→ Hj+1(Bj+1 × Sm−j−1;πj(N)) → · · ·

By assumption m− j − 1 ≥ [p], we have 1 ≤ j < m− j − 1 and Hj(Bj+1 ×
Sm−j−1;πj(N)) = 0. Thus the assertion Hj+1(Bj+1×Sm−j−1, Sj×{∗};πj(N)) 6=
0 follows easily from (3.1).

Case m−j−1 < [p]. In this case, Hj+1(M, (∂M)[p]−1;πj(N)) = Hj+1(Bj+1×
Sm−j−1, Sj ×{∗}∪ {∗}× Sm−j−1;πj(N)). By the cohomology exact sequence of
the pair (Bj+1 × Sm−j−1, Sj × {∗} ∪ {∗} × Sm−j−1), we have

(3.2) Hj(Bj+1 × Sm−j−1;πj(N)) i−→ Hj(Sj × {∗} ∪ {∗} × Sm−j−1;πj(N))
j−→ Hj+1(Bj+1 × Sm−j−1, Sj × {∗} ∪ {∗} × Sm−j−1;πj(N)) → · · ·

Since p∗1ω ∈ Hj(Sj × {∗} ∪ {∗} × Sm−j−1;πj(N)) is not in the image of i and

image(j) ' Hj(Sj × {∗} ∪ {∗} × Sm−j−1;πj(N))/image(i),

where p1: Sj × Sm−j−1 → Sj is the projection to the first factor and ω ∈
Hj(Sj ;πj(N)) ∼= πj(N) is a generator, we have image(j) 6= 0. In particular,
Hj+1(Bj+1 × Sm−j−1, Sj × {∗} ∪ {∗} × Sm−j−1;πj(N)) 6= 0.

Combining the two cases, we complete the proof of the claim. �

When Hk+1(M [p], (∂M)[p]−1;πk(N)) 6= 0 for some 1 ≤ k ≤ [p] − 1, we do
not know whether there exists f ∈ W 1−1/p,p(∂M,N) such that f does not admit
any extension.

3.2. The obstruction oA(f). Our proof of Lemma 2.1 shows that, for
f ∈ W 1−1/p,p(∂M,N), oA(f) = 0 is equivalent to the condition that f has
an extension F ∈ W 1,p(C(∂M), N). Since oA(f) does not depend on specific
extension of f to C(∂M), the condition oA(f) = 0 may be considered as a
“universal” form of the expression “f has an W 1,p(C(∂M), N)-extension to some
collar C(∂M)”.

Assume oA(f) = 0, and so there exists an extension F ∈ W 1,p(C(∂M), N)
of f . Since C(∂M) ∼= [0, 2) × ∂M , F is parameterized by (t, x) ∈ [0, 2) × ∂M .
Under the identification C(∂M) ∼= [0, 2) × ∂M , set ϕ(t)(x) := F (t, x). Then by
the trace theorem, ϕ|[0,1]×∂M ∈ C([0, 1],W 1−1/p,p(∂M,N)) and∫

[0,1]×∂M

|∇ϕ(t, x)|p dt dµ(x) < ∞.
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Conversely, the existence of such a family of maps {ϕ(t)}t∈[0,1] implies oA(f) = 0.
The family {ϕ(t)}t∈[0,1] may be considered as a “regularization” of f , since ϕ(t) ∈
W 1,p(∂M,N) for a.e. t ∈ [0, 1] and ϕ(t) → f in W 1−1/p,p(∂M,N) as t → 0.

From this observation, one may think that we can extend f to a neighbour-
hood of ∂M by regularizing f (for example, by using the method of Friedrichs
mollifier, etc.). In fact, for the cases f ∈ W 1,p(∂M,N) or f ∈ W 1−1/p,p(∂M,N)∩
VMO, such method works well. (However, it does not work for general f).

Proof of Proposition 1.4. We first consider the case f ∈ W 1,p(∂M,N).
In this case, oA(f) = 0. Indeed, as always under the identification C(∂M) ∼=
[0, 2)×∂M , we set ϕ(t, x) = f(x). Clearly, this satisfies the above condition and
therefore oA(f) = 0. Thus the only obstruction of extending f ∈ W 1,p(∂M,N)
is oB(f) (or oB′(f) = 0).

Next, we consider the case f ∈ W 1−1/p,p(∂M,N) ∩ VMO(∂M). Our proce-
dure is based on the work of Brezis–Nirenberg (see [10]).

We define ϕ: C(∂M) → Rk by (recall N is isometrically imbedded in Rk)

(3.4) φ(x) =
1

Hm−1(Bd(x)(P (x)))

∫
Bd(x)(P (x))

f dHm−1,

where d(x) := dist(x, ∂M), P : C(∂M) → ∂M is the nearest point retraction and
Bd(x)(P (x)) is the geodesic ball in ∂M with center P (x) and radius d(x). By the
result of Brezis and Nirenberg (see [10, Example 3 and Lemma 7]) it follows that
φ ∈ VMO(C(∂M)). It is also a fundamental result that φ ∈ W 1,p(C(∂M), Rk)
and γφ = f on ∂M . Since φ ∈ VMO(C(∂M), Rk) and f takes values in N on ∂M ,
it follows from [9] and [10] that φ(x) takes values in O(N) if d(x) < ε for some
small ε > 0. Then ϕ := πN ◦ φ is defined in some collar neighbourhood of ∂M

and we have oA(f) = 0. Note that by our identification C(∂M) ∼= [0, 2)× ∂M ,

φ(t, x) =
1

Hm−1(Bt(x))

∫
Bt(x)

f dHm−1. �

As for the case f ∈ W 1−1/p,p(∂M,N) ∩ VMO(∂M) in the above proof, we
may replace φ in (3.4) by h, the harmonic extension of f in C(∂M). In fact, Brezis
and Nirenberg ([9]) proved that if f ∈ VMO(∂M, Rk), its harmonic extension
also belongs to VMO. Thus, by the same reason as above, ϕ := πN ◦h is defined
in some collar neighbourhood of ∂M and belongs to W 1,p. In this case, denoting
by Pt(x, y) = P ((t, x), y) the Poisson kernel, where (t, x) ∈ [0, 2) × ∂M and
y ∈ ∂M , ϕt(x) = πN ◦ φt(x), where φt(x) =

∫
∂M

Pt(x, y)f(y) dy. Note that
the case f ∈ Lip(∂M,N) (which is considered in [19]) is included in both of the
above cases.

Under more restrictive hypothesis on N , other method is possible. Hardt–
Lin (see [14]) showed that when π1(N) = . . . = π[p]−1(N) = 0, any extension
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F ′ ∈ W 1,p(M, Rk) of f ∈ W 1−1/p,p(∂M,N) can be suitably projected to N to
produce an extension F ∈ W 1,p(M,N) of f . For general N , of course, this
method does not work well.

Next we give proofs of Theorems 1.6 and 1.7.

Proof of Theorem 1.6. Since the fiber of π: Ñ → N is naturally identi-
fied with π1(N) and π1(N) is finite, Ñ is a compact Riemannian manifold (its
Riemannian structure is defined by requiring π: Ñ → N is a local isometry).
Thus the Sobolev space W 1−1/p,p(∂M, Ñ) is defined by imbedding Ñ into some
Euclidean Rl.

We first prove (a) and assume π1(∂M) = 0. Suppose oA(f) = 0. Then
there exists F ∈ W 1,p(C(∂M), N) such that γF = f on ∂M . By the approx-
imation theorem of Bethuel ([2, Theorem 2]), F can be strongly approximated
by maps {Fn} ∈ R∞

p (C(∂M), N), where R∞
p (C(∂M), N) is defined as follows:

u ∈ R∞
p (C(∂M), N) if and only if u is smooth except on a singular set Σ(u),

where Σ(u) =
∑r

j=1 Σj (r ∈ N), where for j = 1, . . . , r, Σj is a subset of a sub-
manifold of C(∂M) of dimension n− [p]− 1, and the boundary of Σj is smooth.

By assumption 2 ≤ p < 3, we have codim Σ(Fn) ≥ 3 and the inclusion
ιn: C(∂M) \ Σ(Fn) ↪→ C(∂M) induces an isomorphism

(ιn)∗:π1(C(∂M) \ Σ(Fn)) ∼→ π1(C(∂M)) ' π1(∂M) = 0

for all n. Thus there exists a lift F̃n: C(∂M) \ Σ(Fn) → Ñ of Fn for all n.
Note that F̃n ∈ R∞

p (C(∂M), Ñ) and since Fn → F in W 1,p(C(∂M), N), {F̃n} is
Cauchy in W 1,p(C(∂M), Ñ) (recall that π: Ñ → N is a local isometry).

Let F̃ ∈ W 1,p(C(∂M), Ñ) be the limit of {F̃n}. Define f̃ := γF̃ . f̃ sat-
isfies f̃ ∈ W 1−1/p,p(∂M, Ñ) and f = π(f̃). On the other hand, for any f̃ ∈
W 1−1/p,p(∂M, Ñ), we have π(f̃) ∈ W 1−1/p,p(∂M,N). This completes the proof
of (a).

We next prove (b). Assume first π1(M) = 0. Suppose f ∈ T p(∂M,N). Then
there exists F ∈ W 1,p(M,N) such that γF = f . By arguing as in the proof of (a),
we can find a lifting F̃ ∈ W 1,p(M, Ñ) of F . Set f̃ := γF̃ ∈ W 1−1/p,p(∂M, Ñ).
We then have f = π(f̃).

On the other hand, assume f = π(f̃) for some f̃ ∈ W 1−1/p,p(∂M, Ñ). Since
π1(Ñ) = 0, by the result of Hart–Lin in [14] ([p]− 1 = 1 under our assumption),
f̃ has an extension F̃ ∈ W 1,p(M, Ñ). Set F := π(F̃ ). Then F ∈ W 1,p(M,N)
and γF = f , that is, f ∈ T p(∂M,N).

The proof for the case π1(∂M) = 0 is similar. Assume f ∈ T p(∂M,N).
Let F ∈ W 1,p(M,N) be such that γF = f . Since F |C(∂M) ∈ W 1,p(C(∂M), N),
arguing as in (a), we find F̃ ∈ W 1,p(C(∂M), Ñ) such that π(F̃ ) = F |C(∂M).
Define f̃ = γF̃ on ∂M . We clearly have f = π(f̃) and f̃ ∈ W 1−1/p,p(∂M, Ñ).
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The proof of the converse is the same as in the case π1(M) = 0. This completes
the proof. �

Before to give the proof of Theorem 1.7, we need to give the definition of the
Sobolev space W 1−1/p,p(∂M, G̃) since G̃ is in general a non-compact manifold.
However, as we will see, when G is a compact Lie group, there is a natural
definition of it.

We recall briefly the structural theory of compact Lie groups. Let g be the
Lie algebra of G. By the structural theory of compact Lie algebras (see [11]),
g splits into the direct sum of its center c and its simple ideals g1, . . . , gl, namely

(3.5) g = c⊕ g1 ⊕ . . .⊕ gl.

Let k = dimR c (where c is considered as a vector space over R) and Gj for
j = 1, . . . , l the connected, simply connected Lie group with the Lie algebra
gj . By (3.5), the universal covering G̃ of G is G̃ = Rk × G1 × . . . × Gl. Since
Gj (j = 1, . . . , l) is a compact manifold, the Sobolev spaces W 1,p(M,Gj) and
W 1−1/p,p(∂M,Gj) are defined as in Section 1 and we define

W 1,p(M, G̃) =W 1,p(M, Rk)×W 1,p(M,G1)× . . .×W 1,p(M,Gl),(3.6)

(3.7) W 1−1/p,p(∂M, G̃) =W 1−1/p,p(∂M, Rk)×W 1−1/p,p(∂M,G1)

× . . .×W 1−1/p,p(∂M,Gl).

Under these preparations, we now prove Theorem 1.7.

Proof of Theorem 1.7. We first prove (a). Assume f ∈ W 1−1/p,p(∂M,G)
is written f = π(f̃) for f̃ = (f̃0, . . . , f̃l) ∈ W 1−1/p,p(∂M, G̃). Since Gj in (3.6)
and (3.7) is a connected, simply connected compact Lie group and π2(G) = 0 for
any Lie group G, it is in fact 2-connected, that is, πk(Gj) = 0 for k = 0, 1, 2. Thus
applying the usual trace theorem to f̃0 and the result of Hardt–Lin (see [14]) to
each component f̃j (j = 1, . . . , l) (recall 2 ≤ p < 4), there exists F̃ ∈ W 1,p(M, G̃)
such that γF̃ = f̃ . Define F := π(F̃ ). We have γF = f and oA(f) = 0.

Conversely, suppose oA(f) = 0. There exists F ∈ W 1,p(C(∂M), G) such that
γF = f on ∂M . Let Z0 be the connected center of G, that is, the connected
component of the center Z = {x ∈ G : xg = gx for all g ∈ G} of G containing
the identity. Then it follows from the above direct sum decomposition of g (3.5)
that Z0 = Tk (k-dimensional torus) and

π′:G′ := Z0 ×G1 × . . .×Gl → G; (g0, . . . , gl) 7→ g0 . . . gl

is a covering homomorphism with a finite kernel. By arguing as in the proof of
Theorem 1.6, there exists F ′ ∈ W 1,p(C(∂M), G′) such that π′(F ′) = F .

Let p: Rk → Tk be the universal covering of Tk given by the exponential

p: (t1, . . . , tk) 7→ (eit1 , . . . , eitk).
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Here we have assumed without loss of generality that Z0 = Tk is the standard
torus Tk = {(eit1 , . . . , eitk) : (t1, . . . , tk) ∈ Rk}. Let

π′′ = p× id× . . .× id: G̃ → Z0 ×G1 × . . .×Gl.

Here we recall the results of Bethuel–Zheng ([5, Lemma 1], see also [6] for a
simpler proof). Their result asserts that for simply connected manifold Ω, u ∈
W 1,p(Ω, S1) can be written as u = eiϕ for some ϕ ∈ W 1,p(Ω, R). Applying this
to the Z0 factor of F ′, we have F̃ ∈ W 1,p(C(∂M), G̃) such that F ′ = π′′(F̃ ).
Set f̃ := γF̃ ∈ W 1−1/p,p(∂M, G̃). Since π = π′ ◦ π′′, we have π(f̃) = f . This
completes the proof of (a).

One can prove the assertion of (b) by combining the arguments in the proof
of Theorems 1.6(b) and 1.7(a), so we complete the proof of Theorem 1.7. �

Under the assumptions of Theorems 1.6 or 1.7, one may wonder whether any
f ∈W 1−1/p,p(∂M,N) can be written as f = π(f̃) for some f̃ ∈ W 1−1/p,p(∂M, Ñ).
This is not true in general. We give the following example.

Example 3.4. Let 3 ≤ p < 4, M = B2 × S2 and N = SO(3). Recall
that SO(3) = {A ∈ M3(R) : AtA = I, det A = 1} is a compact connected
Lie group and its universal covering is the 2-fold covering π: S3 → SO(3) (there
are many ways describing it, see [11]). From this π1(SO(3)) = Z2 is finite
and π2(SO(3)) ' π2(S3) = 0. Note also that π1(M) = 0. We show that
there exists f ∈ W 1−1/p,p(∂M,N) which can not be written as f = π(f̃) for
f̃ ∈ W 1−1/p,p(∂M, Ñ).

Let γ: ∂B2 = S1 → SO(3) be an essential smooth loop. Define f(x, y) = γ(x)
for (x, y) ∈ ∂B2 × S2. Clearly f ∈ W 1−1/p,p(∂M,N). Assume that there exists
f̃ ∈ W 1−1/p,p(∂M, Ñ) such that f = π(f̃). Let h

ef ∈ W 1,p(M, R4) be the

harmonic extension of f̃ .
By Fubini h

ef ( · , y) ∈ W 1,p(B2, R4) for a.e. y ∈ S2. Thus for a.e. y ∈ S2,

h
ef ( · , y)|∂B2 = f̃( · , y) ∈ W 1−1/p,p(∂B2, S3). Since 3 ≤ p < 4, by the Sobolev

imbedding, f̃( · , y) ∈ C0(∂B2, S3) for a.e. y ∈ S2 and π(f̃( · , y)) = f( · , y) = γ

for a.e. y ∈ S2. Since π1(S3) = 0, it follows that γ is homotopic to 0. This is a
contradiction.

As noted in the introduction, in view of Theorem 1.7, this example shows that
the conjecture 2 in [4] is not true in general. However, under the assumption that
3 ≤ p < 4, π1(N) is finite and some additional assumption on M , for example
the case π1(∂M) = 0 or M = Bm etc. it is reasonable to conjecture that any
f ∈ W 1−1/p,p(M,N) can be written as f = π(f̃) for some f̃ ∈ W 1−1/p,p(∂M, Ñ)
and Conjecture 2 in [4] holds at least for such a case.

We recall here the important role played by π[p]−1(N) in the extension prob-
lem (see [3], [4]). The following result holds (which is also due to Bethuel and
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Demengel [4]). For readers convenience, we give a proof using our Theorems 1.2
and 1.3. (Note that the proof given in [4] relies on the approximation theorem
of Bethuel [2]. Our proof does not rely on such an approximation theorem).

Proposition 3.5. Let 1 < p < dim M . Assume π[p]−1(N) 6= 0, then there
exists f ∈ W 1−1/p,p(∂M,N) such that f has no W 1,p(M,N)-extension.

Proof. By assumption π[p]−1(N) 6= 0, there exists ϕ0: S[p]−1 → N such that
ϕ0 is not homotopic to a constant map. We inductively define ϕk: S[p]+k−1 → N

for 0 ≤ k ≤ m− [p] by

ϕk(x) := ϕk−1

(
x′

|x′|

)
, where x ∈ S[p]+k−1, x = (x′, x[p]+k).

One can easily verify ϕk ∈ W 1−1/p,p(S[p]+k−1, N) for k = 0, . . . , m− [p].
Define Φ := ϕm−[p]. Φ is in W 1−1/p,p(Sm−1, N) and smooth away from

a m − [p] − 1-dimensional closed set. Let x0 ∈ Sm−1 be a smooth point of
Φ and consider the geodesic ball B2r(x0) ⊂ Sm−1 with center x0 and radius 2r.
Choosing r > 0 small enough, we may assume Φ is smooth in B2r(x0). Modifying
Φ in B2r(x0), one can easily construct Φ̃ satisfying Φ̃ = Φ in Sm−1 \B2r(x0) and
Φ̃ ≡ a in Br(x0), where a ∈ N . Let y0 ∈ ∂M and consider the geodesic ball
Bρ(y0) in ∂M . Since Sm−1 \ Br(x0) ∼= Bρ(y0), there exists a diffeomorphism
G: Bρ(x0)

∼→ Sm−1 \ Br(x0). Define f by

f :=

{
a on ∂M \ Bρ(y0),

Φ̃ ◦G on Bρ(y0).

Then f ∈ W 1−1/p,p(∂M,N). We claim that f does not have W 1,p(M,N)-
extension. We prove this by contradiction. Suppose there exists F ∈ W 1,p(M,N)
such that γF = f . In the case p /∈ Z, by Theorem 1.2 f |(∂M)[p]−1 has a continuous
extension M [p] → N for any generic pair (M [p], (∂M)[p]−1). By the construction
of f , there exists a [p]-cell σ[p] of M such that f |∂σ[p] : ∂σ[p] ∼= S[p]−1 → N is
continuous, F |σ[p] ∈ W 1,p(σ[p], N) and f |∂σ[p] is not homotopic to a constant
map. This is a contradiction, since Fσ[p] is a continuous extension of f∂σ[p] .
In the case p ∈ Z, by the construction of f , there exists a p-cell σp such that
f |∂σp : ∂σp → N is continuous, F |σp ∈ W 1,p(σp, N) and f |∂σp is not homotopic
to a constant map. By Theorem 1.3, there exists {fi} ⊂ Lip(σp, N) such that
fi → f in W 1−1/p,p(∂σp, N). Then by [3, Lemma 1], fi ∼ f on ∂σp for large i.
This is a contradiction since fi ∼ 0 on ∂σp. �

In fact, the above proof also works if f has only a W 1,p(C(∂M), N)-extension.
Thus we have
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Corollary 3.6. If oA(f) = 0 for any f ∈ W 1−1/p,p(∂M,N), then it is
necessary π[p]−1(N) = 0.

One may wonder whether the condition π[p]−1(N) = 0 is also sufficient to
conclude oA(f) = 0 for any f ∈ W 1−1/p,p(∂M,N), that is, π[p]−1(N) = 0 is
equivalent to oA(f) = 0 for any f ∈ W 1−1/p,p(∂M,N)? It turns out that this is
not true in general. We explain this by using Theorem 1.7 for the special case
G = S1 (S1 is the simplest compact Lie group). Note that in this special case,
Theorem 1.7 holds for any 2 ≤ p < dim M since S̃1 = R is contractible.

By Theorem 1.7, oA(f) = 0 for f ∈ W 1−1/p,p(∂M, S1) if and only if f =
eiϕ for some ϕ ∈ W 1−1/p,p(∂M, R) (recall that ei·: R → S1 is the universal
covering). That is, the extension problem is equivalent to the lifting problem.
The latter problem is extensively studied in [6] and [7]. In their papers [6]
and [7], Bourgain et al. studied the problem of lifting W s,p(Ω, S1) to W s,p(Ω, R)
for simply connected Ω and 0 < s < ∞, 1 < p < ∞. One of their results asserts
that when 1 ≤ sp < dim M , there exists f ∈ W 1,p(M, S1) which does not admit
a W s,p(M, R)-lifting, that is, there is no ϕ ∈ W s,p(M, R) satisfying f = eiϕ.
Applying their result to our case (we replace Ω by ∂M and take s = 1 − 1/p),
there exists f ∈ W 1−1/p,p(∂M, S1) which does not admit a W 1−1/p,p(∂M, R)-
lifting when 2 ≤ p < dim M .

By Theorem 1.7 and the above remark, we in particular derive the existence of
f ∈ W 1−1/p,p(∂M, S1) (2 ≤ p < dim M) which does not satisfy oA(f) = 0. Note
that when p ≥ 3, π[p]−1(S1) = 0. We thus conclude that in general oA(f) = 0
for any f ∈ W 1−1/p,p(∂M,N) is not equivalent to the condition π[p]−1(N) = 0.

As noticed in the beginning of this subsection, the condition oA(f) = 0 may
be seen as a regularization condition, that is, ϕ(t, · ) may be seen as a regulariza-
tion of f (see the beginning of this subsection). From this observation, one may
ask the following question: Assume that there exists {fn} in W 1,p(∂M,N) such
that fn → f in W 1−1/p,p(∂M,N). Under this assumption, oA(f) = 0 holds?

Unfortunately, the answer is no even if we assume fn ∈ C∞(∂M,N). In
fact, consider the case N = S1 and p = 2. It is shown in [7] that there exists

f ∈ C∞(∂M, S1)
H1/2

(the strong closure of C∞(∂M, S1) in H1/2(∂M, S1)) which
does not admit a H1/2(∂M, R)-lifting, that is, there is no ϕ ∈ H1/2(∂M, R)
such that f = eiϕ. For such f the above assumption is satisfied (for fn ∈
C∞(∂M, S1)), however, by Theorem 1.7, f does not satisfy oA(f) = 0. In [7],
such f is constructed independent of the topology (and geometry) of ∂M , and the
existence of such f seems to rely on the global structure of S1 and the analytical
structure of S1-valued maps. From this, in general, one may conclude that the
condition oA(f) = 0 contains both topological and analytical information.

In Example 3.3 we have seen that, for some M , N and 1 < p < dim M , there
exists f ∈ W 1−1/p,p(∂M,N) such that oA(f) = 0 but oB(f) is not satisfied.
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On the other hand, Theorems 1.6 and 1.7 show that for some cases there exists
f ∈ W 1−1/p,p(∂M,N) such that oA(f) 6= 0 but oB(f) is satisfied. Combining
these two examples, one can produce an example of M , N , 1 < p < dim M and
f ∈ W 1−1/p,p(∂M,N) such that oA(f) 6= 0 and oB(f) is not satisfied. Therefore,
in general, oA and oB is essentially independent to each other.

In this paper, we have defined two obstructions oA(f) and oB(f). We
have shown that oB(f) is completely characterized by the topology of the pair
(M [p], (∂M)[p]−1), the topology of N and the topology of the map f : (∂M)[p]−1 →
N . However, as for oA(f), we have characterized f satisfying oA(f) = 0 only
for some special cases. In general, giving a reasonable criterion of f satisfying
oA(f) = 0 still remains as a problem.
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