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NONTRIVIAL CRITICAL GROUPS
IN p -LAPLACIAN PROBLEMS

VIA THE YANG INDEX

Kanishka Perera

Abstract. We construct and variationally characterize by a min-max pro-
cedure involving the Yang index a new sequence of eigenvalues of the p-

Laplacian, and use the structure provided by this sequence to show that

the associated variational functional always has a nontrivial critical group.
As an application we obtain nontrivial solutions for a class of p-superlinear

problems.

1. Introduction

Let Φ be a C1 functional defined on a Banach space W . In Morse theory the
local behavior of Φ near an isolated critical point u0 at the level c is described
by the critical groups

(1.1) Cq(Φ, u0) = Hq(Φc ∩ U,Φc ∩ U \ {u0})

where Φc = {u ∈ W : Φ(u) ≤ c}, U is a neighbourhood of u0 containing no other
critical point, and H denotes singular homology. Critical groups distinguish
between different types of critical points and are extremely useful for obtaining
multiple solutions of variational problems (see e.g. [3]).
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In this paper we study the critical groups of

(1.2) Iλ(u) =
∫

Ω

|∇u|p − λ |u|p, u ∈ W = W 1, p
0 (Ω)

at the origin, where Ω is a bounded domain in RN , N ≥ 1, 1 < p < ∞, and λ

is a real parameter. Nonzero critical points of Iλ are the eigenfunctions of the
nonlinear eigenvalue problem

(1.3)

{
−∆pu = λ|u|p−2u in Ω,

u = 0 on ∂Ω,

where ∆pu = div(|∇u|p−2∇u) is the p-Laplacian, so when λ /∈ σ(−∆p),
0 is the only critical point of Iλ and hence Cq(Iλ, 0) are defined.

In the semilinear case p = 2, Iλ is a C2 functional defined on the Hilbert
space H1

0 (Ω) and 0 is a nondegenerate critical point of Morse index l if λ ∈
(µl, µl+1), where {µl}l∈N are the eigenvalues of −∆ repeated according to their
multiplicity, so

(1.4) Cq(Iλ, 0) = δql G

where G is the coefficient group (see e.g. [3]). In contrast, the critical groups
seem difficult to compute in the quasilinear case p 6= 2 for a variety of reasons.
To begin with, we are no longer working in a Hilbert space, so the standard tools
such as the splitting lemma and the shifting theorem do not apply. Moreover,
except for the fact that there is an unbounded sequence of min-max eigenvalues
{µl}l∈N, very little is known about the spectrum, and there are no eigenspaces
to work with. The only results that the author is aware of in this case are those
of Dancer and the author himself (see [8]) showing that

Cq(Iλ, 0) =


δq0G if λ ∈ (−∞, µ1),

δq1G if λ ∈ (µ1, µ2),

0 if λ ∈ (µ2,∞) \ σ(−∆p) and q = 0 or 1.

In particular, it is not known whether there is a nontrivial critical group when
λ ∈ (µ2,∞) \ σ(−∆p). We will construct an unbounded sequence of variational
eigenvalues {λl}l∈N such that

Proposition 1.1. If λ ∈ (λl, λl+1) \ σ(−∆p), then

(1.6) Cl(Iλ, 0) 6= 0.

Remark 1.2. (1.4) and (1.6) also hold for l = 0 if we set µ0 = λ0 = −∞.

Recall that a connected component of {x ∈ Ω : u(x) 6= 0} is called a nodal
domain of u. We will also obtain the following estimate on the number of nodal
domains of an eigenfunction.



p-Laplacian Problems 303

Proposition 1.3. If λ ∈ σ(−∆p) has an associated eigenfunction with l

nodal domains, then λ ≥ λl. In particular, any eigenfunction of λl has at most
l nodal domains if λl < λl+1.

After some preliminaries on the Yang index in the next section, we will prove
these propositions in Section 3. The usual Lusternik–Schnirelmann characteriza-
tion of µl involves a min-max over a class of sets of genus ≥ l, but we will define
λl using the subclass of sets of Yang index ≥ l− 1, which have the advantage of
having nontrivial reduced homology groups in dimension l− 1. This also implies
that λl ≥ µl.

In the ODE case n = 1, µl is simple and has an eigenfunction with l nodal
domains (see e.g. [7]), so we also have λl ≤ µl by Proposition 1.3. When p = 2,
(λl−1, λl) ⊂ (µl−1, µl) by (1.4) and (1.6), so λl = µl again. Similarly, λ1 = µ1

and λ2 = µ2 for all p by (1.5) and (1.6). So we have

Proposition 1.4. λl = µl in the cases: (a) n = 1, (b) p = 2, (c) l = 1, 2.

In the last section we consider as an application the p-superlinear problem

(1.7)

{
−∆pu = f(x, u) in Ω,

u = 0 on ∂Ω,

where f is a Carathéodory function on Ω× R satisfying

(f1) |f(x, t)| ≤ C(|t|q−1 + 1) for some q < Np/(N − p) if p < N and ∞ if
p ≥ N ,

(f2) 0 < µF (x, t) ≤ tf(x, t) for |t| large, where F (x, t) =
∫ t

0
f(x, s) ds, for

some µ > p,
(f3) the limit λ = lim

t→0
f(x, t)/|t|p−2 t exists uniformly in x.

We will prove

Theorem 1.5. If λ /∈ σ(−∆p), then (1.7) has a nontrivial solution.

Remark 1.6. This also follows from the mountain-pass lemma when λ < λ1,
and the case λ1 < λ < λ2 was proved by Liu (see [11]).

Remark 1.7. Fadell and Rabinowitz in [10] have used the Yang index to
obtain results on the number of solutions of variational bifurcation problems in
Hilbert spaces. See Coffman [4]–[6] for other uses and a different definition of
the index.

Acknowledgements. The author wishes to express his gratitude to Pro-
fessor Simeon Stefanov for his helpful comments regarding the Yang index.

2. Yang index

In this section we briefly recall the definition and some properties of the Yang
index. Yang (see [12]) considered compact Hausdorff spaces with fixed-point-free
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continuous involutions and used the Čech homology theory, but for our purposes
here it suffices to work with closed symmetric subsets of Banach spaces that do
not contain the origin and singular homology groups.

Following [12], we first construct a special homology theory defined on the
category of all pairs of closed symmetric subsets of Banach spaces that do not
contain the origin and all continuous odd maps of such pairs. Let (X, A), A ⊂ X

be such a pair and C(X, A) its singular chain complex with Z2 coefficients, and
denote by T# the chain map of C(X, A) induced by the antipodal map T (x) =
−x. We say that a q-chain c is symmetric if T#(c) = c, which holds if and only
if c = c′ + T#(c′) for some q-chain c′. The symmetric q-chains form a subgroup
Cq(X, A;T ) of Cq(X, A), and the boundary operator ∂q maps Cq(X, A;T ) into
Cq−1(X, A;T ), so these subgroups form a subcomplex C(X, A;T ). We denote
by

Zq(X, A;T ) = {c ∈ Cq(X, A;T ) : ∂qc = 0},(2.1)

Bq(X, A;T ) = {∂q+1c : c ∈ Cq+1(X, A;T )},(2.2)

and

Hq(X, A;T ) = Zq(X, A;T )/Bq(X, A;T )(2.3)

the corresponding cycles, boundaries, and homology groups. A continuous odd
map f : (X, A) → (Y, B) of pairs as above induces a chain map f#:C(X, A;T ) →
C(Y,B;T ) and hence homomorphisms

(2.4) f∗:Hq(X, A;T ) → Hq(Y, B;T ).

Example 2.1 ([12, Example 1.8]). For the l-sphere,

(2.5) Hq(Sl;T ) =

{
Z2 for 0 ≤ q ≤ l,

0 for q > l.

Let X be as above, and define homomorphisms ν:Zq(X;T ) → Z2 induc-
tively by

(2.6) ν(z) =

{
In(c) for q = 0,

ν(∂c) for q > 0,

if z = c + T#(c), where the index of a 0-chain c =
∑

i niσi is defined by In(c) =∑
i ni. As in [12], ν is well defined and νBq(X;T ) = 0, so we can define the

index homomorphism ν∗:Hq(X;T ) → Z2 by ν∗([z]) = ν(z).
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Proposition 2.2 ([12, Proposition 2.8]). If F is a closed subset of X such
that F ∪ T (F ) = X and A = F ∩ T (F ), then there is a homomorphism

∆: Hq(X;T ) → Hq−1(A;T )

such that ν∗(∆[z]) = ν∗([z]).

Taking F = X we see that if ν∗Hl(X;T ) = Z2, then ν∗Hq(X;T ) = Z2 for
0 ≤ q ≤ l. We define the Yang index of X by

(2.7) iY(X) = inf{l ≥ −1 : ν∗Hl+1(X;T ) = 0},

taking inf ∅ = ∞. Clearly, ν∗H0(X;T ) = Z2 if X 6= ∅, so iY(X) = −1 if and
only if X = ∅.

Example 2.3 ([12, Example 3.4]). iY(Sl) = l.

Proposition 2.4 ([12, Proposition 2.4]). If f :X → Y is as above, then
ν∗(f∗([z])) = ν∗([z]) for [z] ∈ Hq(X;T ), and hence iY(X) ≤ iY(Y ). In particu-
lar, this inequality holds if X ⊂ Y .

Recall that the Krasnosel’skĭı Genus of X is defined by

(2.8) γ(X) = inf{l ≥ 0 : there exists a continuous odd map f :X → Sl−1}

(see e.g. [3]). By Example 2.3 and Proposition 2.4 we have following propositions.

Proposition 2.5. γ(X) ≥ iY(X) + 1.

Proposition 2.6. If iY(X) = l ≥ 0, then the reduced homology group
H̃l(X) 6= 0.

Proof. By (2.7),

(2.9) ν∗Hq(X;T ) =

{
Z2 for 0 ≤ q ≤ l,

0 for q > l.

We show that if [z] ∈ Hl(X;T ) is such that ν∗([z]) 6= 0, then [z] 6= 0 in H̃l(X).
Arguing indirectly, assume that z ∈ Bl(X), say, z = ∂c. Since z ∈ Bl(X;T ),
T#(z) = z. Let c′ = c + T#(c). Then c′ ∈ Zl+1(X;T ) since ∂c′ = z +
T#(z) = 2z = 0 mod 2, and ν∗([c′]) = ν(c′) = ν(∂c) = ν(z) 6= 0, contradicting
ν∗Hl+1(X;T ) = 0. �

3. Variational eigenvalues and critical groups

As is well-known, the eigenvalues of (1.3) are the critical values of

(3.1) I(u) =
∫

Ω

|∇u|p, u ∈ S = {u ∈ W : ‖u‖p = 1},
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which satisfies the Palais–Smale condition (PS) (see e.g. [9]). Denote by A the
class of closed symmetric subsets of S, let

(3.2) Fl = {A ∈ A : iY(A) ≥ l − 1},

and set

(3.3) λl := inf
A∈Fl

max
u∈A

I(u).

Proposition 3.1. λl is an eigenvalue of −∆p and λl ↗∞.

Proof. If λl is not a critical value of I, then there is an ε > 0 and an odd
homeomorphism η:S → S such that η(Iλl+ε) ⊂ Iλl−ε by a lemma of Bonnet
([2]) (the standard first deformation lemma is not sufficient here as the manifold
S is not of class C1,1 when p < 2). Take A ∈ Fl with max I(A) ≤ λl + ε and set
Ã = η(A). Then Ã ∈ A since η is an odd homeomorphism and iY(Ã) ≥ iY(A) ≥
l − 1 by Proposition 2.4, so Ã ∈ Fl, but max I(Ã) ≤ λl − ε, a contradiction.

Since Fl ⊃ Fl+1, λl ≤ λl+1. To see that λl → ∞, recall that this holds
for the Lusternik–Schnirelmann eigenvalues µl := infA∈Gl

maxu∈A I(u) where
Gl = {A ∈ A : γ(A) ≥ l}. Fl ⊂ Gl by Proposition 2.5, so λl ≥ µl. �

Proof of Proposition 1.1. We can take U = W in (1.1) as 0 is the only
critical point of Iλ;

(3.4) Cl(Iλ, 0) = Hl(I0
λ, I0

λ \ {0})

where I0
λ = {u ∈ W : Iλ(u) ≤ 0}. Since Iλ is positive homogeneous, I0

λ is radially
contractible to 0 and I0

λ \ {0} is homotopic to I0
λ ∩ S via the radial projection

onto S, so it follows from the long exact sequence of reduced homology groups
for the pair (I0

λ, I0
λ \ {0}) that

(3.5) Hl(I0
λ, I0

λ \ {0}) ∼= H̃l−1(I0
λ ∩ S) = H̃l−1(Iλ)

where the last equality follows from Iλ|S = I − λ. Since I is even, Iλ ∈ A, and
since λ > λl, there is an A ∈ Fl such that A ⊂ Iλ, so iY(Iλ) ≥ iY(A) ≥ l − 1
by Proposition 2.4. On the other hand, Iλ /∈ Fl+1 since λ < λl+1, so iY(Iλ) < l.
Hence iY(Iλ) = l − 1, and H̃l−1(Iλ) 6= 0 by Proposition 2.6. �

Proof of Proposition 1.3. Take an eigenfunction u of λ with nodal do-
mains Ωi, i = 1, . . . , l, and define a continuous odd map f :Sl−1 → S by

(3.6) f(ξ1, . . . , ξl)(x) =


|ξi|2/p−1ξi

u(x)
‖u‖Lp(Ωi)

if x ∈ Ωi,

0 if x /∈
l⋃

i=1

Ωi.

The image A = f(Sl−1) ∈ A and iY(A) ≥ iY(Sl−1) = l − 1 by Example 2.3 and
Proposition 2.4, so A ∈ Fl, and I = λ on A. �
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4. Proof of Theorem 1.5

The condition (f2), originally introduced in the semilinear case p = 2 by
Ambrosetti and Rabinowitz ([1]), implies that

(4.1) |f(x, t)| ≥ C |t|µ−1, F (x, t) ≥ C |t|µ

and that the variational functional

(4.2) Φ(u) =
∫

Ω

|∇u|p − p F (x, u), u ∈ W

associated with (1.7) satisfies (PS) (see e.g. [11]).
First we construct a perturbed functional Φ̃ that has the same critical points

as Φ and equals the asymptotic functional Iλ near zero and Φ near infinity.

Lemma 4.1. There are ρ > 0 and Φ̃ ∈ C1(W, R) such that

(4.3) Φ̃(u) =

{
Iλ(u) for ‖u‖ ≤ ρ,

Φ(u) for ‖u‖ ≥ 2ρ,

and 0 is the only critical point of Φ and Φ̃ with ‖u‖ ≤ 2ρ.

Proof. Let

g(x, t) = f(x, t)− λ|t|p−1t, G(x, t) =
∫ t

0

g(x, s) ds, Ψ(u) = p

∫
Ω

G(x, u),

so that Φ = Iλ − Ψ. Since λ /∈ σ(−∆p), Iλ satisfies (PS) and has no critical
points on the unit sphere S1 in W , so δ := infS1 ‖I ′λ‖ > 0.

By homogeneity, infSρ
‖I ′λ‖ = ρp−1 δ, while it follows from (f3) that

sup
Sρ

|Ψ| = o(ρp) and sup
Sρ

‖Ψ′‖ = o(ρp−1)

as ρ → 0, so

(4.4) inf
Sρ

‖Φ′‖ ≥ ρp−1(δ + o(1)) > 0

for all sufficiently small ρ > 0. Take a smooth function ϕ: [0,∞) → [0, 1] such
that

(4.5) ϕ(t) =

{
1 for 0 ≤ t ≤ 1,

0 for t ≥ 2,

and set

(4.6) Φ̃(u) = Φ(u) + ϕ(‖u‖/ρ)Ψ(u).

Since ‖d(ϕ(‖u‖/ρ))‖ = O(ρ−1), (4.3) holds with Φ replaced by Φ̃ also, and the
conclusion follows. �

Next we turn to the behavior of Φ̃ at infinity.
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Lemma 4.2. There is an a0 < 0 such that for all a < a0, Φ̃a is homotopic
to S1 and hence contractible.

Proof. For u ∈ S1 and t ≥ 2ρ,

(4.7) Φ̃(tu) = tp − p

∫
Ω

F (x, tu) ≤ tp − Ctµ ‖u‖µ
µ → −∞ as t →∞

by (4.1), and

(4.8)
d

dt
Φ̃(tu) = p

(
tp−1 −

∫
Ω

u f(x, tu)
)

=
p

t

(
Φ̃(tu) +

∫
Ω

H(x, tu)
)

where H(x, t) := p F (x, t)− t f(x, t) ≤ −(µ− p) F (x, t) < 0 for |t| large by (f2).
Let

(4.9) a0 = min{− sup
Ω×R

H |Ω|, inf
B2ρ

Φ̃}.

If a < a0 and Φ̃(tu) ≤ a, then t ≥ 2ρ and dΦ̃(tu)/dt < 0, so there is a unique
t0 = t0(u) ≥ 2ρ such that Φ̃(tu) > a for 0 ≤ t < t0, Φ̃(t0u) = a, and Φ̃(tu) < a

for t > t0, and the map t0:S1 → [2ρ,∞) is C1 by the implicit function theorem.
It follows that Φ̃a = {tu : u ∈ S1, t ≥ t0(u)} has the homotopy type of S1. �

Now we are ready to prove Theorem 1.2. We have λl < λ < λl+1 for some l, so

(4.10) Cl(Φ̃, 0) = Cl(Iλ, 0) 6= 0

by Lemma 4.1 and Proposition 1.1. On the other hand, taking a as in Lemma 4.2,

(4.11) Cq(Φ̃,∞) = Hq(W, Φ̃a) = 0 for all q.

Since Cl(Φ̃, 0) 6∼= Cl(Φ̃,∞), Φ̃ must have a second critical point (see e.g. [3]).
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