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PARABOLIC EQUATIONS WITH CRITICAL NONLINEARITIES

Jan W. Cholewa — Tomasz Dlotko

Abstract. As well known the problem of global continuation of solutions

to semilinear parabolic equations is completely solved when the nonlinear

term is subordinated to an α-power of the main linear operator with α ∈
[0, 1). In this paper we study three examples of critical problems in which

the mentioned subordination takes place with α = 1, i.e. the nonlinearity

has the same order of magnitude as the linear main part. We use specific
techniques of proving global solvability that fit well the considered examples

for which general abstract methods fail.

1. Introduction

Studying abstract semilinear evolutionary problems of the form:

(1.1) ut +Au = F (u), u(0) = u0,

in a Banach space X, where A is a sectorial operator in X and F stands for
the nonlinear term we face twice the necessity of limiting the growth of the
nonlinearity with respect to u. The first time is when we build local in time
solutions. In particular, using the semigroup technique we need to show Lipschitz
continuity on bounded sets of F acting between some fractional power space Xα,
α ∈ (0, 1) and the base space X (see [10]). The second time is when we want
to assure global in time solvability of our problem. The growth limitations
appearing in both of the mentioned questions have been frequently studied and
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through the last 15 years some progress has been achieved. We shall recall here
the results of H. Amann ([1]), W. von Wahl ([14]) and the notion of an ε-regular
solution that allow us to weaken restrictions for local solvability of parabolic
equations (see [2]).

In this paper we study equations with nonlinear terms F having critical
growth in the sense of [14] or [5]. In Section 2 we establish a suitable subordi-
nation condition allowing the continuation of solutions within the technique of
[10]. In Section 3 using the concept of monotone operators (see [4]) we study in
a “large” space of initial data global solvability of a problem involving perturba-
tions of subdifferentials. Finally in Section 4, based on the approach of [9], we
discuss the Navier–Stokes system and obtain a global description of solutions in
case of arbitrary space dimension n and small external force.

2. The case of subordinated nonlinearity

As a simple example shows:

ut = ∆u− 2∆u,

considered with Dirichlet boundary condition, when the nonlinear term has “the
same order of magnitude” as Au, the solution (even local in time) need not to
exist. There is known, however, a number of particular (sufficient) conditions on
the nonlinearity F or the set of initial data u0 guaranteeing even global in time
solvability of the problem (1.1).

The sufficient condition we discuss in this section is rather connected with
smallness of initial data (see [13]), than with the growth of the nonlinearity F

(in that case fast growth of F is even desirable). It will have the form:

(2.1) ‖F (w)‖X0 ≤ ε‖w‖X1 + C(ε)‖w‖Xα ,

valid for a sufficiently small positive constant ε with a certain α ∈ (0, 1). If (2.1)
holds for all w ∈ X1, we are allowed to take fairly general initial data. It may
happen however that the structure condition (2.1) holds only for certain solutions
and in fact it has a more general form involving appropriate “introductory”
estimate. This is just the case studied below in Assumption A.

2.1. An abstract global existence result. We will consider the abstract
equation (1.1) with a positive definite selfadjoint operator A in a Hilbert spaceH:

ut = −Au+ F (u), u(0) = u0.

We set X0 = H, X1 = D(A) and assume that F :X1/2 → X is Lipschitz
continuous on bounded sets (for the definition of Xα see [10]). Thus, for any
u0 ∈ X1/2, problem (1.1) possesses a unique local solution defined on a maximal
interval of existence [0, τu0) (see e.g. [5]) .
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We will assume that the following condition is satisfied.

Assumption A. There exists an auxiliary Banach space Y,D(A) ⊂ Y , such
that a global in time estimate of all possible X1/2 solutions of (1.1) in Y is
known. Also:

(2.2) if Y is not embedded in X1/2 we consider these X1/2 solutions u(t, u0) for
which:

‖F (u(t, u0))‖2X0 ≤ β(‖u(t, u0)‖Y )‖u(t, u0)‖2X1 + γ(‖u(t, u0)‖Y ),

for t ∈ (0, τu0), with β(s) ≤ b < 1 for s ≥ 0, and γ: R+ → R+ being a con-
tinuous function.

Remark 2.1. Note, that the second condition above is very similar to the
notion of a “relatively bounded perturbation” as introduced in [11], however in
the case of a linear perturbation F .

We have the following observation:

Lemma 2.2. If u = u(t, u0) is an X1/2 solution to (1.1) for which Assump-
tion A holds, then it exists globally in time.

Proof. Indeed, if we assume local X1/2 solvability of (1.1), the only prop-
erty we need to check is a global in time (that means; uniform in any bounded
time interval [0, T ]) a priori estimate of the solution in X1/2. But such an esti-
mate is easy to obtain in the presence of Assumption A. Multiplying equation
(1.1) by Au, we find that

(2.3) 〈ut, Au〉H + 〈Au,Au〉H = 〈F (u), Au〉H

or, after using Assumption A and the Cauchy inequality, that

(2.4)
d

dt
‖u‖2X1/2 + ‖u‖2X1 ≤ β(‖u‖Y )‖u‖2X1 + γ(‖u‖Y ).

Thanks to the estimate ‖u‖2
X1/2 ≤ c−1‖u‖2X1 , denoting

y(t) = ‖u(t, u0)‖2X1/2 , g(t) = γ(‖u(t, u0)‖Y ),

we arrive at a linear differential inequality:

(2.5) y′(t) ≤ −(1− b)cy(t) + g(t), t > 0.

Solving (2.5), we obtain the bound:

(2.6) ‖u(t, u0)‖2X1/2 ≤‖u0‖2X1/2 exp (−(1− b)ct)

+
∫ t

0

γ(‖u(s, u0)‖Y ) exp ((1− b)cs) ds exp (−(1− b)ct),

which is the required X1/2 estimate of the solution. �
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Remark 2.3. In particular, if we have the bound γ(‖u(t)‖Y ) ≤ m, t ≥ 0,
the last estimate extends to:

(2.7) ‖u(t, u0)‖2
X

1
2
≤ ‖u0‖2

X
1
2

exp (−(1− b)ct) +
m

(1− b)c
.

It is also clear from (2.5) that if we weaken the condition on β in (2.2) to
β(s) ≤ b = 1 for s ≥ 0, we will still have an estimate

d

dt
‖u(t, u0)‖2X1/2 ≤ γ(‖u(t, u0)‖Y )

sufficient for the global in time X1/2 solvability of (1.1).

2.2. An application. The Cahn–Hilliard equation with an auxiliary Y =
H1(Ω) estimate and critical growth of the nonlinearity respectively to such es-
timate will serve as an example. In a bounded C4+ε-smooth (ε > 0) domain in
R3 consider the problem:

(2.8)


ut = −∆2u+ µ∆(f(u)),

u(0, x) = u0(x) for x ∈ Ω,
∂u

∂N
=
∂(∆u)
∂N

= 0 on ∂Ω,

where f ∈ C3(R) is such that

(2.9) |f ′′(s)| ≤ c(|s|3 + 1), s ∈ R,

and the constant µ > 0 will be later chosen sufficiently small. Note that the
approach of [12] (see also [5]) does not work here since we do not assume any
kind of monotonicity of f .

Besides the smallness of µ and (2.9) we need only to assume that there exists
M > 0 such that

(2.10) F (v) :=
∫ v

0

f(s) ds ≥ −M,

for all v ∈ R, the last condition being sufficient to obtain a uniform estimate of
solutions in H1(Ω):

(2.11) ‖u(t)‖2H1(Ω) = ‖∇u(t)‖2L2(Ω) + |u(t)|2 ≤ 2(L(u0) + µM |Ω|) + |u0|2.

Here L is a Lyapunov function:

(2.12) L(v) =
1
2
‖∇v‖2L2(Ω) + µ

∫
Ω

F (v) dx.

It is also well known that the problem (2.8) preserves in time the spatial average
of solutions:

(2.13) u(t) = |Ω|−1

∫
Ω

u(t, x) dx = u0,
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as long as the solutions exist. Local X1/2 solvability of (2.8) is a simple conse-
quence of the embeddings:

(2.14) H2(Ω) ⊂ L∞(Ω), H2(Ω) ⊂W 1,4(Ω), n ≤ 3,

since X1/2 ⊂ H2 and the nonlinear term will be Lipschitz continuous from
bounded subsets of X1/2 (bounded as well in L∞(Ω)) into L2(Ω). Also the
operator A = ∆2 defined on

(2.15) D(A) =
{
φ ∈ H4(Ω) :

∂φ

∂N
=
∂(∆φ)
∂N

= 0 on ∂Ω
}

is selfadjoint on L2(Ω) and the quantity

(2.16) (‖∆2φ‖2L2(Ω) + |φ|2)1/2

defines an equivalent norm on D(A) (see [5] for details).
The first condition of the Assumption A is fulfilled with Y = H1(Ω) thanks

to (2.11). We need to check validity of the second condition. Integrating and
using the Young inequality we find:

(2.17) µ‖∆(f(u))‖2L2(Ω) =µ

∫
Ω

(f ′(u)∆u+ f ′′(u)|∇u|2)2 dx

≤µ const
∫

Ω

(|∆u|9/5 + |∇u|3 + |u|9 + 1)2 dx

≤ 4µ const
( ∫

Ω

(|∆u|18/5 + |∇u|6 + |u|18) dx+ |Ω|
)
.

The subsequent components will be next estimated using versions of the Niren-
berg–Gagliardo inequality ([5, p. 26]):( ∫

Ω

|∆u|18/5 dx

)5/18

≤ c‖u‖5/9
H4(Ω)‖u‖

4/9
H1(Ω),(2.18) ( ∫

Ω

|∇u|6 dx
)1/6

≤ c‖u‖1/3
H4(Ω)‖u‖

2/3
H1(Ω),(2.19) ( ∫

Ω

|u|18 dx
)1/18

≤ c‖u‖1/9
H4(Ω)‖u‖

8/9
H1(Ω).(2.20)

We will thus extend (2.17), using (2.16), to an estimate:

(2.21) µ‖∆(f(u))‖2L2(Ω)

≤µ const′ ‖u‖2H4(Ω)(‖u‖
8/5
H1(Ω) + ‖u‖4H1(Ω) + ‖u‖16H1(Ω))

+ µ const′′ (|Ω|+ |u|2(‖u‖8/5
H1(Ω) + ‖u‖4H1(Ω) + ‖u‖16H1(Ω))),

corresponding to (2.2).
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We need yet to fulfill the condition in Assumption A:

(2.22) β(‖u(t, u0)‖H1(Ω))

= µC ′(‖u(t, u0)‖8/5
H1(Ω) + ‖u(t, u0)‖4H1(Ω) + ‖u(t, u0)‖16H1(Ω)) ≤ b < 1.

The function β(s) = µC ′(s8/5 + s4 + s16) defined above fulfills β(0) = 0 and is
increasing for s ≥ 0. Fixing b ∈ (0, 1), close to 1, we set s0 = β−1(b). Choose
µ > 0 in equation (2.8) such that 2µM |Ω| < s0. Such µ are admissible in our
theory.

Observe next that, due to the embedding H1(Ω) ⊂ L6(Ω) and the growth
limitation (2.9), the term

∫
Ω
F (v(x)) dx is well defined for v ∈ H1(Ω), (|F (v)|

grows like const (|v|+ |v|6)). Also the map F defined for v ∈ H1(Ω);

(2.23) H1(Ω) 3 v F−→
∫

Ω

F (v(x)) dx

is continuous at 0.
If we limit our considerations to initial data u0 belonging to a sufficiently

small ball BX1/2(0, α) ⊂ X1/2, such that

(2.24) 2L(u0) + |u0|2 ≤ s0 − 2µM |Ω| for u0 ∈ BX1/2(0, α),

then, thanks to (2.11), the solution u(t, u0) will be bounded uniformly in Y =
H1(Ω) as long as it exists by the constant s0 fixed above.

The X1/2 solution corresponding to such data will be global in time as a
consequence of the continuation property (e.g. [5, p. 55]) and the estimate (2.6)
guaranteeing boundedness of the X1/2 norm of such solutions.

3. Global solutions of the 2m-th order semilinear parabolic equation
involving critical exponent

Our further concern is the 2m-th order equation

(3.1) ut +Au+ f(u) = 0, t > 0, x ∈ Ω,

where

(3.2) A =
∑

|ξ|,|ζ|≤m

(−1)|ζ|Dζ(aξ,ζ(x)Dξ)

is a uniformly strongly elliptic operator in a bounded domain Ω ⊂ Rn with
∂Ω ∈ C2m.

Equation (3.1) will be studied together with the homogeneous boundary
conditions

(3.3) B0u = . . . = Bm−1u = 0, t ≥ 0, x ∈ ∂Ω,
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such that the triple (A, {Bj},Ω) forms a regular elliptic boundary value problem.
We suppose additionally that

(3.4) an unbounded operator A in L2(Ω) with the domain D(A) = W 2m,2
{Bj} (Ω) is

symmetric and bounded below.

Recall that, for A, {Bj}, Ω as above and for a certain λ ≥ 0, Aλ := A+λI is a
selfadjoint positive definite operator in the Hilbert space L2(Ω). Furthermore, Aλ

considered in any space Lp(Ω), p ∈ [2,∞), defines a sectorial positive operator
whose fractional powers will be denoted further by Xα

p , α ≥ 0, p ∈ [2,∞).
Also, the resolvent of Aλ is compact as a result of the Calderon–Zygmund type
estimate.

3.1. Critically growing nonlinearities. In [14] the 2m-th order Dirichlet
boundary value problem was studied, which corresponds to boundary conditions
Bj = ∂j/∂νj for j = 0, . . . ,m − 1. Concerning nonlinearity, the assumptions
of [14] read:

f :R→ R, f ∈ C1(R),(3.5)

F (r) :=
∫ r

0

f(s) ds ≥ −cr2, r ∈ R,(3.6)

and

(3.7)
sf(s) ≤ c(|s|(n+2m)/(n−2m)+1 + 1), |s| ≥ 1,

sf(s) ≥ −c(|s|(n+2m)/(n−2m)+1−ε + 1), |s| ≥ 1,

for certain n > 2m, c > 0, ε > 0.
As a result of (3.5), f may be viewed as a Lipschitz continuous on bounded

sets map acting between Xα
p and X0

p , provided that α > 1/2m and p > n.
Evidently, in the latter case there exists a unique local Xα

p solution u = u( · , u0)
through u0 ∈ Xα

p , defined on a maximal interval of existence [0, τu0) (see [10]).
If condition (3.6) is fulfilled with c sufficiently small, we get the bound

(3.8) ‖u(t, u0)‖2X1/2
2

≤ constL(u0), t ∈ [0, τu0),

where L denotes a Lyapunov function for (3.1); i.e.

(3.9) L(v) =
1
2
‖v‖2

X
1/2
2

+
∫

Ω

F (v) dx.

Restricting further the growth of f according to a condition (n > 2m)

(3.10) |f(s)| ≤ c(|s|(n+2m)/(n−2m) + 1), s ∈ R,

(cf. (3.7)) we observe the following consequence of the Nirenberg–Gagliardo in-
equality:

(3.11) ‖f(u(t, u0))‖Lp(Ω) ≤ g(p, ‖u(t, u0)‖X
1/2
2

)(1 + ‖u(t, u0)‖X1
p
),
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with p ∈ [2,∞), t ∈ [0, τu0), and a function g(p, s) increasing in s.

Remark 3.1. It follows from the above considerations that with the growth
rate (3.10) the problem (3.1)–(3.3) is essentially critical. Namely, the local exis-
tence theory of [10] cannot be directly applied for initial values from X

1/2
2 since

f does not take X1/2
2 into L2(Ω) (for this, the highest exponent acceptable in an

estimate like (3.10) is n/(n− 2m)). As a consequence, X1/2
2 estimate of the so-

lutions to (3.1)–(3.3) is insufficient within the mentioned theory for justification
of their global existence. In [14] this difficulty was overcome with the aid of the
already mentioned structure assumptions imposed on f . More precisely, with
{Bj} = {∂j/∂νj} and A, Ω as above, and with assumptions (3.5)–(3.7), uni-
form continuity of a map [0, τu0) 3 t → u(t, u0) ∈ X

1/2
2 has been proved there,

which property was in turn “translated” into global in time continuation of the
solutions corresponding to u0 ∈ X1

p with p > n+ 1 (see Theorem I.2 therein).

Below we restrict our attention to polynomial nonlinearities satisfying (3.5)–
(3.7). Instead of the analytic semigroup theory we will use the concept of maxi-
mal monotone operators in Hilbert space ([4], [3]).

Theorem 3.2. Suppose that the triple (A, {Bj},Ω) forms a regular elliptic
boundary value problem and (3.4) holds. If a polynomial f satisfies (3.5)–(3.7),
then the problem (3.1)–(3.3) generates a C0 semigroup on L2(Ω).

Proof. Since f is a polynomial, condition (3.6) is equivalent to

f(0) = 0 and f ′(s) ≥ −C for s ∈ R.

Thus, let V = X
1/2
2 , f0(s) = f(s) +Cs− f(0) for s ∈ R, and define a functional

(3.12) V 3 v → J (v) =
1
2

∫
Ω

|A1/2
λ v|2 dx+

∫
Ω

∫ v

0

f0(s) ds dx ∈ R.

Under our assumptions J is convex, Gateaux differentiable and ∇J coincides
with the nonlinear operator M:V → V ∗;

(3.13) 〈M(v), w〉V ∗,V = 〈A1/2
λ v,A

1/2
λ w〉L2(Ω) + 〈f0(v), w〉L2(Ω), w ∈ V.

Furthermore

(3.14) 〈M(v), v〉V ∗,V ≥ ‖v‖2
X

1/2
2
,

which shows that M is monotone, hemicontinuous and coercive.
Consequently M̃:L2(Ω) → L2(Ω) defined by

M̃(u) = M(u) for u ∈ D(M̃) := {v ∈ V : M(v) ∈ L2(Ω)}
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is a maximal monotone operator in L2(Ω) (see [3, Theorem 1.3] and thus (3.1)–
(3.3) may be rewritten in an abstract form

(3.15)
du

dt
(t) + M̃(u(t)) +N (u(t)) = 0, t > 0,

with globally Lipschitz term N (v) = −(λ + c)v + f(0). By [4, Theorem 3.17,
Remark 3.14] we may conclude that there exists a global weak solution u( · , u0) ∈
C([0,∞);L2(Ω)) to (3.15) through each u0 ∈ H. If u0 ∈ D(M̃), then u =
u( · , u0) is Lipschitz continuous on each [0, τ ] and hence is a strong solution in
the sense of [4] such that u(0) = u0, u(t, u0) satisfies (3.15) for a.e. t ∈ (0,∞),
and u(t, u0) ∈ D(M̃) for a.e. t ∈ (0,∞). �

Remark 3.3. Since (3.15) has a subgradient form, additional regularity of
the solutions can be obtained following the results of [3, Chapter 4, Section 2];
in particular the estimate (3.8) holds. Also, for more specific f , the existence of
a global attractor may be shown based on [5, Theorem 8.6.1].

3.2. Local well posedness of (3.1)–(3.3) in X
1/2
2 . Since we noticed

above that in the case of critical exponent f does not take X1/2
2 into L2(Ω), a

result concerning ε-regular solutions to (3.1) should be mentioned. It indicates
that (3.1)–(3.3) is locally well posed in X

1/2
2 under the assumptions like (3.5)

and (3.10).

Proposition 3.4. If the triple (A, {Bj},Ω) forms regular elliptic boundary
value problem and (3.4) holds, then conditions (3.5) and

(3.16) |f ′(s)| ≤ c(|s|(n+2m)/(n−2m)−1 + 1), s ∈ R

(where n > 2m) both imply that to each u0 ∈ X
1/2
2 corresponds a unique local

ε-regular solution to (3.1)–(3.3).

Proof. The proof of the above proposition is a consequence of abstract
results reported in [2]. It involves properties of a Hilbert scale generated by
(X0

2 , Aλ) (see [1, Chapter V, Theorem 1.5.15]) and relies on the fact that f may
be viewed as a Lipschitz map on bounded sets from X

1/2+ε
2 into X−1/2+γ(ε)

2 (i.e.
an ε-regular map relatively to the pair (X1/2

2 , X
−1/2
2 ); see [2, Definition 2]). �

If, using the smoothing properties of sectorial equation, one shows that ε-
regular solutions from Proposition 3.4 enter for t > 0 the space X1/2

n+1 then, with
further assumptions (3.4)–(3.7), the result of [14] will ensure that these solutions
may be extended to the whole [0,∞). Without the sophisticated procedure of
[14], the question whether ε-regular solutions from Proposition 3.4 can be con-
tinued to the whole [0,∞) remains open, since it is generally unknown whether
the X1/2

2 estimate is sufficient for such a purpose (see [2, Proposition 1]).
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4. Stability of equilibrium for n-D Navier–Stokes system

This section is devoted to the n-dimensional Navier–Stokes system describing
incompressible viscous fluid flow. Using a concept of the Lyapunov function we
will give a natural explanation of the stability of equilibria under small perturba-
tion. The problem considered in this part is critical (see (4.4)) and existence of
the global in time smooth solutions for arbitrary data u0, ν, h is so far unknown.

Consider the problem

(4.1)


ut = ν∆u−∇p− (u,∇)u+ h, t > 0, x ∈ Ω,

divu = 0, t > 0, x ∈ Ω,

u = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

where n ≥ 2, ν > 0 is a viscosity constant and Ω is a bounded subdomain of Rn

with boundary ∂Ω of class C2+ρ; ρ ∈ (0, 1) fixed from now on.
For any h ∈ [Lr(Ω)]n the system (4.1) may be studied as an abstract Cauchy

problem:

(4.2) ut +Aru = Fru+ Prh, t > 0, u|t=0 = u0.

Operator Ar = −νPr∆ with the domain D(Ar) = Xr ∩ {φ ∈ [W 2,r(Ω)]n :
φ|∂Ω = 0} is sectorial in Xr = cl[Lr(Ω)]n{φ ∈ [C∞

0 (Ω)]n : divφ = 0}, and Fru =
−Pr(u,∇)u. Moreover, for α ∈ [1/2, 1) and r > n the nonlinear term Fr, acting
from Xα

r into Xr, is Lipschitz continuous on bounded sets. For the description
of the projector Pr and characterization of the domains Xα

r of fractional powers
of Ar we refer the reader to [7] and [8]. Here we claim that:

Proposition 4.1. For any α ∈ [1/2, 1) and r > n ≥ 2 the problem (4.2) is
locally well posed in Xα

r and

(4.3) u( · , u0) ∈ C([0, τu0), X
α
r ) ∩ C1((0, τu0), X

1−

r ) ∩ C((0, τu0), X
1
r ),

where [0, τu0) denotes the maximal interval of existence of solution corresponding
to initial data u0 ∈ Xα

r .

It may be seen that

‖Frw‖Xr ≤ cr‖w‖2X1/2
r
, w ∈ [W 1,r(Ω)]n, r > n ≥ 2,

(see [8]) and consequently, thanks to the interpolation inequality,

(4.4) ‖Fr(u(t, u0)) + h‖Xr
≤ C(‖u(t, u0)‖Xr

, ‖h‖Xr
)(1 + ‖u(t, u0)‖X1

r
),

t ∈ [0, τu0), which shows that nonlinearity in (4.2) has the same order of mag-
nitude as Ar relatively to an [Lr(Ω)]n estimate of solution with r > n. Such an
estimate is however generally unknown. Below we will thus refer to the known
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[L2(Ω)]n estimate, which will allow us to obtain conclusions concerning stability
of stationary solutions.

Lemma 4.2. Suppose that r > n ≥ 2 and uS ∈ X1
r is a stationary solution

to (4.2) such that

(4.5) ‖uS‖[W 1,∞(Ω)]n ≤
ν

C2
Ω

,

where CΩ denotes a constant appearing in the Poincaré inequality. Then, (4.2)
admits a Lyapunov functional.

Proof. Suppose that u is a solution to (4.2) resulting from Proposition 4.1,
which moreover is defined for all t > 0. Note that the equation for v = u − uS

reads

(4.6) vt = νArv − Pr(v,∇)v − Pr(v,∇)uS − Pr(uS ,∇)v, t > 0.

Following considerations of [7] observe next that

Prv = P2v for v ∈ [Lr(Ω)]n, r ≥ 2,

P2 being a selfadjoint bounded operator on [L2(Ω)]n. Thus, for φ, ψ, η ∈ X1
r ,

〈Pr(φ,∇)ψ, η〉[L2(Ω)]n = 〈P2(φ,∇)ψ, η〉[L2(Ω)]n = 〈(φ,∇)ψ, η〉[L2(Ω)]n

and
〈Arη, η〉[L2(Ω)]n = 〈∆η, η〉[L2(Ω)]n .

Therefore, multiplying both sides of (4.6) in [L2(Ω)]n by v (belonging to the
class described in (4.3)), we get

(4.7)
1
2
d

dt
‖v‖2[L2(Ω)]n ≤ −ν

n∑
i=1

‖∇vi‖2L2(Ω) + ‖uS‖[W 1,∞(Ω)]n

n∑
i=1

‖vi‖2L2(Ω)

≤
(
− ν

C2
Ω

+ ‖uS‖[W 1,∞(Ω)]n

)
‖v‖2[L2(Ω)]n ≤ 0.

On the other hand, if we have

(4.8) L(u(t, u0)) :=
1
2
‖u(t, u0)− uS‖2[L2(Ω)]n ≡ const

where u = u( · , u0) is a solution to (4.2), then v = u − uS solves (4.6), which
now leads to the relation:

0 =
d

dt
[L(u(t, u0))] = 〈vt, v〉[L2(Ω)]n ≤

(
− ν

C2
Ω

+‖uS‖[W 1,∞(Ω)]n

)
‖v‖2[L2(Ω)]n ≤ 0.

Evidently, the above inequality implies that ‖v‖[L2(Ω)]n ≡ 0 and, consequently,
u ≡ uS . �

Remark 4.3. Condition (4.5) is trivially satisfied in the case when the ex-
ternal force is zero; i.e. h ≡ 0. However, in the latter case the Grashof number,
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which measures the dynamical complexity of the solutions, is equal to zero. Note
also that (4.7) necessitates the exponential decay of any smooth global solution
to (hypothetical) equilibrium uS in [L2(Ω)]n norm.

For h ∈ [Lr(Ω)]n, r > n ≥ 2 and α ∈ [1/2, 1) we introduce further the set

Uh,r,α := {u0 ∈ Xα
r : sup

t∈[0,τu0 )

‖u(t, u0)‖Xα
r
<∞},

where τu0 is the right end of the maximal interval of existence of a local solution
u( · , u0) of (4.2) resulting from Proposition 4.1. Hence, due to the continuation
property this set contains all globally bounded in time Xα

r solutions.
For n = 2, Uh,r,α is the whole of Xα

r (see e.g. [5, Section 6.6]), whereas in
higher space dimensions the answer how reach is Uh,r,α strongly depends on the
Grashof number. More precisely, if the quantity ‖h‖[Lr(Ω)]n/ν

2λ1 is sufficiently
small it may be easily seen that Uh,r,α contains a neighborhood of zero (see
e.g. [6]). However, for arbitrarily large initial velocity and external force, the
existence of global smooth solutions is known to be an open problem.

Below we will focus on the case when Uh,r,α is not void. For u0 ∈ Uh,r,α we
set γ+(u0) = {u(t, u0), t ≥ 0} and ω(u0) =

⋂
s≥0 clXα

r
γ+(u(s, u0)).

Lemma 4.4. Suppose that (4.2) possesses a stationary solution uS for which
(4.5) holds and let u0 ∈ Uh,r,α. Then, the solution u( · , u0) to (4.2) converges
to uS in Xα

r .

Proof. For u0 ∈ Uh,r,α it is evident that τu0 = ∞ and γ+(u0) is bounded
in Xα

r . Thus clXα
r
γ+(u0) is also bounded and is contained in Uh,r,α. Since the

resolvent operators (λI −Ar)−1 are compact for λ ∈ ρ(Ar), this implies further
compactness of clXα

r
γ+(u(1 + t, u0)) in Xα

r ([9]). Lemma 4.2 implies now that
ω(u0) = {uS}, which completes the proof. �

Global behavior of orbits of the Navier–Stokes system may be now described
as follows.

Corollary 4.5. If (4.2) possesses a stationary solution uS for which (4.5)
holds, then {uS} ⊂ Uh,α,r is a maximal compact invariant subset of Xα

r and any
solution u( · , u0) of (4.2) either blows-up in Xα

r in finite or infinite time or con-
verges to {uS}. In particular, there exists µ0 > 0 such that uS is asymptotically
stable whenever ‖h‖[Lr(Ω)]n < µ0. If in addition n = 2, and h ≡ 0, then zero is
a globally asymptotically stable equilibrium.

Proof. The alternative is an immediate consequence of Lemma 4.4. Next,
if ‖h‖[Lr(Ω)]n is sufficiently small (see [6, (18) or (28)] for detail calculations of
an appropriate upper bound), there exists a compact invariant set A attracting
certain neighbourhood of zero. In the light of our previous considerations we
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conclude that A lies in Uh,α,r and coincides with {uS}. Indeed, if we take any
complete invariant orbit contained in A, then we observe that the Lyapunov
functional defined by

L(w) :=
1
2
‖w − uS‖2[L2(Ω)]n , w ∈ Uh,α,r,

must be constant along this orbit. Otherwise among elements of Uh,α,r there
would be two different equilibria, which is excluded by Lemma 4.2.

In particular, if h ≡ 0, then Uh,r,α = Xα
r for n = 2, and the compact global

attractor, which is known to exist for the Navier–Stokes system in this case, is
a single point set {0}. �

Remark 4.6. Note that if r > n and the [Lr(Ω)]n norm of h fulfills appropri-
ate smallness restriction, then the Navier–Stokes system possesses a stationary
solution uS ∈ D(Ar) such that ‖uS‖[W 2,r(Ω)]n tends to zero if ‖h‖[Lr(Ω)]n → 0
(see [5, Theorem 8.3.1] for detail calculations). Thus, for small perturbations,
condition (4.5) is naturally satisfied.
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