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A PALAIS–SMALE APPROACH
TO SOBOLEV SUBCRITICAL OPERATORS

Huei-li Lin — Hwai-chiuan Wang — Tsung-fang Wu

Abstract. In this article, we use Palais–Smale approaches to describe the
achieved and nonachieved domains. We characterizes the achieved domain

by the existence of a ground state solution for the energy functional J in Ω.

1. Introduction

By a reaction-diffusion system we mean a system of partial differential equa-
tions of the form

ut = Duxx + f(u), U ∈ RN ,

where D is a nonnegative, diagonal matrix, and f : RN → RN is assumed to be
smooth. These systems arise as models in various areas of mathematical biology
and chemistry. Example include Fisher’s equation in population genetics, the
Hodgkin–Huxley equations as a model for the propagation of electrical impulses
in a nerve axon, models for interacting species in ecology, and models for laminar
flames in combustion. See Smoller ([18]) and Fife ([11]) and the reference cited
there for a detailed description of there and other models.

Such a problem is very difficult. Even in the following steady state single
equation, there is still a lot of open questions. In this article, we prove partially
an open question.
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Let N ≥ 1 and 2 < p < 2∗, where 2∗ = 2N/(N − 2) for N ≥ 3, 2∗ = ∞ for
N = 1, 2. Consider the semilinear elliptic equation

(1)

{
−∆u + u = |u|p−2u in Ω,

u ∈ H1
0 (Ω),

where Ω is a domain in RN and H1
0 (Ω) is the Sobolev space in Ω. For the

general theory of the Sobolev space H1
0 (Ω), see Adams ([1]). Corresponding to

equation (1), let the energy functionals a, b, and J in H1
0 (Ω) be given by

a(u) =
∫

Ω

(|∇u|2 + u2, b(u) =
∫

Ω

|u|p,

J(u) =
1
2
a(u)− 1

p
b(u).

By Rabinowitz ([17, Proposition B.10]), a, b, and J are of class C1,1.
Sobolev spaces H1

0 (Ω) provide the proper functional setting for the study
of the partial differential equations and Sobolev imbedding theorems (Sobolev
operators) provide the connection between Sobolev spaces and Lebesgue spaces.

(i) Standard books describe that the Sobolev critical operator I:H1
0 (Ω) →

L2∗(Ω) satisfies
‖u‖L2∗ ≤ c‖∇u‖L2 .

Let Sc(Ω) be the best constant of the Sobolev critical operator,

Sc(Ω) = sup
{
‖u‖L2∗

‖∇u‖L2

∣∣∣∣ u ∈ H1
0 (Ω) \ {0}

}
.

Then Sc(Ω) is independent of Ω, Sc(Ω) is achieved if and only if Ω = RN .
(ii) Standard books also describe that the Sobolev subcritical operator I:

H1
0 (Ω) → Lp(Ω) satisfies

(2) ‖u‖Lp(Ω) ≤ c‖u‖H1(Ω).

Let S(Ω) be the best constant of the Sobolev subcritical operator,

S(Ω) = sup
{ ‖u‖Lp(Ω)

‖u‖H1(Ω)

∣∣∣∣ u ∈ H1
0 (Ω) \ {0}

}
.

No standard books describe that for which domain Ω, S(Ω) is achieved.
For the convenience, an achieved domain is defined as follows.

Definition 1. We call that a domain Ω in RN is an achieved domain if
there is u ∈ H1

0 (Ω) such that ‖u‖Lp(Ω)/‖u‖H1(Ω) = S(Ω). Otherwise, we call
that Ω is a nonachieved domain.

The open question is that for which domain Ω is S(Ω) achieved? Due to the
lack of compactness, it is difficult to study the existence of solutions of equa-
tion (1) in unbounded domains. In this direction, the concentration-compactness
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principle of P. L. Lions ([2], [14] and [15]) made a breakthrough. Moreover,
in 1982, Esteban and Lion ([10]) asserted that an Esteban–Lions domain is
a nonachieved domain, where an Esteban–Lions domain is defined as follows.

Definition 2. We call that a proper unbounded domain Ω in RN is an
Esteban–Lions domain if there is χ ∈ RN , ‖χ‖ = 1 such that n(x) · χ ≥ 0,
n(x) · χ 6≡ 0 on ∂Ω, where n(x) denotes the unit outward normal to ∂Ω at the
point x.

After the Lions papers, there are nice tools from the books of Chabrowski
(see [5]), Mawhin and Willem ([16]), Struwe ([19]), Willem ([22]). We have done
some new analyses such as at Chen and Wang ([6]), Lien, Tzeng and Wang ([13]),
and Wang ([21]). Now we are in the position to solve partially this open question.
The paper is organized as follows: Section 2 defines the index of a domain. Sec-
tion 3 presents some analyses. Section 4 describes various nonachieved domains.
Section 5 describes achieved domains.

2. Indexes of domains

We define the (PS)-sequences for J .

Definition 3.

(i) For β ∈ R, a sequence {un} in H1
0 (Ω) is a (PS)β-sequence for J if

J(un) → β and J ′(un) → 0 strongly in H−1(Ω) as n →∞,
(ii) β ∈ R is a (PS)-value for J if there is a (PS)β-sequence for J ,
(iii) J satisfies the (PS)β-condition if every (PS)β-sequence for J contains

a convergent subsequence,
(iv) J satisfies the (PS)-condition if J satisfies the (PS)β-condition for every

β ∈ R.

A (PS)β-sequence for J is bounded.

Lemma 4. Let {un} in H1
0 (Ω) be a (PS)β-sequence for J , then there is a pos-

itive bounded sequence {cn(β)} such that ‖un‖H1 ≤ cn(β) ≤ c for each n and
cn(β) = o(1) as n → ∞ and β → 0. Furthermore, a(un) = b(un) + o(1) =
2pβ/(p− 2) + o(1) and β ≥ 0.

Proof. See Willem [22]. �

Consider the following four important positive values.
(i) Consider the constrained value αθ = (1/2− 1/p)S(Ω)2p/(2−p), where

S(Ω) = sup{‖u‖Lp(Ω) | u ∈ H1
0 (Ω), a(u) = 1}.

Clearly, αθ is a positive value.
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(ii) Consider the Nehari value αM = infu∈M(Ω) J(u), where

M(Ω) = {u ∈ H1
0 (Ω) \ {0} | a(u) = b(u)}.

As a consequence of the following lemma, αM is a positive value.

Lemma 5. Let U(Ω) = {u ∈ H1
0 (Ω) | ‖u‖H1 = 1} be the unit sphere. Then

there is a bijective C1,1-map m from U(Ω) to M(Ω). Moreover, M(Ω) is path-
connected and there exists a constant c > 0 such that for u ∈ M(Ω), ‖u‖H1 ≥ c

and J(u) ≥ c.

Proof. See Chen and Wang ([6, Lemma 2.2]). �

(iii) Consider the minimax value αΓ = infv∈Γ maxt∈[0,1] J(v(t)), where

Γ = {v ∈ C([0, 1],H1
0 (Ω)) | v(0) = 0, v(1) = e} and J(e) = 0.

αΓ is a positive value since J satisfies the mountain pass hypothesis: that is,
there are r, δ > 0 and e ∈ H1

0 (Ω) such that e /∈ B(0; r), J(e) = 0, J(u) ≥ δ > 0
for each u ∈ ∂B(0; r).

(iv) Consider the minimal value αP = infβ∈P (Ω) β, where P (Ω) is the set of
all positive (PS)-values for J in Ω. As a consequence of the following lemma, αP

is a positive value.

Lemma 6. There is a β0 > 0 such that β ≥ β0 for every positive (PS)-
value β.

Proof. Let {un} in H1
0 (Ω) be a (PS)β-sequence for J for β > 0. By

Lemma 4, a(un) ≤ cn(β)2. By the Sobolev embedding theorem, there is a
constant d > 0 such that

b(un) ≤ da(un)p/2.

By the above two inequalities, we have

o(1) = a(un)− b(un) ≥ a(un)[1− dcn(β)p−2].

Take β0 > 0 and n0 > 0 such that if β < β0 and n ≥ n0, then 1−dcn(β)p−2 > 1/2.
Consequently, a(un) = b(un) + o(1) = o(1). Thus, β = 0, a contradiction. �

We find a couple of positive (PS)-values for J .

Lemma 7. αθ, αM, αΓ and αP are positive (PS)-values for J .

Proof. (i) By Lien, Tzeng nad Wang ([13, Theorem 2.1]), αθ is a positive
(PS)-value for J .

(ii) By Stuart ([20, Lemma 3.4]), αM is a positive (PS)-value for J . By Chen
and Wang ([6, Lemma 2.1]), every minimizing sequence for αM is a (PS)αM

-
sequence for J .

(iii) By Brezis and Nirenberg ([3]), αΓ is a positive (PS)-value for J .
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(iv) For each n ∈ N, take {un} in H1
0 (Ω) and βn ∈ P (Ω) such that

|βn − αP | <
1
2n

, |J(un)− βn| <
1
2n

, ‖J ′(un)‖H−1 <
1
2n

.

Then J(un) = αP + o(1) and J ′(un) = o(1) strongly in H−1(Ω). Thus, αP ∈
P (Ω). �

In the following, we present a comparison lemma.

Lemma 8. Let {un} ⊂ H1
0 (Ω) be a (PS)β-sequence for J with β > 0. Then

β ≥ αθ, β ≥ αM, β ≥ αΓ and β ≥ αP .

Proof. By Wang ([21, Lemma 9]), β ≥ αθ, β ≥ αM and β ≥ αΓ. Clearly,
β ≥ αP . �

By Lemmas 7 and 8, we have the following interesting result.

Theorem 9. Four important (PS)-values are equal αθ = αM = αΓ = αP .

Remark. For the equality of the three important (PS)-values αθ, αM, and
αΓ, see Willem [22].

Definition 10. By Theorem 9, the positive (PS)-values αθ, αΓ, αM and αP

for J are the same. Any one of them is called the index of J in Ω and denoted
by α(Ω) (simply by α). By the definition of αM, if u is a nonzero solution of
equation (1), then J(u) ≥ α. Follows from Berestycki and Lions ([3]), we call
that a solution u of equation (1) is a ground state solution if J(u) = α and is
a higher energy solution if J(u) > α.

3. Analyses

In this section, we presents analyses used for later sections.
By Lemma 4, a (PS)α-sequence for J possesses a weak limit u. Such u is a

solution of equation (1).

Theorem 11. Let {un} in H1
0 (Ω) be a (PS)α-sequence for J satisfying un ⇀

u weakly in H1
0 (Ω). Then

(i) u is a solution of equation (1).
(ii) If u is nonzero, then u is a positive ground state solution of equa-

tion (1). Furthermore, we have un → u strongly in H1
0 (Ω), or the

(PS)α-condition holds.
(iii) Suppose that the (PS)α-condition holds, then there is a positive ground

state solution of equation (1).

Proof. (i) Clearly.
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(ii) Since u is nonzero solution, by part (i) we have u ∈ M(Ω). By Lemma 4,
we have

(3) a(un) =
2p

p− 2
α + o(1).

Since a is weakly lower semicontinuous, we have

α ≤ J(u) =
(

1
2
− 1

p

)
a(u) ≤

(
1
2
− 1

p

)
lim inf
n→∞

a(un) = α,

or J(u) = α. By the Lagrange multiplier theorem, it is known that every
minimizer of the problem α = infu∈M(Ω) J(u) is a critical point of J . Since
J(|u|) = J(u) and by the maximum principle, then |u| is also a positive solution
of equation (1). Thus we may assume that u is positive. Let pn = un − u, then
{pn} is a (PS)-sequence for J :

J(pn) = J(un)− J(u) + o(1) = o(1), J ′(pn) = o(1).

Similarly to (3), we have

a(pn) =
2p

p− 2
J(pn) + o(1) = o(1),

Thus un → u strongly in H1
0 (Ω).

(iii) Suppose that the (PS)α-condition holds, then there is a subsequence
{un} for J satisfying un → u strongly in H1

0 (Ω). Thus J(u) = α. Hence, by
part (ii), there is a positive ground state solution of equation (1). �

We need the Lions concentration-compactness principle as follows. Let

Qn(t) = sup
y∈RN

∫
y+BN (0;t)

|un(x)|2 dx,

where BN (0; t) is the ball with the center at 0 and the radius t, we have

Lemma 12. Let {un} be bounded in H1(Ω) where Ω is unbounded and for
some t0 > 0, Qn(t0) → 0. Then

(i) un → 0 strongly in Lq(Ω) for 2 < q < 2∗.
(ii) If in addition un satisfies

−∇un + un − |un|p−1un = εn → 0 in H−1(Ω)

then un → 0 strongly in H1(Ω).

Proof. By Lions [14]. �

Let Ω1 and Ω2 be two domains in RN , αi = α(Ωi) the index of J in Ωi and
Mi = {u ∈ H1

0 (Ωi) \ {0} | a(u) = b(u)}, where i = 1, 2.
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Theorem 13. Let Ω1 $ Ω2 and J :H1
0 (Ω2) → R be the energy functional.

If J satisfies the (PS)α1-condition or in particular α1 is a critical value, then
α2 < α1.

Proof. Ω1 ⊂ Ω2, we have H1
0 (Ω1) ⊂ H1

0 (Ω2) and M1 ⊂ M2, for i = 1, 2.
Thus, α2 ≤ α1. Suppose that J satisfies the (PS)α1-condition, then there exists
u0 ∈ M1 such that u0 ≥ 0 and J(u0) = α1. On the contrary, assume α2 = α1,
then J(u0) = α2 = infu∈M2 J(u). By the Lagrange multiplier theorem, it is
known that every minimizer of the problem α2 = infu∈M2 J(u) is a critical point
of J . Therefore, u0 solves equation (1) in Ω2. By the maximum principle, u0 > 0
in Ω2. This contradicts to that u0 ∈ H1

0 (Ω1). Therefore, α2 < α1. �

Let Ω0 = Ω1 ∪ Ω2, where Ω1 ∩ Ω2 is bounded. Since H1
0 (Ωi) ⊂ H1

0 (Ω0) and
Mi ⊂ M0, for i = 1, 2, we have α0 ≤ min{α1, α2}. According to Del Pino and
Felmer ([8], [9]), let

Ω̃n = Ω0 \BN (0;n),

M̃n = {u ∈ H1
0 (Ω̃n) \ {0} | a(u) = b(u)},

α̃n = α(Ω̃n) = inf
u∈fMn

J(u).

Theorem 14. The following five properties are equivalent.

(i) There is a (PS)α0-sequence {un} in H1
0 (Ω0) for J such that un ⇀ 0

weakly in H1
0 (Ω0).

(ii) There is a (PS)α0-sequence {un} for J such that∫
Ωn

|un|p = o(1), where Ωn = Ω0 ∩BN (0;n).

(iii) α0 = min{α1, α2}.
(iv) J does not satisfy the (PS)α0-condition.
(v) α0 = α̃n for each n ∈ N.

Proof. See Chen, Lin and Wang ([7, Theorem 23]). �

4. Nonachieved domains

Let

BN (z; s) = {x ∈ RN | |x− z| < s},
Ar = {(x1, . . . , xN ) ∈ RN | x2

1 + . . . + x2
N−1 < r2},

Ar
s,t = {(x1, . . . , xN ) ∈ Ar| s < xN < t},
Ar

s = {(x1, . . . , xN ) ∈ Ar | s < xN},
Ãr

t = {(x1, . . . , xN ) ∈ Ar| xN < t},
Ar \ ω, where ω ⊂ Ar is a bounded domain,
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Ar1,r2 = {(x1, . . . , xN ) ∈ RN | r2
1 < x2

1 + . . . + x2
N−1 < r2

2},
Ar1,r2

s = {(x1, . . . , xN ) ∈ Ar1,r2 | s < xN},
C = {(x1, . . . , xN ) ∈ RN | (x2

1 + . . . + x2
N−1)

1/2 < xN},
RN

+ = {(x1, . . . , xN ) ∈ RN | xN > 0},
P = {(x1, . . . , xN ) ∈ RN | x2

1 + . . . + x2
N−1 < xN}.

Esteban and Lions ([10, Theorem I.1]) proved the following:

Theorem 15. Equation (1) in an Esteban–Lions domain Ω does not admit
any nontrivial solution. In particular, equation (1) in either RN

+ or Ar
s does not

admit any nontrivial solution.

Theorem 16. An Esteban–Lions domain is a nonachieved domain.

Proof. By Theorems 22 and 15. �

Definition 17.

(i) We say that Ω is a large subdomain of RN if for any r > 0 there exists
x ∈ Ω such that BN (x; r) ⊂ Ω.

(ii) We call that Ω is a large subdomain of Ar if for any positive number
m, there exist s < t such that t− s = m and Ar

s,t ⊂ Ω.

Example 18. The upper half strip Ar
s, the upper half hollow strip Ar1,r2

s

and the upper half space RN
+ are Esteban–Lions domains.

Example 19. The infinite cone C, the upper half space RN
+ , and the parab-

oloid P are large subdomains of RN .

Example 20. Ar
s and Ar

s \ ω1 are large subdomains of Ar, and Ar1,r2
s and

Ar1,r2
s \ ω2 are large subdomains of Ar1,r2 , where ω1 ⊂ Ar and ω2 ⊂ Ar2 are

bounded domains.

Theorem 21. Let Ω2 be either Ar, Ar1,r2 , or RN and Ω1 a proper large
subdomain of Ω2. Then α1 = α2, J does not satisfy the (PS)α1-condition, and
the only possible solutions of equation (1) in Ω1 are higher energy solutions. In
particular, a proper large subdomain Ω1 of Ω2 is nonachieved.

Proof. It suffices to prove the case Ω2 = RN . Since Ω1 ⊂ Ω2, we have
α2 ≤ α1. Let u ∈ H1

0 (Ω2) be a minimizer of α2: a(u) = b(u), J(u) = α2. Choose
{xn} ⊂ Ω1, rn → ∞, and BN (xn; rn) ⊂ Ω1. Consider the cut-off function
η ∈ C∞c ([0,∞)) such that

0 ≤ η ≤ 1, η(t) =

{
1 for t ∈ [0, 1],

0 for t ∈ [2,∞).
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Define

vn(x) = η

(
2|x− xn|

rn

)
u(x− xn).

Then

vn(x) ∈ H1
0 (Ω1), a(vn) = a(u) + o(1), b(vn) = b(u) + o(1).

By Lemma 5, there exists sn > 0 such that a(snvn) = b(snvn). Therefore we
have sn = 1 + o(1). Then

J(snvn) =
(

1
2
− 1

p

)
s2

na(vn) =
(

1
2
− 1

p

)
a(u) + o(1) = α2 + o(1).

Therefore, α1 ≤ α2. We conclude that α1 = α2. Then by Theorem 13, J does
not satisfy the (PS)α1-condition and the only possible solutions of equation (1)
in Ω1 are higher energy solutions. �

5. Achieved domains

We characterize achieved domains by the existence of a ground state solution
for J in Ω.

Theorem 22. Ω is an achieved domain if and only if there is a ground state
solution for J in Ω.

Proof. Recall that α(Ω) = (1/2− 1/p)S(Ω)2p/(2−p). Suppose that there is
a u ∈ H1

0 (Ω) such that

J(u) = α(Ω), 〈J(u), u〉 = a(u)− b(u) = 0.

Then we have a(u)(1/p−1/2) = S(Ω). Let v = u/‖u‖H1 . Then

‖v‖Lp =
b(u)1/p

a(u)1/2
= a(u)1/p−1/2 = S(Ω).

Thus, S(Ω) is achieved by v. On the other hand, let S(Ω) be achieved by some
function u where a(u) = ‖u‖2

H1 = 1 and b(u) = ‖u‖p
Lp = S(Ω)p. By the Lagrange

multiplier theorem there is a λ such that

b′(u) = λa′(u).

It is easy to see that λ = (p/2)S(Ω)p, so we have

b′(u) =
p

2
S(Ω)pa′(u).

This implies

S(Ω)−p

( ∫
|u|p−2uϕ

)
=

( ∫
∇u∇ϕ + uϕ

)
.

Thus, u is a weak solution of

−∆u + u = S(Ω)−p|u|p−2u.
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Let v = S(Ω)p/(2−p)u, then −∆v + v = |v|p−2v. We have a(v) = b(v) =
S(Ω)2p/(2−p), 〈J ′(v), ϕ〉 = 0 for each ϕ ∈ C∞c (Ω), and

J(v) = (1/2− 1/p)S(Ω)2p/(2−p) = α(Ω). �

Remark. Note that if u is a ground state solution for J in Ω, then u solves
the semilinear elliptic equation (1) and J(u) = α(Ω). By the Kato regularity, Lp-
regularity and Schauder regularity, the ground state solution u of equation (1)
is classical.

A bounded domain Ω is an achieved domain.

Theorem 23. A bounded domain Ω is an achieved domain.

Proof. This is well-known. For the convenience of readers, we give the
proof. Let {un} be a minimizing sequence for α(Ω). Since α(Ω) = αM (Ω), by
Chen and Wang (see [6, Lemma 2.1]), {un} is a (PS)αM

-sequence for J such that

J(un) = α(Ω) + o(1), a(un) = b(un) + o(1).

Take a subsequence {un} and u ∈ H1
0 (Ω) such that

un ⇀ u weakly in H1
0 (Ω),

un → u strongly in Lp(Ω).

Suppose u = 0, then a(un) = b(un) = o(1). Thus, J(un) = o(1), a contradiction.
By Theorem 11, u is a ground state solution of J in Ω. By Theorem 22, Ω is an
achieved domain. �

Definition 24. A domain in RN is periodic if there exist a partition {Pn}
of Ω and points {yn} in RN satisfying the following conditions:

(i) {yn} forms a subgroup of RN ,
(ii) P0 is bounded,
(iii) Pn = yn + P0.

Typical examples of periodic domains are the infinite strip Ar, the infinite
hollow strip Ar1,r2 , and the whole space RN . In Theorem 11, we proved that
if a (PS)α-sequence for J admits a nonzero weak limit u, then u is a ground
state solution for J . However, though the weak limit is zero but if the domain
is periodic, then we can still obtain a ground state solution for J .

Theorem 25. A periodic domain Ω is an achieved domain. In particular,
the infinite strip Ar, the infinite hollow strip Ar1,r2 and the whole space RN are
achieved domains.
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Proof. It suffices to prove the case Ω = Ar. Let {un} in H1
0 (Ar) be

a (PS)α(Ar)-sequence for J

J(un) = α(Ar) + o(1), J ′(un) = o(1) strongly in H−1(Ar).

By Lemma 4, ‖un‖H1 ≤ c for each n. There is a subsequence {un} and u ∈
H1

0 (Ar) such that un ⇀ u weakly in H1
0 (Ar).

Suppose that u is nonzero, then by Theorem 11, we are done. Suppose that u

is zero, then un 6→ 0 strongly in H1
0 (Ar). Otherwise, α(Ar) = 0, a contradiction.

Since un 6→ 0 strongly in H1
0 (Ar), apply Lemma 12 to the infinite strip Ar, there

is a subsequence {un}, a constant d > 0 such that

Qn(1) = sup
y∈R

∫
(0,y)+L

|un(z)|2 dz > d > 0 for n ∈ N,

where L = {(x, y) ∈ Ar | 0 ≤ y ≤ 1}. Take {zn = (0, yn)} in Ar such that∫
zn+L

|un(x)|2 dx ≥ d/2, and let wn(z) = un(z + zn). Then, for n ∈ N,∫
L

|wn(z)|2 dz =
∫

L

|un(z + zn)|2 dz =
∫

zn+L

|un(z)|2 dz ≥ d

2
,

and ‖wn‖H1(Ar) = ‖un‖H1(Ar) ≤ c for n ∈ N, so there is w ∈ H1
0 (Ar) such that

wn ⇀ w weakly in H1
0 (Ar). We have

un ⇀ 0 weakly in H1
0 (Ar),

wn ⇀ w weakly in H1
0 (Ar),∫

L

|wn|2 ≥ d/2 for n ∈ N.

Hence,

(i) |zn| → ∞. On the contrary, there is r, s > 0 such that zn + L ⊂ G =
{(x, y) ∈ Ar | r ≤ y ≤ s} for n ∈ N. Then

0 = lim
n→∞

∫
G

|un|2 ≥ lim
n→∞

∫
zn+L

|un|2 ≥
d

2
,

a contradiction.
(ii) w 6≡ 0. By the Rellich–Kondrakov theorem∫

L

|w|2 = lim
n→∞

∫
L

|wn|2 ≥ d/2.

(iii) {wn} is a (PS)α(Ar)-sequence for J.

By Theorem 11, w is a ground state solution of equation (1). By Theorem 22,
Ω is an achieved domain. �
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Moreover, R is an achieved domain. As a matter of fact, by Theorem 22,
R is an achieved domain if and only if there is a classical solution u of equation

(4) u′′ = u− S(R)−p|u|p−2u.

By Berestycki and Lions ([3]), such a solution is unique. Actually, such a solution
is constructed as follows by routine computations.

Theorem 26. With µ = 2/(p− 2), we have

u(r) =
(

pS(R)p

2

)µ/2{
cosh

(
r

µ

)}−µ

,

S(R) =
‖u‖Lp

‖u‖H1
=

[
(2µ + 1)Γ(2µ)

µΓ(µ)2

]1/2−1/p(
µ

4

)1/p

(µ + 1)−1/2,

solve equation (4). In particular, R is an achieved domain.

Next we present achieved domains from the perturbations of nonachieved
domains. By Theorem 16, the upper half strip Ar

0 and the upper half hollow
strip Ar1,r2

0 are nonachieved. However, the perturbed domains of Ar
0 and Ar1,r2

0

may be achieved. Let Fr
s = Ar

0 ∪BN (0; s) be an interior flask domain. For large
s, interior flask domains are achieved domains.

Theorem 27. There exists s0 > 0 such that the interior flask domain Fr
s is

achieved if s > s0, but is nonachieved if s < s0.

Proof. Let Ω0 = Fr
s, Ω1 = Ar

0, and Ω2 = BN (0; s). By Theorems 13
and 25, α(A r) > α(RN ). Note that, by Theorem 21, α(Ar) = α(Ar

0) and
lims→∞ α(BN (0; s)) = α(RN ). Take s large enough such that

α(BN (0; s)) < α(Ar) = α(Ar
0).

By Theorem 23, BN (0; s) is an achieved domain. By Theorem 13, we have

α(Ω0) = α(Fr
s) < α(BN (0; s)).

We conclude that

α(Ω0) = α(Fr
s) < α(BN (0; s)) = α(Ω2) < α(Ar

0) = α(Ω1).

By Theorem 14, equation (1) admits a ground state solution in Fr
s for large s.

Let

s0 = inf{s > r | equation (1) admits a ground state solution in Fr
s}.

By Theorem 23, Theorem 13 and 14, equation (1) admits a ground state solution
in Fr

s if s > s0 and equation (1) admits no ground state solution in Fr
s if s < s0.

This theorem follows from Theorem 22 �
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Remark. In Theorem 27, we have asserted that the interior flask domains Fr
s

= Ar
0∪BN (0; s) is achieved if s > s0. As a matter of fact, replace Ar

0∪BN (0; s)
by Ar

0 ∪Ω, where Ω is a bounded domain containing BN (0; s), the theorem still
holds.

Conjecture. In Theorem 27, s0 = r.

For δ > 0, there is ε(δ) > 0, such that a flat interior flask domain Ωε is an
achieved domain, where

Eε = {(x, y) ∈ RN | (x, εy) ∈ B(0; r + δ)},
Ωε = Ar

0 ∪ Eε.

Theorem 28. Given δ > 0, there exists ε0 > 0, such that if ε ≤ ε0, then the
flat interior flask domain Ωε is an achieved domain.

Proof. By Theorem 25, the infinite strip Ar admits a ground state solution.
Since Ar ( Ar+δ, by Theorem 13, we have α(Ar+δ) < α(Ar). Since Eε ⊂ Ar+δ

and limε→0 α(Eε) = α(Ar+δ), there exists ε0 > 0, such that if ε ≤ ε0, then
α(Eε) < α(Ar). Fix ε, ε ≤ ε0, there exists a large N ∈ N such that

α((Ω̃ε)N ) = α(Ar
N ) = α(Ar).

Thus
α(Ωε) ≤ α(Eε) < α(Ar) = α((Ω̃ε)N ).

By Theorem 14, there exists a ground state solution u of equation (1). By
Theorem 22, Ωε is an achieved domain. �

We know that the upper half strip Ar
s is Esteban–Lions domain, Wang ([21])

proved that there exists a higher energy solution of equation (1) in the upper
half strip with a hole. Here we prove that there exists a ground state solution of
the equation (1) in the manger domains. For 0 < r1 < r2, we define

Ωr1,r2
t = Ar1

0 ∪Ar2
0,t,

Θr1,r2
t = Ar1

0,t ∪Ar1,r2
0 ,

Θr1,r2,r3
t = Ar1,r2

0 ∪Ar2
0,t ∪ Ã

r3

t .

By Lien, Tzeng and Wang ([13]), we have

Lemma 29.

(i) limr→∞ α(Ar) = α(RN ),
(ii) limr→0+ α(Ar) = ∞,
(iii) limt→0+ α(Ar

0,t = ∞ for r > 0,
(iv) limt→∞ α(Ar

0,t) = α(Ar) = α(Ar
0).
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Theorem 30. For r1 < r2 there is a t0 > 0 such that if t ≥ t0 then Ωr1,r2
t

is an achieved domain.

Proof. Note that

α(Ar2
0 ) = α(Ar2) < α(Ar1) = α(Ar1

0 ),

α(Ar2
0 ) ≤ α(Ar2

0,t) for each t > 0,

and
lim

t→∞
α(Ar2

0,t) = α(Ar2
0 ).

We conclude that there is t0 > 0 such that if t ≥ t0, then α(Ar2
0,t) < α(Ar1

0 ).
The theorem follows from Theorems 14 and 22. �

Similarly, we have the following two results

Theorem 31. Given 0 < r1 < r2 there is a t0(r1) > 0 such that if t ≥ t0,
then the manger Θr1,r2

t is an achieved domain.

Theorem 32. Given r1, r2, r3 with r1 < r2, r3 < r2, there is a t0 > 0 such
that if t ≥ t0 then Θr1,r2,r3

t is an achieved domain.
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