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We wish to dedicate this paper to our friend and mentor, Professor Andrzej Granas.

Abstract. In this paper we formulate and prove a theorem, which pro-

vides the conserved quantities of a system described by the generalized
variational principle of Herglotz. This new theorem contains as a special

case the classical first Noether theorem. It reduces to it when the gener-

alized variational principle of Herglotz reduces to the classical variational
principle. Several examples for applications to physics are given.

1. Introduction

In the middle of the nineteenth century Sophus Lie discovered that the vari-
ous techniques for solving differential equations, were in fact all special cases of
a general integration procedure based on the invariance of the differential equa-
tion under a continuous group of transformations. These groups, now known as
Lie groups, have had a profound impact on all areas of mathematics, as well as
physics, engineering and other mathematically based sciences.
Lie’s discovery was that the complicated nonlinear conditions of invariance

of the system under the group transformations could, in the case of a continuous
group, be replaced by equivalent, but far simpler, linear conditions reflecting
a form of ”infinitesimal” invariance of the system under the generators of the
group. In many physically important systems of differential equations, these
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infinitesimal symmetry conditions, the so-called defining equations of the sym-
metry group of the system, can be explicitly solved in closed form and thus
the most general continuous symmetry group of the system can be explicitly
determined.

The knowledge of a one-parameter symmetry group of an ordinary differential
equation allows one to reduce the order of the equation by one. If the problem
is variational in nature and the symmetry group leaves the variational integral
invariant, then the order of the equation can be reduced by two.

Symmetries and their properties were subsequently investigated by Her-
glotz ([8]), Klein ([11]), Kneser ([12]), and Noether ([16], [17]). In 1918, she
proved two remarkable theorems relating symmetry groups of a variational in-
tegral to properties of its associated Euler–Lagrange equations, see Noether in
[16], [17]. In these papers both the concept of a variational symmetry group
and the connection with conservation laws were given in complete generality.
For modern derivations and discussions of these theorems see Logan ([14]),
Olver ([18]), Bluman and Kumei ([1]). In the first of these theorems, Noether
shows how each one-parameter variational symmetry group gives rise to a conser-
vation law of the Euler–Lagrange equations. Conservation of energy, for example,
arises from the invariance of the problem under time translations, while conser-
vation of linear and angular momenta reflect invariance of the system under
spatial translations and rotations. Each one-parameter group of symmetries of
the classical variational problem gives rise to a conservation law and, conversely,
every conservation law arises in this manner.

Noether’s theorems are applicable only to the classical variational princi-
ple, in which the functional is defined by an integral. They do not apply to
functionals defined by differential equations. The Generalized Variational Prin-
ciple, proposed by Gustav Herglotz in 1930 (see [9]), generalizes the classical
variational principle by defining the functional, whose extrema are sought, by
a differential equation. It reduces to the classical variational integral under
classical conditions. Herglotz’s original idea was published in 1979 in his col-
lected works (see [8] and [10]). Herglotz reached the idea of the Generalized
Variational Principle through his work on contact transformations and their
connections with Hamiltonian systems and Poisson brackets. His work was mo-
tivated by ideas from S. Lie and others. For historical remarks through 1935,
see C. Caratheodory ([3]). Herglotz’s formulation is found in [8] together with
references to other applications.

The generalized variational principle is important for a number of reasons:

(1) The solutions of the equations, which give the extrema of the functional
defined by the generalized variational principle, when written in terms of the
dependent variables xi and the associated momenta pi = ∂L/∂ẋi, determine



First Noether-type Theorem 263

a family of contact transformations. This family is a one-parameter group in
certain cases. See Guenther et al ([7]), as well as Caratheodory ([2]) and Eisen-
hart ([4]).
(2) The generalized variational principle gives a variational description of

nonconservative processes. Unlike the classical variational principle, the gener-
alized one provides such a description even when the Lagrangian is independent
of time.
(3) For a process, conservative or nonconservative, which can be described

with the generalized variational principle, one can systematically derive conserved
quantities, as shown in this paper, by applying the first Noether-type theorem.
(4) The generalized variational principle provides a link between the math-

ematical structure of control and optimal control theories and contact transfor-
mations (see Furta, et al. in [5]).
(5) The contact transformations, which can always be derived from the gen-

eralized variational principle, have found applications in thermodynamics. Mru-
gała in [15] shows that the processes in equilibrium thermodynamics can be
described by successions of contact transformations acting in a suitably defined
thermodynamic phase space. The latter is endowed with a contact structure,
which is closely related to the symplectic structure (occurring in mechanics).
The significance of the generalized variational principle of Herglotz and the

fact that the classical first Noether theorem does not apply to it motivated the
work in this paper. For a system of differential equations derivable from the gen-
eralized variational principle of Herglotz we prove a first Noether-type theorem,
which provides explicit conserved quantities corresponding to the symmetries
of the functional defined by the generalized variational principle of Herglotz.
This theorem reduces to the classical first Noether theorem in the case when the
generalized variational principle of Herglotz reduces to the classical variational
principle. Thus, it contains the classical first Noether theorem as a special case.
Applications of this new result are shown and specific examples are provided.

2. First Noether-type theorem
for the generalized variational principle of Herglotz

The generalized variational principle of Herglotz defines the functional z,
whose extrema are sought, by the differential equation

(2.1)
dz

dt
= L
(
t, x(t),

dx(t)
dt

, z

)
,

where t is the independent variable, x ≡ (x1, . . . , xn) stands for the dependent
variables and dx(t)/dt denotes the derivatives of the dependent variables. In or-
der for the equation (2.1) to define a functional, z, of x(t) we must solve equation
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(2.1) with the same fixed initial condition z(0) for all argument functions x(t),
and evaluate the solution z(t) at the same fixed final time t = T for all argument
functions x(t).

The generalized variational principle of Herglotz requires that the first vari-
ations of the functional z, defined by (2.1), vanish at t = 0 and t = T . The
equations which produce the extrema of this functional are

∂L

∂xi
− d

dt

∂L

∂ẋi
+
∂L

∂z

∂L

∂ẋi
= 0, i = 1, . . . , n.

Herglotz called them the generalized Euler–Lagrange equations. See Guenther
et al. ([7]) for a derivation of this system.

Consider the one-parameter group of invertible transformations

(2.2)
t = φ(t, x, ε),

xk = ψk(t, x, ε), k = 1, . . . , n,

where ε is the parameter, φ(t, x, 0) = t, and ψk(t, x, 0) = xk. Let the generators
of the corresponding infinitesimal transformation be

(2.3) τ(t, x) =
dφ

dε
(t, x, 0) and ξk(t, x) =

dψk
dε
(t, x, 0).

Denote by ζ = ζ(t) the total variation of the functional z = z[x; t] produced by
the family of transformations (2.2), i.e.

ζ(t) =
d

dε
z[x; t, ε]

∣∣∣∣
ε=0

.

Throughout this paper we assume that the summation convention on repeated
indices holds and that “ · ” denotes differentiation with respect to t.

Theorem 2.1. If the functional z = z[x(t); t] defined by the differential equa-
tion ż = L(t, x, ẋ, z) is invariant under the one-parameter group of transforma-
tions (2.2) then the quantities

(2.4) exp
(
−
∫ t
0

∂L

∂z
dθ

)((
L− ẋk

∂L

∂ẋk

)
τ +

∂L

∂ẋk
ξk

)
are conserved along the solutions of the generalized Euler–Lagrange equations

(2.5)
∂L

∂xi
− d

dt

∂L

∂ẋi
+
∂L

∂z

∂L

∂ẋi
= 0, i = 1, . . . , n.

Proof. First note that

(2.6)
t = t+ τ(t, x) ε+ o(ε),

xk = xk + ξk(t, x) ε+ o(ε).
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Let us apply the transformation (2.6) to the differential equation (2.1). Since
dz/dt = (dz/dt) (dt/dt ), we get

(2.7)

dz

dt
= L
(
t, x(t),

dx(t)
dt

, z

)
,

dz

dt
= L
(
t, x(t),

dx(t)
dt

, z

)
dt

dt
.

Differentiate (2.7) with respect to ε and set ε = 0 to obtain

(2.8)
d

dε

(
dz

dt

)∣∣∣∣
ε=0
=

d

dt

(
dz

dε

)∣∣∣∣
ε=0
=
dL

dε

∣∣∣∣
ε=0

dt

dt

∣∣∣∣
ε=0
+ L

d

dε

(
dt

dt

)∣∣∣∣
ε=0

.

Next, we use the fact that ϕ(t, x, 0) = t to conclude that

dt

dt

∣∣∣∣
ε=0
= 1.

Similarly, we have

d

dε

(
dt

dt

)∣∣∣∣
ε=0
=

d

dt

(
d

dε
ϕ(t, x, ε)

)∣∣∣∣
ε=0
=

d

dt

(
dϕ

dε
(t, x, 0) + o(ε)

)∣∣∣∣
ε=0
=

d

dt
τ(t, x).

Thus, equation (2.8) becomes

dζ

dt
=
dL

dε

∣∣∣∣
ε=0
+ L

dτ

dt
.

Expanding the derivative dL/dε and setting ε = 0, we obtain

(2.9)

dζ

dt
=
∂L

∂t

dt

dε

∣∣∣∣
ε=0
+

∂L

∂xk

dxk
dε

∣∣∣∣
ε=0

+
∂L

∂ẋk

d

dε

(
dxk
dt

)
ε=0
+
∂L

∂z

dz

dε

∣∣∣∣
ε=0
+ L

dτ

dt
,

dζ

dt
=
∂L

∂t
τ +

∂L

∂xk
ξk +

∂L

∂ẋk

d

dε

(
dxk
dt

)
ε=0
+
∂L

∂z
ζ + L

dτ

dt
.

We need to calculate and insert in equation (2.9) the expression

d

dε

(
dxk
dt

)∣∣∣∣
ε=0

.

For this we proceed as follows:

(2.10)
dxk
dt
≡ ∂xk

∂t
+
∂xk
∂xh

ẋh =
dxk
dt

dt

dt
≡ dxk

dt

(
∂t

∂t
+

∂t

∂xh
ẋh

)
.

Set ε = 0 to obtain

(2.11)
dxk
dt

∣∣∣∣
ε=0
= δkhẋh = ẋk.
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Differentiate (2.10) with respect to ε and expand both sides to get

(2.12)
d

dε

(
∂xk
∂t

)
+

d

dε

(
∂xk
∂xh

)
ẋh

=
dxk
dt

(
d

dε

(
∂t

∂t

)
+

d

dε

(
∂t

∂xh

)
ẋh

)
+

d

dε

(
dxk
dt

)(
∂t

∂t
+

∂t

∂xh
ẋh

)
.

We set ε = 0 in this equation, substitute in it (2.11) and use the following
relations:

d

dε

(
∂xk
∂t

)∣∣∣∣
ε=0
=
∂ξk
∂t

,
d

dε

(
∂t

∂t

)∣∣∣∣
ε=0
=
∂τ

∂t
,

d

dε

(
∂t

∂xh

)∣∣∣∣
ε=0
=

∂τ

∂xh
,

∂t

∂t

∣∣∣∣
ε=0
= 1,

∂t

∂xh

∣∣∣∣
ε=0
= 0.

Then equation (2.12) becomes

∂ξk
∂t
+
∂ξk
∂xh

ẋh = ẋk

(
∂τ

∂t
+

∂τ

∂xh
ẋh

)
+

d

dε

(
dxk
dt

)∣∣∣∣
ε=0

.

Observe that the total derivatives of ξk and τ appear in the last equation. Solving
for the last term in it, we obtain

d

dε

(
dxk
dt

)∣∣∣∣
ε=0
=
dξk
dt
− ẋk

dτ

dt
.

We insert the last result in equation (2.9) to obtain the differential equation

(2.13)
dζ

dt
=
∂L

∂t
τ +

∂L

∂xk
ξk +

∂L

∂ẋk

(
dξk
dt
− ẋk

dτ

dt

)
+
∂L

∂z
ζ + L

dτ

dt

for the variation ζ of the functional z. The solution ζ of (2.13) is given by

exp
(
−
∫ t
0

∂L

∂z
dθ

)
ζ − ζ(0)

=
∫ t
0
exp
(
−
∫ s
0

∂L

∂z
dθ

)(
∂L

∂s
τ +

∂L

∂xk
ξk +

∂L

∂ẋk

(
dξk
ds
− ẋk

dτ

ds

)
+ L

dτ

ds

)
ds.

Notice that ζ(0) = 0. Indeed, as explained earlier, in order to have a well-defined
functional z as a functional of x(t), we must evaluate the solution z(t) of the
equation (2.1) with the same fixed initial condition z(0), independently of the
function x(t). Then z(0) is independent of ε. Hence, the variation of z evaluated
at t = 0 is

ζ(0) =
d

dε
z[x; 0, ε]

∣∣∣∣
ε=0
=

d

dε
z(0)
∣∣∣∣
ε=0
= 0.
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Since by hypothesis the one-parameter family of transformations (2.2) leaves the
functional z = z[x(t); t] stationary, we have ζ(t) = 0. Thus, one obtains

(2.14)
∫ t
0
exp
(
−
∫ s
0

∂L

∂z
dθ

)(
∂L

∂s
τ +

∂L

∂xk
ξk

+
∂L

∂ẋk

(
dξk
ds
− ẋk

dτ

ds

)
+ L

dτ

ds

)
ds = 0.

An integration by parts of the last equation produces

exp
(
−
∫ s
0

∂L

∂z
dθ

)(
Lτ +

∂L

∂ẋk
ξk −

∂L

∂ẋk
ẋkτ

)∣∣∣∣s=t
s=0

+
∫ t
0
exp
(
−
∫ s
0

∂L

∂z
dθ

)(
∂L

∂s
τ − L̇τ + L∂L

∂z
τ +

∂L

∂xk
ξk

− d

ds

(
∂L

∂ẋk

)
ξk +

∂L

∂ẋk

∂L

∂z
ξk −

∂L

∂z

∂L

∂ẋk
ẋkτ

+
d

ds

(
∂L

∂ẋk

)
ẋkτ +

∂L

∂ẋk
ẍkτ

)
ds = 0,

which on solutions of the generalized Euler-Lagrange equations becomes

exp
(
−
∫ s
0

∂L

∂z
dθ

)(
Lτ +

∂L

∂ẋk
ξk −

∂L

∂ẋk
ẋkτ

)∣∣∣∣s=t
s=0

+
∫ t
0
exp
(
−
∫ s
0

∂L

∂z
dθ

)(
− ∂L

∂z
ż + L

∂L

∂z

− ẋk
(
∂L

∂xk
− d

ds

∂L

∂ẋk
+
dL

dz

∂L

∂ẋk

))
τ ds = 0.

Taking into consideration the fact that ż = L, we obtain that along the solutions
of the generalized Euler–Lagrange equations (2.5) equation (2.14) reduces to

exp
(
−
∫ s
0

∂L

∂z
dθ

)(
Lτ +

∂L

∂ẋk
ξk −

∂L

∂ẋk
ẋkτ

)∣∣∣∣s=t
s=0
= 0.

Since the last equation holds for all t, it follows that

exp
(
−
∫ t
0

∂L

∂z
dθ

)((
L− ẋk

∂L

∂ẋk

)
τ +

∂L

∂ẋk
ξk

)
= constant

along solutions of the generalized Euler–Lagrange equations, as claimed. �

It should be observed that the exponential factor

(2.15) exp
(
−
∫ t
0

∂L

∂z
dθ

)
=
1
ρ

which is present in the conserved quantities (2.4) is the reciprocal of themultiplier
function ρ which appears in the definition

Pi dXi − dZ = ρ (pi dxi − dz)
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of contact transformations (see Guenther, [7]).
The conserved quantities (2.4) have a remarkable form – they are products

of ρ−1 with the expressions

(2.16)
(
L− ẋk

∂L

∂ẋk

)
τ +

∂L

∂ẋk
ξk

whose form is exactly the same as that of the conserved quantities obtained from
the classical first Noether theorem. In the special case ∂L/∂z = 0 the functional
z is defined by the integral

z =
∫ t
0
L(t, x, ẋ) dθ

and ρ = 1. Hence, in this case Theorem 2.1 reduces to the classical first Noether
theorem. Recent references on the classical Noether theorems are Logan ([14]),
Olver ([18]) and Bluman, Kumei ([1]). For applications to physics see Goldstein
([6]) and Roman ([19]).

3. Conserved quantities in generative and dissipative systems

Physical systems described by the generalized Euler–Lagrange equations (2.5)
or by the corresponding canonical equations (see Guenther in [7]) are not con-
servative in general. Since the Lagrangian functional of such systems cannot be
expressed as an integral, the first Noether theorem cannot be used for finding
conserved quantities. Below we show how the first Noether-type theorem can be
used to find conserved quantities in non-conservative systems. For this, we must
describe the physical system with the generalized Euler–Lagrange equations or
the canonical equations and then find symmetries of the functional z = z[x(t); t]
defined by the differential equation ż = L(t, x, ẋ, z), that is, transformations of
both dependent and independent variables which leave z[x(t); t] invariant.
To test whether a transformation is a symmetry of the functional z[x(t); t]

we use the following

Proposition 3.1. The transformation

(3.1)
t = ϕ(t, x, ε),

xk = ψk(t, x, ε),

leaves the functional z, defined by the differential equation ż = L(t, x, ẋ, z) in-
variant if and only if

(3.2) L

(
t, x,

dx

dt

(
dt

dt

)−1
, z

)
dt

dt
= L
(
t, x(t),

dx(t)
dt

, z

)
holds for all t, x, z in the domain of consideration.

We are now ready to apply the first Noether-type theorem to find specific
conserved quantities corresponding to several basic symmetries. Because of their
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generality and physical significance we state the results as corollaries to the first
Noether-type theorem.

Corollary 3.2. Let the functional z defined by the differential equation
ż = L(t, x, ẋ, z) be invariant with respect to translation in time, t = t+ ε, x = x.
Then the quantity

(3.4) E = exp
(
−
∫ t
0

∂L

∂z
dθ

)(
L(x, ẋ, z)− ∂L

∂ẋk
ẋk

)
is conserved on solutions of the generalized Euler–Lagrange equations.

Proof. By Proposition 3.1 we see that ∂L/∂t = 0. The infinitesimal gen-
erator of the group translation in time is ∂/∂t. To obtain the conclusion of the
corollary, apply the first Noether-type theorem with

τ =
dt

dε

∣∣∣∣
ε=0
= 1, ξk =

dxk
dε

∣∣∣∣
ε=0
= 0. �

Noticing that the Hamiltonian is H = pkẋk − L, we see that on solutions of
the generalized Euler–Lagrange equations

(3.5) E =
1
ρ
H = constant,

where ρ is the multiplier function (2.15). We observe a correspondence with
the classical law of conservation of energy: If a physical system is described by a
time-independent Lagrangian, which does not depend on z, then the Hamiltonian
H is conserved and is identified with the energy of the system. If we continue to
interpret H as the energy of the system when L does depend on z, then we see
from formula (3.5) that H varies proportionally to ρ since E is constant.
A direct computation verifies the statement of the corollary.

Corollary 3.3. Let the functional z defined by the differential equation
ż = L(t, x, ẋ, z) be invariant with respect to translation in space direction xk, i.e.
t = t, xk = xk + ε, xi = xi for i = 1, . . . , k − 1, k + 1, . . . , n. Then the quantity

(3.6) Mk = exp
(
−
∫ t
0

∂L

∂z
dθ

)
∂L

∂ẋk

is conserved on solutions of the generalized Euler-Lagrange equations.

Proof. By Proposition 3.1 we know that ∂L/∂xk = 0. The infinitesimal
generator of the group of translations in direction xk is ∂/∂xk. To get the
conserved quantity Mk apply the first Noether-type theorem with

τ =
dt

dε

∣∣∣∣
ε=0
= 0, ξk =

dxk
dε

∣∣∣∣
ε=0
= 1, ξi =

dxi
dε

∣∣∣∣
ε=0
= 0, for i 6= k. �



270 B. Georgieva — R. Guenther

In terms of the multiplier function ρ the expression (3.6) takes the form

(3.7) Mk =
1
ρ

∂L

∂ẋk
= constant.

Again, we observe a correspondence with the classical law of conservation of
linear momentum. If we retain the definition of linear momentum ∂L/∂ẋk then
the result (3.7) says that the linear momentum is not conserved, but changes
proportionally to ρ.
Although the linear momentum changes in time, its direction remains invari-

ant, since the ratios of its components are constant.

Corollary 3.4. Let the functional z defined by the equation ż = L(t, x, ẋ, z)
be invariant with respect to rotations in the xixj-plane. Then the quantity

(3.8) Aij = exp
(
−
∫ t
0

∂L

∂z
dθ

)(
∂L

∂ẋi
xj −

∂L

∂ẋj
xi

)
is conserved along solutions of the generalized Euler–Lagrange equations.

Proof. By Proposition 3.1 we know that the Lagrangian has the form

L = L(t, xi2 + xj2, xr, ẋ2i + ẋ
2
j , ẋr, z)

where xr stands for all coordinates distinct from xi or xj . Indeed, dt/dt = 1 and
the invariance of z under rotations in the xixj-plane implies the specific form
of L.
The infinitesimal generator of the group of rotations is

xj
∂

∂xi
− xi

∂

∂xj
.

Thus, to obtain the conserved quantity Aij , we apply the first Noether-type
theorem with τ = 0, ξi = xj , ξj = −xi, ξr = 0 for r 6= i, j. �

Once again, in the case of z-independent L, we have a correspondence with
the classical law of conservation of angular momentum

xj
∂L

∂xi
− xi

∂L

∂xj
.

Again, we can verify the result (3.8) by a direct calculation, noticing the use of
both

∂L

∂ẋi
ẋj =

∂L

∂ẋj
ẋi and

∂L

∂xi
xj =

∂L

∂xj
xi

which hold since L = L(t, xi2 + xj2, ẋ2i + ẋ
2
j , z).

It should be observed that, although the components of the angular momen-
tum change according to

xj
∂L

∂xi
− xi

∂L

∂xj
= ρAij ,
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their ratios remain constant. Thus, the direction of the angular momentum is
invariant.

4. Additional applications of the first Noether-type theorem

It is known that dissipation effects in physical processes can often be ac-
counted for in the equations describing these processes by terms which are pro-
portional to the first time derivatives ẋi(t) = dxi/dt of the dependent variables
(see Goldstein in [6]). For example, the viscous frictional forces acting on an
object which is moving in a resistive medium, such as a gas or a liquid, are
proportional to the object’s velocity. Similarly, the dissipative effects (due to
the ohmic resistance) in electrical circuits can often be modeled by including
terms which are proportional to the first time-derivative of the corresponding
dependent variables, such as the electric charge.
All such dissipative processes can be given a unified description by the gen-

eralized variational principle.
For example, let us consider the motion of a small object with mass m (point

mass) under the action of some potential U = U(t, x) with x = (x1, x2, x3) in
a resistive medium. We assume that the resistive forces are proportional to the
velocity. The equations describing the motion of such an object are

(4.1) mẍi = −
∂U

∂xi
− kẋi, i = 1, 2, 3,

where k > 0 is a constant. All equations of this form can be obtained from the
generalized variational principle by choosing for the Lagrangian function L the
expression

(4.2) L =
m

2
(ẋ21 + . . .+ ẋ

2
n)− U(t, x1, . . . , xn)− αz

where U = U(t, x1, . . . , xn) is the potential energy of the system and α > 0 is a
constant. From (4.2) we obtain the generalized Euler–Lagrange equations

∂L

∂xi
− d

dt

(
∂L

∂ẋi

)
+
∂L

∂z

∂L

∂ẋi
= − ∂U

∂xi
− d

dt

(
mẋi
)
−mαẋi = 0

which are the same as (4.1) for n = 3 and k = mα.
Depending on the choice of the function U , equations (4.1) can describe a

variety of systems. For instance:
(1) When U = kr2 = c(x21 + . . . + x

2
n), with c > 0 constant, (4.1) describe

one-dimensional or multi-dimensional isotropic damped harmonic oscillators.
(2) When U = −c/r = −k/

√
x21 + x

2
2 + x

2
3, equations (4.1) describe the

motion of a point mass m under Coulomb (electrostatic) or gravitational forces
in a resistive medium characterized by the constant α.
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(3) The equations describing the currents, voltages and charges in single
or coupled electrical circuits have the same form as equations (4.1) with i =
1, . . . , n, where n is the number of state variables (currents, voltages and charges)
and U is an appropriately chosen function (see Goldstein, [6, p. 52]). Hence, the
processes in electrical circuits can also be derived from a Lagrangian function of
the form (4.2) via the generalized variational principle. This is not possible with
the classical variational principle.
As an illustration of the preceding discussion consider a system whose La-

grangian is of the form (4.2) and assume that the potential U is time-indepen-
dent. Then, ∂L/∂t = 0 and it follows from the Noether-type theorem that the
quantity

exp
(
−
∫ t
0

∂L

∂z
dϑ

)(
ẋi
∂L

∂ẋi
− L
)
= eαt

(
m

2

(
ẋ21 + . . .+ ẋ

2
n

)
+ U(x) + αz

)
is conserved. Recognizing that H = ẋi(∂L/∂ẋi) − L is the Hamiltonian of the
system, we conclude that the value of the Hamiltonian decreases exponentially
in time, i.e.

(4.3) H = e−αt
(
m

2

(
ẋ21 + . . .+ ẋ

2
n

)
+ U(x)

)∣∣∣∣
t=0
= e−αtH0

where H0 is the initial value of the Hamiltonian, that is, the initial total energy
of the system.
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[9] , Berührungstransformationen, Lectures at the University of Göttingen, Göttin-
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